Some Properties of Certain Classes of Meromorphic Univalent Functions *

M. K. Aouf ${ }^{\dagger}$
Faculty of Science, Department of Mathematics, Mansoura 35516, Egypt
and
B. A. Frasin ${ }^{\ddagger}$
Faculty of Science, Department of Mathematics, Al al-Bayt University, P. O. Box: 130095 Mafraq, Jordan

Received February 25, 2010, Accepted April 22, 2011.

Abstract

In this paper, we obtain distortion theorem and the Hadamard products of functions belonging the class $\Omega^{+}(p ; \alpha, \beta, \gamma, A, B, \lambda)$ of meromorphic functions with positive and missing coefficients. Also some properties of neighborhoods of functions in the class $\Omega(\alpha, \beta, \gamma, A, B, \lambda)$ are investigated.

Keywords and Phrases: Meromorphic, Neighborhoods, Hadamard product.

[^0]
1. Introduction

Let \sum denote the class of functions of the form :

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=1}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in the punctured disc $U^{*}=\{z: z \in$ C and $0<|z|<1\}=U \backslash\{0\}$ and which have a simple pole at the origin with residue one there. Let \sum_{p} denote the class of functions $f(z)$ defined by (1.1) with $a_{j}=0(j=1,2, . ., p-1 ; p \in N=\{1,2, \ldots\})$ that is, by

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=p}^{\infty} a_{k} z^{k} \quad(p \in N) \tag{1.2}
\end{equation*}
$$

which are analytic and univalent in U^{*}. Setting

$$
\begin{equation*}
F(z)=(1-\lambda) f(z)+\lambda z f^{\prime}(z) \quad\left(f \in \sum_{p} ; \quad 0 \leq \lambda<\frac{1}{2}\right) \tag{1.3}
\end{equation*}
$$

so that, obviously,

$$
F(z)=\frac{1-2 \lambda}{z}+\sum_{k=p}^{\infty}[1+\lambda(k-1)] a_{k} z^{k} \quad\left(p \in N ; 0 \leq \lambda<\frac{1}{2}\right)
$$

since $f(z) \in \sum_{p}$ is given by (1.2).
For a function $f(z) \in \sum_{p}$, we say that $f(z)$ is a member of the class $\Omega(p ; \alpha, \beta, \gamma, A, B, \lambda)$ if the function $F(z)$ defined by (1.3) satisfies the inequality :

$$
\begin{equation*}
\left|\frac{z^{2} F^{\prime}(z)+(1-2 \lambda)}{[(B-A) \gamma-B] z^{2} F^{\prime}(z)+(1-2 \lambda)[(B-A) \gamma \alpha-B]}\right|<\beta \quad\left(z \in U^{*}\right) \tag{1.4}
\end{equation*}
$$

where (and throughout this paper) the parameters $\alpha, \beta, \gamma, A, B$ and λ are constrained as follows:

$$
\begin{aligned}
& 0 \leq \alpha<1 ; 0<\beta \leq 1 ;-1 \leq A<B \leq 1 ; \\
& \frac{B}{(B-A)}<\gamma \leq\left\{\begin{array}{ll}
\frac{B}{(B-A) \alpha} & (\alpha \neq 0) \\
1 & (\alpha=0)
\end{array}\right\}
\end{aligned}
$$

We note that $\Omega(1 ; \alpha, \beta, \gamma, A, B, \lambda)=\Omega(\alpha, \beta, \gamma, A, B, \lambda)$.
Furthermore, we say that a function $f(z) \in \Omega^{+}(p ; \alpha, \beta, \gamma, A, B, \lambda)$ whenever $f(z)$ is of the form [cf. Equation (1.2)] :

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=p}^{\infty}\left|a_{k}\right| z^{k} \quad(k \geq p ; p \in N) . \tag{1.5}
\end{equation*}
$$

