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Abstract

In this paper, we prove sharp Hardy type integral inequality by
using the generalized Riesz potential generated by the generalized Shift
operator. Our results improve and extend the well-known results of
Hardy [2].
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1. Introduction

The initial Hardy type integral inequality is the following, (see [2]):

If p > 1, f(x) ≥ 0, and F (x) =
x∫
0

f(t)dt, then

∞∫
0

(
F

x

)p
dx < qp

∞∫
0

fp(x)dx, (1.1)

unless f ≡ 0. The constant qp is the best possible.
This inequality plays an important role in analysis and its applications. It

is obvious that, for parameters a and b such that 0 < a < b <∞, the following
inequality is also valid

b∫
a

(
F

x

)p
dx < qp

b∫
a

fp(x)dx, (1.2)

where 0 <
∞∫
0

fp(x)dx <∞. The classical Hardy inequality asserts that if p > 1

and f is a non-negative measurable function on (a, b), then (1.2) is true unless
f ≡ 0 a.e. in (a, b), where the constant qp is the best possible. This inequality
remains true provided that 0 < a < b <∞.

In [3], the classical Hardy inequality for fractional integrals states that∥∥∥∥xβ−α x∫
0

f(y)dy
yβ(x−y)1−α

∥∥∥∥
Lp(0,b)

≤ c ‖f‖Lp(0,b) , 0 < α < 1 (1.3)

where α− 1
p
< β < 1

p′
, 1
p

+ 1
p′

= 1 and 0 < b ≤ ∞. Later, Sarikaya and Yıldırım

[8] studied the following generalization Hardy inequality∫
Rn
|x|µλ |Iα,λf(x)|p dx ≤ c

∫
Rn
|x|γλ |f(x)|p dx (1.4)

for the generalized Riesz potential with the non-isotropic kernel depending on
λ−distance.

Because of their fundamental importance in the discipline over the years
much effort and time have been devoted to the improvement and generaliza-
tions of Hardy’s inequalities (1.1)-(1.4). These include, among others, works
in [2-8, 16, 17].

The aim of this paper is to obtain sharp Hardy type integral inequality
generated by the generalized Riesz potential by using Maximal function theory.
Our results improve and extend the well-known results of Hardy (see [2]).
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2. Preliminaries

Suppose that Rn is the n-dimensional Euclidean space, x = (x1, x2, ..., xn),

y = (y1, y2, ..., yn) are vectors in Rn, x.y = x1y1 + ...+ xnyn, |x| = (x.x)
1
2 ,

R+
n= {x : x = (x1, ..., xn), x1 > 0, ..., xn > 0} ,

and E+(x, r) = {y ∈ R+
n : |x− y| ≤ r}.

The Bessel differential operator is defined by

Bi =
∂2

∂x2
i

+
2vi
xi

∂

∂xi
, i = 1, 2, ..., n,

v = (v1, ..., vn), v1 > 0, ..., vn > 0, |v| = v1 + ...+ vn.

For 1 ≤ p < ∞, let Lp,v = Lp,v

(
R+
n ,

(
n∏
i=1

x2vi
i

)
dx

)
be the space of func-

tions measurable on R+
n with the following norms

‖f‖p,v =

(∫
R+
n

|f(x)|p
(

n∏
i=1

x2vi
i

)
dx

) 1
p

,

‖f‖∞,v = ess sup
x∈R+

n

|f(x)| .

|E+(0, r)|v =
∫

E+(0,r)

(
n∏
i=1

x2vi
i

)
dx = Crn+2|v|.

Denote by T yx the generalized shift operator acting according to the law

Ty
xf(x) =Cv

π∫
0

...
π∫
0

f

(√
x2

1 + y2
1 − 2x1y1 cosϕ1,...,

√
x2
n + y2

n − 2xnyn cosϕn

)
×

n∏
i=1

(sin2vi−1 ϕidϕi),

where x, y ∈ R+
n , Cv =

n∏
i=1

Γ(vi + 1)

Γ(1
2
)Γ(vi)

(see [9-15]). Let f be in Lp,v(R
+
n ), 1 ≤

p <∞. Then T yx f belongs to Lp,v(R
+
n ), and

‖T yx f‖p,v ≤ ‖f‖p,v . (2.1)
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We remark that T yx is closely connected with the Bessel differential operator
B = (B1, ..., Bn)(see [9-15]).

