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Abstract

In this paper, we obtain distortion theorem and the Hadamard prod-
ucts of functions belonging the class Ω+(p;α, β, γ,A,B, λ) of meromor-
phic functions with positive and missing coefficients. Also some prop-
erties of neighborhoods of functions in the class Ω(α, β, γ,A,B, λ) are
investigated.
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1. Introduction

Let
∑

denote the class of functions of the form :

f(z) =
1

z
+
∞∑
k=1

akz
k (1.1)

which are analytic and univalent in the punctured disc U∗ = {z : z ∈
C and 0 < |z| < 1} = U\{0} and which have a simple pole at the origin
with residue one there. Let

∑
p denote the class of functions f(z) defined by

(1.1) with aj = 0 (j = 1, 2, .., p− 1 ; p ∈ N = {1, 2, ...}) that is , by

f(z) =
1

z
+
∞∑
k=p

akz
k (p ∈ N), (1.2)

which are analytic and univalent in U∗ . Setting

F (z) = (1− λ)f(z) + λzf
′
(z) (f ∈

∑
p

; 0 ≤ λ <
1

2
), (1.3)

so that , obviously ,

F (z) =
1− 2λ

z
+
∞∑
k=p

[1 + λ(k − 1)]akz
k (p ∈ N ; 0 ≤ λ <

1

2
),

since f(z) ∈
∑

p is given by (1.2) .
For a function f(z) ∈

∑
p , we say that f(z) is a member of the class

Ω(p;α, β, γ, A,B, λ) if the function F (z) defined by (1.3) satisfies the inequal-
ity :

∣∣∣∣ z2F
′
(z) + (1− 2λ)

[(B − A)γ −B]z2F ′(z) + (1− 2λ)[(B − A)γα−B]

∣∣∣∣ < β (z ∈ U∗), (1.4)

where ( and throughout this paper ) the parameters α, β, γ, A,B and λ are
constrained as follows:

0 ≤ α < 1; 0 < β ≤ 1 ;−1 ≤ A < B ≤ 1 ; 0 < B ≤ 1 ;

B

(B − A)
< γ ≤


B

(B − A)α
(α 6= 0)

1 (α = 0)

 .
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We note that Ω(1;α, β, γ, A,B, λ) = Ω(α, β, γ, A,B, λ).
Furthermore, we say that a function f(z) ∈ Ω+(p;α, β, γ, A,B, λ) whenever

f(z) is of the form [cf. Equation (1.2)] :

f(z) =
1

z
+
∞∑
k=p

|ak| zk (k ≥ p ; p ∈ N). (1.5)

The class Ω+(p;α, β, γ, A,B, λ) was introduced and studied by Joshi et al.
[8]. We note that :

(i)Ω+(p;α, β, γ,−1, 1, 0) =
∑

p(α, β, γ)(0 ≤ α < 1; 0 < β ≤ 1; 1
2
≤ γ ≤ 1)

( Cho et al. [6] ) ;
(ii) Ω+(1;α, β, γ,−1, 1, 0) =

∑
1(α, β, γ)(0 ≤ α < 1; 0 < β ≤ 1; 1

2
≤ γ ≤ 1)

( Cho et al. [5] ) ;
(iii) Ω+(1; 0, 1 , 1,−A,−B, 0) =

∑
d(A,B)(−1 ≤ B < A ≤ 1;−1 ≤ B < 0)

( Cho [4] ).

In order to derive our results , we need the following lemma given by Joshi
et al. [8].

Lemma 1.1. [8]. Let f(z) ∈
∑+

p be given by (1.5). Then f(z) ∈ Ω+(p;α, β, γ, A,B, λ)
if and only if

∞∑
k=p

k {1 + β[(B − A)γ −B]} [1 + λ(k − 1)] |ak| ≤ (B − A)βγ(1− α)(1− 2λ).

