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Abstract

The purpose of this paper is to establish several identities involving
the partial Bell polynomials by using the generating function. These re-
sults generalize some identities by Yang in ”Discrete Math., 308(2008)”
and Abbas and Bouroubi in ”Discrete Math., 293(2005)”. Some appli-
cations are given.
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1. Introduction

The partial Bell polynomials are the polynomials B, j(21, 2, ..., Tn_k41) in
an infinite number of variables x1, x», ..., defined by the formal double series
expansion:

tm t" | &
exp (u Z xm%> =1+ Z ] {Z uan,k(xl, To,. .. ,xn_k+1)} (1)
k=1

m2>1 n>1
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or, by the series expansion:

k
H (Z xm%) = : :ank(x17x27'"7xn—k‘+1)m7 k:07172,.... (2)
m>1 n>k

The partial Bell polynomials have the following expression:

n!

B(x1,20,..., 2, = R Sl 3
w1, 2 b+l Z01!02!...(1!)01(2!)02... L2 3)
where the summation takes place over all integers ¢y, ¢z, c3, ... > 0, such that
c1+ca+c3+... =k, and ¢y +2co+3c3+ ... = n. The partial Bell polynomials

have the following known identity:

Bun(1,2,3,...)) = (Z) k. (4)

For the detail, see [2].

Let ¢, (z) be binomial sequences if it satisfies the following condition: (1)
wo(l) =1, ¢1(x) = x, (2) for any positive integer n, ¢, (z) is a polynomial of
degree n with ¢, (0) = 0, and (3) for all nonnegative integer n,

n(® +y) = 22k (1) er(2)enr()-
In [1], Abbas and Bouroubi generalized (4) as the following identity involv-
ing the partial Bell polynomials and the binomial sequencss:

n

B i(o(1),201(1),3p2(1),...,) = <k) On—i(k)

Recently, Yang [4] generalized further the following identity:

n

Buslnl@): 201036200, .) = ()l )

At same time, he supplied the following two identities:

20 (§) e = Bt e nta) .0
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SR (0o

= (B 50a(0), ol goutalenn ). )
These two identities generalized the results of [5].

The purpose of this paper is to establish several identities involving the
partial Bell polynomials by using the generating function. These results gen-
eralize some identities by Yang in [4] and Abbas and Bouroubi in [1].

2. A Class of Function

Let f(x) be a function such that the any order derivatives exist. To avoid any
unnecessary confusion, we apply f*)(z) to denote the k-th order derivative of
f(z) and use f*(x) to stand for the k-th power of f(z). Obviously, (O (x) =
f(x) and fO(z) = 1.

Suppose that

oo . tn
(1) = 3 1) g
n=0 ’
Theorem 2.1. We have
an(x7 t) + ng(l’, t) = Qaf+bg<x’ t) (9)
Qf(x,t)Qg(x,t) = Qfg(x,t) (10)

Proof. The first formula is obviously. Now we prove the second formula.
Since

n>0 n>0

> (Z (0) 0 <w>) G

n>0 =0

= S (gL

n!
n>0

= Qf!)(x?t):
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the proof is completed.
Corollary 2.2. We have

Qi (x, 1) = Qpe(x,t) (11)
Proof. Apply inductive on k.

3. Main Results

Theorem 3.1. Let f(x) be a function such that the any order derivatives ezist.
Then for all integers, n, k >0,

(1) ()" = Bus( ). 200,372 ). (12)

Proof. From the definition of the partial Bell polynomial, we have

k
1 & n
e = g ()

k
1 oo 4
- E (n:l nf(nil) (x)ﬁ>

= Y Bulf), 2/0@), 32, )5 (1)
By Corollary 2.2, we have -
S0 0) = (@)
= %tmfk(x,t)
_ %tk;(fk(x))(n)g
CS@eers o

Comparing the coefficients of £ in (13) and (14), the assertion follows.

Similar to the proof of Theorem 3.1, we can obtain the following two results.
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Theorem 3.2. Let f(x) be a function such that the any order derivatives exist.
Then for all integers, n, k >0,

£ () P = Busl V@) S @) SO @) (1)

Proof. Since

(9 0) — (@) = %(Zﬂ%);—f)

and

=@t~ F@) =

Comparing the coefficients of %, the proof is completed. O

Theorem 3.3. Let f(x) be a function such that the any order derivatives exist.
Then for all integers, n, k > 0,

1 1

(W) Bos (§f<2> (@), 11O @). FO@)... ) . (16)
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Proof. Since

= S B (30 31O V) By

n>2k

and

)
NS (’“) (—1)" (£(@) + FD @) Q)
)

S ) L ()P e

n>0

Ol o e

J=0

Comparing the coefficients of %, the proof is completed.