The class $\Omega^{+}(p ; \alpha, \beta, \gamma, A, B, \lambda)$ was introduced and studied by Joshi et al. [8]. We note that :
(i) $\Omega^{+}(p ; \alpha, \beta, \gamma,-1,1,0)=\sum_{p}(\alpha, \beta, \gamma)\left(0 \leq \alpha<1 ; 0<\beta \leq 1 ; \frac{1}{2} \leq \gamma \leq 1\right)$ (Cho et al. [6]) ;
(ii) $\Omega^{+}(1 ; \alpha, \beta, \gamma,-1,1,0)=\sum_{1}(\alpha, \beta, \gamma)\left(0 \leq \alpha<1 ; 0<\beta \leq 1 ; \frac{1}{2} \leq \gamma \leq 1\right)$ (Cho et al. [5]) ;
(iii) $\Omega^{+}(1 ; 0,1,1,-A,-B, 0)=\sum_{d}(A, B)(-1 \leq B<A \leq 1 ;-1 \leq B<0)$ (Cho [4]).

In order to derive our results, we need the following lemma given by Joshi et al. [8].

Lemma 1.1. [8]. Let $f(z) \in \sum_{p}^{+}$be given by (1.5). Then $f(z) \in \Omega^{+}(p ; \alpha, \beta, \gamma, A, B, \lambda)$ if and only if
$\sum_{k=p}^{\infty} k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)]\left|a_{k}\right| \leq(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)$.

2. Distortion Theorem

Theorem 2.1. If a function $f(z)$ defined by (1.5) is in the class $\Omega^{+}(p ; \alpha, \beta, \gamma, A, B, \lambda)$, then

$$
\begin{gather*}
\left\{m!-\frac{(p-1)!(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)}{(p-m)!\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(p-1)]} r^{p+1}\right\} r^{-(m+1)} \\
\leq\left|f^{(m)}(z)\right| \leq \\
\left\{m!+\frac{(p-1)!(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)}{(p-m)!\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(p-1)]} r^{p+1}\right\} r^{-(m+1)} \tag{2.1}
\end{gather*}
$$

$$
(0<|z|=r<1 ; p \in N ; 0 \leq m<p)
$$

The result is sharp for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)}{p\{1+\beta[(B-A) \gamma-A]\}[1+\lambda(p-1)]} z^{p} \quad(p \in N) . \tag{2.2}
\end{equation*}
$$

Proof. In view of Lemma 1.1, we have

$$
\frac{p\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(p-1)]}{p!} \sum_{k=p}^{\infty} k!\left|a_{k}\right|
$$

$\leq \sum_{k=p}^{\infty} k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)]\left|a_{k}\right| \leq(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)$,
which yields

$$
\begin{equation*}
\sum_{k=p}^{\infty} k!\left|a_{k}\right| \leq \frac{(p-1)!(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)}{\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(p-1)]} \quad(p \in N) \tag{2.3}
\end{equation*}
$$

Now, by differentiating both sides of (1.5) m times with respect to z, we have

$$
\begin{gather*}
f^{(m)}(z)=(-1)^{m} m!z^{-(m+1)}+\sum_{k=p}^{\infty} \frac{k!}{(k-m)!}\left|a_{k}\right| z^{k-m}, \\
(p \in N ; 0 \leq m<p) \tag{2.4}
\end{gather*}
$$

and Theorem 2.1 follows easily from (2.3) and (2.4) .
Finally , it is easy to see that the bounds in (2.1) are attained for the function $f(z)$ given by (2.2) at the points $z=r, \pm i r(0<r<1)$.

3. Neighborhoods and Partial Sums

Following the earlier works (based upon the familiar concept of neighborhoods of analytic functions) by Goodman [7] and Ruscheweyh [12], and (more recently) by Altintas et al. ([1], [2] and [3]), Liu [9] and Liu and Srivastava (
[10] and [11]), we begin by introducing here the δ-neighborhood of a function $f(z) \in \sum$ of the form (1.1) by means of the definition given below :

$$
\begin{gather*}
N_{\delta}(f)=\left\{g \in \sum: g(z)=\frac{1}{z}+\sum_{k=1}^{\infty} b_{k} z^{k} \quad\right. \text { and } \\
\sum_{k=1}^{\infty} \frac{k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)]}{(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)}\left|a_{k}-b_{k}\right| \leq \delta, \\
\left.\left(-1 \leq A<B \leq 1,0 \leq \lambda<\frac{1}{2}, p \in N, \delta>0\right)\right\} . \tag{3.1}
\end{gather*}
$$

Making use of the definition (3.1), we now prove Theorem 3.1 below :
Theorem 3.1. Let the function $f(z)$ defined by (1.1) be in the class $\Omega(\alpha, \beta, \gamma, A, B, \lambda)$.