2. Distortion Theorem

Theorem 2.1. If a function f(z) defined by (1.5) is in the class
Ω+(p;α, β, γ, A,B, λ) , then{

m!− (p− 1)!(B − A)βγ(1− α)(1− 2λ)

(p−m)!{1 + β[(B − A)γ −B]}[1 + λ(p− 1)]
rp+1

}
r−(m+1)

≤
∣∣f (m)(z)

∣∣ ≤
{
m! +

(p− 1)!(B − A)βγ(1− α)(1− 2λ)

(p−m)!{1 + β[(B − A)γ −B]}[1 + λ(p− 1)]
rp+1

}
r−(m+1) (2.1)
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(0 < |z| = r < 1; p ∈ N ; 0 ≤ m < p).

The result is sharp for the function f(z) given by

f(z) =
1

z
+

(B − A)βγ(1− α)(1− 2λ)

p {1 + β[(B − A)γ − A]} [1 + λ(p− 1)]
zp (p ∈ N). (2.2)

Proof. In view of Lemma 1.1, we have

p {1 + β[(B − A)γ −B]} [1 + λ(p− 1)]

p!

∞∑
k=p

k! |ak|

≤
∞∑
k=p

k {1 + β[(B − A)γ −B]} [1 +λ(k−1)] |ak| ≤ (B−A)βγ(1−α)(1−2λ),

which yields

∞∑
k=p

k! |ak| ≤
(p− 1)!(B − A)βγ(1− α)(1− 2λ)

{1 + β[(B − A)γ −B]} [1 + λ(p− 1)]
(p ∈ N). (2.3)

Now , by differentiating both sides of (1.5) m times with respect to z , we have

f (m)(z) = (−1)mm! z−(m+1) +
∞∑
k=p

k!

(k −m)!
|ak| zk−m,

(p ∈ N ; 0 ≤ m < p), (2.4)

and Theorem 2.1 follows easily from (2.3) and (2.4) .
Finally , it is easy to see that the bounds in (2.1) are attained for the

function f(z) given by (2.2) at the points z = r,± ir (0 < r < 1).

3. Neighborhoods and Partial Sums

Following the earlier works ( based upon the familiar concept of neighborhoods
of analytic functions ) by Goodman [7] and Ruscheweyh [12], and (more re-
cently) by Altintas et al. ( [1], [2] and [3] ), Liu [9] and Liu and Srivastava (
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[10] and [11] ) , we begin by introducing here the δ−neighborhood of a function
f(z) ∈

∑
of the form (1.1) by means of the definition given below :

Nδ(f) =

{
g ∈

∑
: g(z) =

1

z
+
∞∑
k=1

bkz
k and

∞∑
k=1

k {1 + β[(B − A)γ −B]} [1 + λ(k − 1)]

(B − A)βγ(1− α)(1− 2λ)
|ak − bk| ≤ δ,

(−1 ≤ A < B ≤ 1 , 0 ≤ λ <
1

2
, p ∈ N, δ > 0)

}
. (3.1)

Making use of the definition (3.1) , we now prove Theorem 3.1 below :

Theorem 3.1. Let the function f(z) defined by (1.1) be in the class
Ω(α, β, γ, A,B, λ) .

If f(z) satisfies the following condition :

f(z) + εz−1

1 + ε
∈Ω(α, β, γ, A,B, λ) (ε ∈ C, |ε| < δ, δ > 0), (3.2)

then
Nδ(f) ⊂ Ω(α, β, γ, A,B, λ). (3.3)

Proof. It is easily seen from (1.4) that g(z) ∈ Ω(α, β, γ, A,B, λ) if and only
if for any complex number σ with |σ| = 1,

z2F
′
(z) + 1− 2λ

[(B − A)γ −B]F ′(z) + (1− 2λ)[(B − A)γα−B]
6= σβ (z ∈ U),

which, is equivalent to

(g ∗ h)(z)

z−1
6= 0 (z ∈ U), (3.4)

where , for convenience,

h(z) =
1

z
+
∞∑
k=1

ckz
k

=
1

z
+
∞∑
k=1

k {1− βσ[(B − A)γ − A]} [1 + λ(k − 1)]

(B − A)σβγ(1− α)(1− 2λ)
zk. (3.5)
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From (3.5) , we have

|ck| ≤
k {1 + β[(B − A)γ − A]} [1 + λ(k − 1)]

(B − A)βγ(1− α)(1− 2λ)
(k ∈ N, 0 ≤ λ <

1

2
, p ∈ N).