The convolution operator determined by the T yx is defined by

(f ∗ ϕ)B(x) =

∫
R+
n

f(y)T yxϕ(x)(
n∏
i=1

y2vi
i )dy.

This convolution is known as a B-convolution. We note that the following
properties hold (see [9-15]):

a.(f ∗ ϕ)B = (ϕ ∗ f)B
b. ‖f ∗ ϕ‖r,v ≤ ‖f‖p,v ‖ϕ‖q,v 1 ≤ p , r ≤ ∞ , 1

r
= 1

p
+ 1

q
− 1

c. T yx .1 = 1
d. If f(x), g(x) ∈ C(R+

n ) , g(x) is a bounded function all xi > 0(i = 1, ..., n)
and ∫

R+
n

|f (x)| (
n∏
i=1

x2vi
i )dx <∞,

then ∫
R+
n

T yx f(x)g(y)(
n∏
i=1

y2vi
i )dy =

∫
R+
n

f(y)T yx g(x)(
n∏
i=1

y2vi
i )dy.

e. |T yx f(x)| ≤ sup
x≥0
|f(x)| .

The maximal function MBf(x) is defined by

MBf(x) = sup
r>0

1

|E+(0, r)|v

∫
E+(0,r)

T yx |f(x)| (
n∏
i=1

y2vi
i )dy.

Theorem 2.1.[1] (i) If f ∈ L1,v

(
R+
n ,

(
n∏
i=1

x2vi
i

)
dx

)
, then for every α > 0

|{x : MBf(x) > λ}| ≤ C

λ

∫
R+
n

|f(x)|
n∏
i=1

x2vi
i dx,

where C > 0 is independent on f.
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(ii) If f ∈ Lp,v
(
R+
n ,

(
n∏
i=1

x2vi
i

)
dx

)
, 1 < p <∞,

then MBf ∈ Lp,v
(
R+
n ,

(
n∏
i=1

x2vi
i

)
dx

)
and

‖MBf‖p,v ≤ Cp ‖f‖p,v ,

where Cp > 0 is independent on f.

Corollary 2.2. For ∀f ∈ Lp,v
(
R+
n ,

(
n∏
i=1

x2vi
i

)
dx

)
, ∀p′ > q, we have

∥∥∥(MB(|f |q))
1
q

∥∥∥
p′,v
≤ C ‖f‖p′,v .

In fact, as p′ > q, that is p′

q
> 1, by Theorem 2.1, we have∥∥∥(MB(|f |q))

1
q

∥∥∥
p′,v

= ‖MB(|f |q)‖
1
q

p′
q
,v

≤ C ‖|f |q‖
1
q

p′
q
,v

= C ‖f‖p′,v .

The Fourier-Bessel transformation and its inverse transformation are de-
fined as follows:

(FBf) (x) = C∗v

∫
R+
n

f(y)

(
n∏
i=1

jvi− 1
2

(xiyi) y
2vi
i

)
dy,

(
F−1
B f

)
(x) = (FBf) (−x) , C∗v =

(
n∏
i=1

2vi−
1
2 Γ

(
vi +

1

2

))−1

where jvi− 1
2

(xiyi) is the normalized Bessel function which is the eigenfunction
of the Bessel differential operator. There is the following identity for Fourier-
Bessel transformation,

FB(f ∗ g)B(x) = FBf(x).FBg(x).
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The generalized Riesz potential Iα,vf of a function f which is sufficiently
smooth and small at infinity are defined in terms of the Fourier Bessel trans-
form by

FB(Iα,vf)(x) = |x|−α FBf(x) (x ∈ R+
n , α > 0),

where the identity is to be understood in the sense of the distribution theory
(see [11-15]). This potential is interpreted as the negative powers of the minus
Laplace Bessel