If $f(z)$ satisfies the following condition:

$$
\begin{equation*}
\frac{f(z)+\varepsilon z^{-1}}{1+\varepsilon} \in \Omega(\alpha, \beta, \gamma, A, B, \lambda)(\varepsilon \in C,|\varepsilon|<\delta, \delta>0), \tag{3.2}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{\delta}(f) \subset \Omega(\alpha, \beta, \gamma, A, B, \lambda) . \tag{3.3}
\end{equation*}
$$

Proof. It is easily seen from (1.4) that $g(z) \in \Omega(\alpha, \beta, \gamma, A, B, \lambda)$ if and only if for any complex number σ with $|\sigma|=1$,

$$
\frac{z^{2} F^{\prime}(z)+1-2 \lambda}{[(B-A) \gamma-B] F^{\prime}(z)+(1-2 \lambda)[(B-A) \gamma \alpha-B]} \neq \sigma \beta \quad(z \in U),
$$

which, is equivalent to

$$
\begin{equation*}
\frac{(g * h)(z)}{z^{-1}} \neq 0 \quad(z \in U), \tag{3.4}
\end{equation*}
$$

where, for convenience,

$$
\begin{align*}
h(z) & =\frac{1}{z}+\sum_{k=1}^{\infty} c_{k} z^{k} \\
& =\frac{1}{z}+\sum_{k=1}^{\infty} \frac{k\{1-\beta \sigma[(B-A) \gamma-A]\}[1+\lambda(k-1)]}{(B-A) \sigma \beta \gamma(1-\alpha)(1-2 \lambda)} z^{k} . \tag{3.5}
\end{align*}
$$

From (3.5), we have

$$
\left|c_{k}\right| \leq \frac{k\{1+\beta[(B-A) \gamma-A]\}[1+\lambda(k-1)]}{(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)} \quad\left(k \in N, 0 \leq \lambda<\frac{1}{2}, p \in N\right)
$$

Now, if $f(z)=\frac{1}{z}+\sum_{k=1}^{\infty} a_{k} z^{k} \in \sum$ satisfies the condition (3.2), then (3.4) yields

$$
\left|\frac{(f * h)(z)}{z^{-1}}\right| \geq \delta \quad(z \in U ; \delta>0)
$$

By letting

$$
g(z)=\frac{1}{z}+\sum_{k=1}^{\infty} b_{k} z^{k} \in N_{\delta}(f)
$$

so that

$$
\begin{aligned}
& \left|\frac{[g(z)-f(z)] * h(z)}{z^{-1}}\right|=\left|\sum_{k=1}^{\infty}\left(b_{k}-a_{k}\right) c_{k} z^{k+1}\right| \\
\leq & |z| \sum_{k=1}^{\infty} \frac{k\{1+\beta[(B-A) \gamma-A]\}[1+\lambda(k-1)]}{(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)}\left|b_{k}-a_{k}\right| \\
< & \delta(z \in U ; \delta>0) .
\end{aligned}
$$

Thus we have (3.4), and hence also for any $\sigma \in C$ such that $|\sigma|=1$, which implies that $g(z) \in \Omega(\alpha, \beta, \gamma, A, B, \lambda)$. This evidently proves the assertion (3.3) of Theorem 3.1.

Next we prove the following result.
Theorem 3.2. Let $f(z) \in \sum$ be given by (1.1) and define the partial sums $s_{1}(z)$ and $s_{m}(z)$ as follows:

$$
s_{1}(z)=\frac{1}{z} \quad \text { and } \quad s_{m}(z)=\frac{1}{z}+\sum_{k=1}^{m-1} a_{k} z^{k} \quad(m \in N)
$$

Suppose also that

$$
\begin{equation*}
\sum_{k=1}^{\infty} d_{k} z^{k} \leq 1\left(d_{k}=\frac{k\{1+\beta[(B-A) \gamma-A]\}[1+\lambda(k-1)]}{(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)}\right) \tag{3.6}
\end{equation*}
$$