Now, if f(z) =
1

z
+
∞∑
k=1

akz
k ∈

∑
satisfies the condition (3.2), then (3.4) yields

∣∣∣∣(f ∗ h)(z)

z−1

∣∣∣∣ ≥ δ (z ∈ U ; δ > 0).

By letting

g(z) =
1

z
+
∞∑
k=1

bkz
k ∈ Nδ(f),

so that ∣∣∣∣ [g(z)− f(z)] ∗ h(z)

z−1

∣∣∣∣ =

∣∣∣∣∣
∞∑
k=1

(bk − ak)ckzk+1

∣∣∣∣∣
≤ |z|

∞∑
k=1

k {1 + β[(B − A)γ − A]} [1 + λ(k − 1)]

(B − A)βγ(1− α)(1− 2λ)
|bk − ak|

< δ (z ∈ U ; δ > 0).

Thus we have (3.4), and hence also for any σ ∈ C such that |σ| = 1,which
implies that g(z) ∈ Ω(α, β, γ, A,B, λ). This evidently proves the assertion (3.3)
of Theorem 3.1.

Next we prove the following result.

Theorem 3.2. Let f(z) ∈
∑

be given by (1.1) and define the partial sums
s1(z) and sm(z) as follows :

s1(z) =
1

z
and sm(z) =

1

z
+

m−1∑
k=1

akz
k (m ∈ N).

Suppose also that

∞∑
k=1

dkz
k ≤ 1 ( dk =

k {1 + β[(B − A)γ − A]} [1 + λ(k − 1)]

(B − A)βγ(1− α)(1− 2λ)
). (3.6)
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Then we have

(i) f(z) ∈ Ω(α, β, γ, A,B, λ),

(ii) Re

{
f(z)

sm(z)

}
> 1− 1

dm
(z ∈ U ;m ∈ N), (3.7)

and

(iii) Re

{
sm(z)

f(z)

}
>

dm
1 + dm

(z ∈ U ;m ∈ N). (3.8)

The estimates (3.7) and (3.8) are sharp for eachm ∈ N.

Proof. It is not difficult to see that

z−1 ∈ Ω(α, β, γ, A,B, λ).

Thus, from Theorem 3.1 and the hypothesis (3.6) of Theorem 3.2, we have

N1(z
−1) ⊂ Ω(α, β, γ, A,B, λ),

which shows that f(z) ∈ Ω(α, β, γ, A,B, λ) as asserted by Theorem 3.2.
(ii) For the coefficients dk given by (3.6), it is not difficult to verify that

dk+1 > dk > 1 (k ∈ N).

Therefore , we have

m−1∑
k=1

|ak|+ dm

∞∑
k=m

|ak| ≤
∞∑
k=1

dk |ak| ≤ 1, (3.9)

where we have used the hypothesis (3.6) again .
By setting

h1(z) = dm

{
f(z)

sm(z)
− (1− 1

dm
)

}

= 1 +

dm
∞∑
k=m

akz
k+1

1 +
m−1∑
k=1

akzk+1

,
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and applying (3.9), we find that

∣∣∣∣h1(z)− 1

h1(z) + 1

∣∣∣∣ ≤ dm
∞∑
k=m

|ak|

2− z
m−1∑
k=1

|ak| − dm
∞∑
k=m

|ak|
≤ 1 (z ∈ U),

which readily yields the assertion (3.7) of Theorem 3.2. If we take

f(z) =
1

z
− zm

dm
, (3.10)

then

f(z)

sm(z)
= 1− zm+1

dm
→ 1− 1

dm
, as z → 1− ,

which shows that the bound in (3.7) is the best possible for each m ∈ N.
(iii) Just as in Part (ii) above , if we put

h2(z) = (1 + dm)(
sm(z)

f(z)
− dm

1 + dm
)