−∆B = −
n∑
i=1

(
∂2

∂x2
i

+
2vi
xi

∂

∂xi

)
,
(
xi ∈ R+

n , vi > 0, i = 1, 2, ..., n
)
,

and have the following B−convolution type operator Iα,vf is defined by

(Iα,vf)(x) = (−∆B)−
α
2 f(x) = Cn,α,v

∫
R+
n

f(y)T yx |x|
α−n−2|v| (

n∏
i=1

y2vi
i )dy,

where

0 < α < n+ 2 |v| , Cn,α,v =

2α−nΓ(
α

2
)

1

Γ
(
n+2|v|−α

2

) n∏
i=1

Γ(vi +
1

2
)


−1

.

which is obtained by the generalized shift operator. The operator Iα,v is called
the generalized Riesz potential generated by the generalized Shift operator.

In recent years, this potential is known as important technical tools in
Fourier and Fourier Bessel harmonic analysis. The important properties of
this potential were studied by many authors. The readers are advised to find
more detailed information about this potential from [9-15].

Lemma 2.3. Let x, y ∈ R+ . In this case, there is the following inequality for
the generalized shift operator

|x− y|2 ≤ x2 + y2 − 2xy cos θ ≤ (x+ y)2 ,

where θ ∈ [0, π] .
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3. Main Results

In this section, we will state our main results and give their proofs as follows.

Lemma 3.1. Let p′ = p
p−1

, q = q′

q′−1
, p′ > q, αq′ < n+ 2 |v|,

g ∈ Lp′,v

(
R+
n ,

(
n∏
i=1

x2vi
i

)
dx

)
,

and

Ig(y) =
C

|y|n+2|v|−α

∫
|x|< |y|

2

g(x)

|x|α
(
n∏
i=1

x2vi
i )dx.

Then
‖Ig(y)‖p′,v ≤ C ‖g‖p′,v .

Proof. For α > 0 and αq′ < n+2 |v| ,we take q > n+2|v|
n+2|v|−α . Thus, by Hölder’s

inequality, (c) and (d) we have

|Ig(y)| ≤ C

|y|n+2|v|−α

 ∫
|x|< |y|

2

|g(x)|q (
n∏
i=1

x2vi
i )dx

 1
q
 ∫
|x|< |y|

2

1

|x|αq′
(
n∏
i=1

x2vi
i )dx

 1
q′

≤ C

|y|n+2|v|−α

 ∫
|x|< |y|

2

|g(x)|q (
n∏
i=1

x2vi
i )dx

 1
q

|y|(n+2|v|−αq′) 1
q′

=
C

|y|
n+2|v|
q

 ∫
|x|< |y|

2

|g(x)|q (
n∏
i=1

x2vi
i )dx

 1
q

= C

 1

|y|n+2|v|

∫
|x|< |y|

2

T xy |g(y)|q (
n∏
i=1

x2vi
i )dx

 1
q

≤ C (M(|g|q))
1
q (y)
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for ∀p′ > q > n+2|v|
n+2|v|−α , that is 1 < p < n+2|v|

α
, follow by Corollary 2.2, we get

I strong (p′, p′) type.

Theorem 3.2. Let p > 1, 0 ≤ α < n+2|v|
p

, then there exists a constant C such

that for ∀u ∈ Lp,v
(
R+
n ,

(
n∏
i=1

x2vi
i

)
dx

)
,

∫
R+
n

(
|u(x)|
|x|α

)p( n∏
i=1

x2vi
i

)
dx ≤ C ‖u‖pp,v . (3.1)

Remark 3.3. i.If α = 0, it is obvious that the result holds true for every
1 < p <∞.

ii. Without considering the constant C, the inequality is sharp. In details,
for p = n+2|v|

α
, , if we take u(x) ∈ C∞c (R+

n ) satisfying u(x) = 1 for |x| ≤ 1,
u(x) = 0 for |x| ≥ 1, then the above theorem can not hold. In fact

∫
R+
n

|u(x)|p

|x|n+2|v|

(
n∏
i=1

x2vi
i

)
dx ≥

∫
|x|≤1

1

|x|n+2|v|

(
n∏
i=1

x2vi
i

)
dx =∞

while

‖u‖p,v ≤ ∞.