4. Applications

Example 4.1. Let g(z,2) = > o n(x)Z;, where ¢,(z) is a binomial se-
quence. Then ¢'(z,2) = g(lz, 2), (see [3]). If taking f*)(x) = %g(m, 2)| a0 =
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or(z), we have (f(z))*®) = %gl(x,zﬂz_m = %g(la:,zﬂz_m = pr(lx). From
Theorems 3.1-3.3, the results of Yang [4] are obtained. From the binomial
sequences: ", (2), = x(z—1)...(x —n+1), 2" =z(z+N)(z+2)\) ... (z +
(n—=1N), z(z—na)" 1, S0 s(n k), >y S(n, k), where s(n, k) and S(n, k)
are the Stirling number of the first and second kinds, respectively, the corre-
sponding identities can be obtained.

Example 4.2. If taking f(z) = ¢* —1 and x — 0, from Theorems 3.1-3.3, the
following identities are obtained:

(Z)k:!S(n—k;,k) = Boi(0, 2,3, 4, ..., ),
S(n,k)=Buk(l, 1, 1, ..., ),
k
n , , 111
Z(—l) (Z,)S(n—z,k—z) = (n)kBn—kk (5, TR >

Example 4.3. If taking f(z) = In(1 + z) and z — 0, from Theorems 3.1-3.3,
the following identities are obtained:

(Z)k:!s(n—k,k) = Bui(0, 2, —3-11, 4.2, —5-31, 6-41, ..., ),
s(n, k) = B (01, —11, 21, =31, 41, ..., ),
k
(n . . 1 2! 3! 4!
Z(—l)z(i)s(n—z,k:—z):(n)an_ng (—5, 3T e )

Example 4.4. If taking f(z) = 15 = ano@n)!% and z — 0, noting

1—x 2
that
2o ((1 - a:2)k>

from Theorem 3.1, we have

(fk(x))(”)

B (Qn)!(mzfl), if neven
B 0, if n odd,

z—0

1
Bui(20—11, 0, 31— 21, 0, 51 —4l, ...,) = (Z) (Z 1)(2n—2k)!,
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if n — k is even and
B,r(2' =11, 0, 31 =21, 0, 51 =4l ...,)=0.

if n — k is odd.
Noting that

from Theorems 3.2 and 3.3, we have

(2n)! (n—1
B 2! 4! Lo, = ——
2n,k‘(07 ; Ov ) 07 67 a) k! E—1 5
Bon_14(0, 21, 0, 41, 0, 6!, ...,) =0,
n—1
Bon_rx(11, 0, 3L 0, 51,0, ....) = ,
- =(;2))

Bankfl,k(l!a 07 3'7 07 5‘7 07 7) =0.

Example 4.5. If taking f(z) = 1_;96),” (m > 1) and * — 0, from Theorems
3.1-3.3, the following identities are obtained:

B (1, 2!(?), 3!(m;1>, 4!(m;2), 5!(7”:3), )
B (Z) (mk +nn_—kk - 1) _—
B (1'<T> 2!<m;1), 3!(7”;2), 4!<mi3), )

k

EBer ()
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B (1™ T (™R (M3 (M

R 9 ) 3 3 4 ) 5 3 )
B i u s (B) (F =) (mitn—im 1Y,
- j=0 i=0 J . n—i .

Specially,
By (11, 21, 31 41 ... )= ”_!<”_ 1) = L(n, k),
' \k—1
where L(n, k) is the Lah number.
Example 4.6. If taking f(r) = 7% =1 — %t + D st BQn%, where B,

are the Bernoulli numbers, and x — 0, from Theorems 3.1-3.3, the following
identities are obtained:

(”)Bn"fk = Buu(1, =1, 3B, 0, 5By, 0, TBg, 0,..., )

k
EBn :Bn,k _57 BQa 07 B47 07 BGa 07 sy
k (k—1)
n\ B'_. 1 1 1
i () Bygx | =B, 0. =By, 0, =Bg, 0, ... ),
> (1) g = s (5 0. 30 0. G0 )

where B are the Bernoulli numbers of k-order defined by

n k
ZB(k)t_ _(_*
" nl et — 1

n>0
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