= 1−
(1 + dm)

∞∑
k=m

akz
k+1

1 +
∞∑
k=1

akzk+1

,

and make use of (3.9), we can deduce that

∣∣∣∣h2(z)− 1

h2(z) + 1

∣∣∣∣ ≤ (1 + dm)
∞∑
k=m

|ak|

2− 2
m−1∑
k=1

|ak| − (1− dm)
∞∑
k=m

|ak|
≤ 1 (z ∈ U),

which leads us immediately to the assertion (3.8) of Theorem 3.2.

The bound in (3.8) is sharp for each m ∈ N ,with the extremal function
f(z) given by (3.10). The proof of Theorem 3.2 is thus completed.
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4. Convolution Properties

For the functions

fj(z) =
1

z
+
∞∑
k=p

|ak,j| zk (j = 1, 2; p ∈ N), (4.1)

we denote by (f1 ∗ f2)(z) the Hadamard product (or convolution ) of the func-
tions f1(z) and f2(z), that is,

(f1 ∗ f2)(z) =
1

z
+
∞∑
k=p

|ak,1| |ak,2| zk.

Theorem 4.1. Let the functions fj(z)(j = 1, 2) defined by (4.1) be in the class
Ω+(p;α, β, γ, A,B, λ).

Then (f1 ∗ f2)(z) ∈ Ω+(p; δ, β, γ, A,B, λ),where

δ = 1− (B − A)βγ(1− α)2(1− 2λ)

p {1 + β[(B − A)γ −B]} [1 + λ(p− 1)]
.

The result is sharp for the functions

fj(z) =
1

z
+

(B − A)βγ(1− α)2(1− 2λ)

p {1 + β[(B − A)γ −B]} [1 + λ(p− 1)]
zp (j = 1, 2; p ∈ N).

(4.2)

Proof. Employing the technique used earlier by Schild and Silverman [13],
we need to find the largest δ such that

∞∑
k=p

k {1 + β[(B − A)γ −B]} [1 + λ(k − 1)]

(B − A)βγ(1− δ)(1− 2λ)
|ak,1| |ak,2| ≤ 1

for fj(z) ∈ Ω+(p;α, β, γ, A,B, λ)(j = 1, 2). Since fj(z) ∈ Ω+(p;α, β, γ, A,B, λ)
(j = 1, 2), we readily see that

∞∑
k=p

k {1 + β[(B − A)γ −B]} [1 + λ(k − 1)]

(B − A)βγ(1− α)(1− 2λ)
|ak,j| ≤ 1 (j = 1, 2).

Therefore, by the Cauchy - Schwarz inequality, we obtain
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∞∑
k=p

k {1 + β[(B − A)γ −B]} [1 + λ(k − 1)]

(B − A)βγ(1− α)(1− 2λ)

√
|ak,1| |ak,2| ≤ 1. (4.3)

This implies that we need only to show that

|ak,1| |ak,2|
(1− δ)

≤
√
|ak,1| |ak,2|
(1− α)

(k ≥ p)

or, equivalently, that √
|ak,1| |ak,2| ≤

(1− δ)
(1− α)

(k ≥ p).

Hence, by the inequality (4.3), it is sufficient to prove that

(B − A)βγ(1− α)(1− 2λ)

k {1 + β[(B − A)γ −B]} [1 + λ(k − 1)]
≤ (1− δ)

(1− α)
(k ≥ p). (4.4)

It follows from (4.10) that

δ ≤ 1− (B − A)βγ(1− α)2(1− 2λ)

k {1 + β[(B − A)γ −B]} [1 + λ(k − 1)]
(k ≥ p).