Proof of the Theorem 3.2. Let I−α,vu = f, then u = Iα,vf. To prove the
inequality (3.1), it is sufficient to show that∥∥∥∥Iα,vf|x|α

∥∥∥∥
p,v

≤ C ‖f‖p,v . (3.2)

Let f ∈ Lp,v
(
R+
n ,

(
n∏
i=1

x2vi
i

)
dx

)
, 0 ≤ α < n+2|v|

p
and

Af =
Iα,vf

|x|α
=

∫
R+
n

f(y)T yx |x|
α−n−2|v|

|x|α
(
n∏
i=1

y2vi
i )dy.
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Then we have

Af =
Iα,vf

|x|α
=

∫
R+
n

f(y)T yx |x|
α−n−2|v|

|x|α
(
n∏
i=1

y2vi
i )dy

=
∫

E+(0,2|x|)

f(y)T yx |x|
α−n−2|v|

|x|α
(
n∏
i=1

y2vi
i )dy

+
∫

R+
n \E+(0,2|x|)

f(y)T yx |x|
α−n−2|v|

|x|α
(
n∏
i=1

y2vi
i )dy

= A1f + A2f.

To prove (3.2), we need only prove that both A1 and A2 are strong (p, p) type.
Firstly, we estimate A1f . By taking sum with respect to all integer k < 0, we
get

|A1f | ≤
∫

E+(0,2|x|)

|y|α−n−2|v| |T yx f(x)|
|x|α

(
n∏
i=1

y2vi
i )dy

=
0∑

k=−∞

∫
2k|x|≤|y|<2k+1|x|

|y|α−n−2|v| |T yx f(x)|
|x|α

(
n∏
i=1

y2vi
i )dy

≤ C
0∑

k=−∞
(2k |x|)−n−2|v| ∫

2k|x|≤|y|<2k+1|x|
T yx |f(x)| (

n∏
i=1

y2vi
i )dy

≤ CMαf.

From Theorem 2.1, we have ‖A1f‖p,v ≤ C ‖f‖p,v .
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Now, we consider A2f. From Lemma 2.3 and the properties of T yx , we have

A2f(x) =
∫

R+
n \E+(0,2|x|)

f(y)T yx |x|
α−n−2|v|

|x|α
(
n∏
i=1

y2vi
i )dy

≤
∫

|y|>2|x|

|y − x|α−n−2|v|

|x|α
f(y)(

n∏
i=1

y2vi
i )dy

≤ C
∫

|y|>2|x|

f(y)

|y|n+2|v|−α |x|α
(
n∏
i=1

y2vi
i )dy

∆
= B2f(x).

For every g ∈ Lp′,v
(
R+
n ,

(
n∏
i=1

x2vi
i

)
dx

)
, we get

< B2f(x), g(x) > =
∫
R+
n

B2f(x)g(x)(
n∏
i=1

x2vi
i )dx

= C
∫
R+
n

[ ∫
|y|>2|x|

f(y)

|y|n+2|v|−α |x|α
(
n∏
i=1

y2vi
i )dy

]
g(x)(

n∏
i=1

x2vi
i )dx

= C
∫
R+
n

 1

|y|n+2|v|−α

∫
|x|< |y|

2

g(x)

|x|α
(
n∏
i=1

x2vi
i )dx

 f(y)(
n∏
i=1

y2vi
i )dy

= < Ig(y), f(y) >

where

Ig(y) =
C

|y|n+2|v|−α

∫
|x|< |y|

2

g(x)

|x|α
(
n∏
i=1

x2vi
i )dx.

From Hölder’s inequality and Lemma 3.1, we have

< B2f(x), g(x) > = < Ig(y), f(y) >

= ‖Ig(y)‖p′,v ‖f(y)‖p,v

≤ C ‖g‖p′,v ‖f(y)‖p,v .
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Here, B2 is strong (p, p) type by definition of norm. Hence, A2 is also a strong
(p, p). This proves the theorem.

Remark 3.4 Using our method for p = 1, we can only get A1 is weak (1, 1)
type.
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