Now, defining the function ϕ(k) by

ϕ(k) = 1− (B − A)βγ(1− α)2(1− 2λ)

k {1 + β[(B − A)γ −B]} [1 + λ(k − 1)]
(k ≥ p).

We see that ϕ(k) is an increasing function of k. Therefore, we conclude that

δ ≤ ϕ(p) = 1− (B − A)βγ(1− α)2(1− 2λ)

p {1 + β[(B − A)γ −B]} [1 + λ(p− 1)]
,

which evidently completes the proof of Theorem 4.1.
Using arguments similar to those in the proof of Theorem 4.1, we obtain

the following result.

Theorem 4.2. Let the function f1(z) defined by (4.1) be in the class
Ω+(p;α, β, γ, A,B, λ). Suppose also that the function f2(z) defined by (4.1) be
in the class Ω+(p; ζ, β, γ, A,B, λ). Then (f1 ∗ f2)(z) ∈ Ω+(p; ζ, β, γ, A,B, λ),
where

ξ = 1− (B − A)βγ(1− α)(1− ζ)(1− 2λ)

p {1 + β[(B − A)γ −B]} [1 + λ(p− 1)]
.
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The result is sharp for the functions fj(z)(j = 1, 2) given by

f1(z) =
1

z
+

(B − A)βγ(1− α)(1− 2λ)

p {1 + β[(B − A)γ −B]} [1 + λ(p− 1)]
zp (p ∈ N),

and

f2(z) =
1

z
+

(B − A)βγ(1− ζ)(1− 2λ)

p {1 + β[(B − A)γ −B]} [1 + λ(p− 1)]
zp (p ∈ N).

Theorem 4.3. Let the functions fj(z)(j = 1, 2) defined by (4.1) be in the class
Ω+(p;α, β, γ, A,B, λ).

Then the function h(z) defined by

h(z) =
1

z
+
∞∑
k=p

(|ak,1|2 + |ak,2|2)zk

belongs to the class Ω+(p; τ , β, γ, A,B, λ), where

τ = 1− 2(B − A)βγ(1− α)2(1− 2λ)

p {1 + β[(B − A)γ −B]} [1 + λ(p− 1)]
.

This result is sharp for the functions fj(z)(j = 1, 2) given already by (4.2).

Proof. Noting that

∞∑
k=p

(k {1 + β[(B − A)γ −B]} [1 + λ(k − 1)])2

[(B − A)βγ(1− α)(1− 2λ)]2
|ak,j|2

≤ (
∞∑
k=p

k {1 + β[(B − A)γ −B]} [1 + λ(k − 1)]

(B − A)βγ(1− α)(1− 2λ)
|ak,j|)2 ≤ 1 (j = 1, 2),

for fj(z) ∈ Ω+(p;α, β, γ, A,B, λ)(j = 1, 2),we have

∞∑
k=p

(k {1 + β[(B − A)γ −B]} [1 + λ(k − 1)])2

2[(B − A)βγ(1− α)(1− 2λ)]2
(|ak,1|2 + |ak,2|2) ≤ 1.

Therefore, we have to find the largest τ such that

1

(1− τ)
≤ k {1 + β[(B − A)γ −B]} [1 + λ(k − 1)]

2(B − A)βγ(1− α)(1− 2λ)
(k ≥ p),
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that is, that

τ ≤ 1− 2(B − A)βγ(1− α)2(1− 2λ)

k {1 + β[(B − A)γ −B]} [1 + λ(k − 1)]
(k ≥ p).

Now, defining a function Ψ(k) by

Ψ(k) = 1− 2(B − A)βγ(1− α)2(1− 2λ)

k {1 + β[(B − A)γ −B]} [1 + λ(k − 1)]
(k ≥ p).

We observe that Ψ(k) is an increasing function of k. We thus conclude that

τ ≤ Ψ(p) = 1− 2(B − A)βγ(1− α)2(1− 2λ)

p {1 + β[(B − A)γ −B]} [1 + λ(k − 1)]
,

which completes the proof of Theorem 4.3 .
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