Then we have
(i) $\quad f(z) \in \Omega(\alpha, \beta, \gamma, A, B, \lambda)$,
(ii) $\operatorname{Re}\left\{\frac{f(z)}{s_{m}(z)}\right\}>1-\frac{1}{d_{m}} \quad(z \in U ; m \in N)$,
and

$$
\begin{equation*}
\text { (iii) } \operatorname{Re}\left\{\frac{s_{m}(z)}{f(z)}\right\}>\frac{d_{m}}{1+d_{m}} \quad(z \in U ; m \in N) \text {. } \tag{3.8}
\end{equation*}
$$

The estimates (3.7) and (3.8) are sharp for each $m \in N$.
Proof. It is not difficult to see that

$$
z^{-1} \in \Omega(\alpha, \beta, \gamma, A, B, \lambda) .
$$

Thus, from Theorem 3.1 and the hypothesis (3.6) of Theorem 3.2, we have

$$
N_{1}\left(z^{-1}\right) \subset \Omega(\alpha, \beta, \gamma, A, B, \lambda),
$$

which shows that $f(z) \in \Omega(\alpha, \beta, \gamma, A, B, \lambda)$ as asserted by Theorem 3.2.
(ii) For the coefficients d_{k} given by (3.6), it is not difficult to verify that

$$
d_{k+1}>d_{k}>1 \quad(k \in N)
$$

Therefore, we have

$$
\begin{equation*}
\sum_{k=1}^{m-1}\left|a_{k}\right|+d_{m} \sum_{k=m}^{\infty}\left|a_{k}\right| \leq \sum_{k=1}^{\infty} d_{k}\left|a_{k}\right| \leq 1, \tag{3.9}
\end{equation*}
$$

where we have used the hypothesis (3.6) again .
By setting

$$
\begin{aligned}
h_{1}(z) & =d_{m}\left\{\frac{f(z)}{s_{m}(z)}-\left(1-\frac{1}{d_{m}}\right)\right\} \\
& =1+\frac{d_{m} \sum_{k=m}^{\infty} a_{k} z^{k+1}}{1+\sum_{k=1}^{m-1} a_{k} z^{k+1}}
\end{aligned}
$$

and applying (3.9), we find that

$$
\left|\frac{h_{1}(z)-1}{h_{1}(z)+1}\right| \leq \frac{d_{m} \sum_{k=m}^{\infty}\left|a_{k}\right|}{2-z \sum_{k=1}^{m-1}\left|a_{k}\right|-d_{m} \sum_{k=m}^{\infty}\left|a_{k}\right|} \leq 1 \quad(z \in U)
$$

which readily yields the assertion (3.7) of Theorem 3.2. If we take

$$
\begin{equation*}
f(z)=\frac{1}{z}-\frac{z^{m}}{d_{m}} \tag{3.10}
\end{equation*}
$$

then

$$
\frac{f(z)}{s_{m}(z)}=1-\frac{z^{m+1}}{d_{m}} \rightarrow 1-\frac{1}{d_{m}}, \quad \text { as } \quad z \rightarrow 1^{-}
$$

which shows that the bound in (3.7) is the best possible for each $m \in N$.
(iii) Just as in Part (ii) above, if we put

$$
\begin{aligned}
h_{2}(z) & =\left(1+d_{m}\right)\left(\frac{s_{m}(z)}{f(z)}-\frac{d_{m}}{1+d_{m}}\right) \\
& =1-\frac{\left(1+d_{m}\right) \sum_{k=m}^{\infty} a_{k} z^{k+1}}{1+\sum_{k=1}^{\infty} a_{k} z^{k+1}}
\end{aligned}
$$

and make use of (3.9), we can deduce that

$$
\left|\frac{h_{2}(z)-1}{h_{2}(z)+1}\right| \leq \frac{\left(1+d_{m}\right) \sum_{k=m}^{\infty}\left|a_{k}\right|}{2-2 \sum_{k=1}^{m-1}\left|a_{k}\right|-\left(1-d_{m}\right) \sum_{k=m}^{\infty}\left|a_{k}\right|} \leq 1 \quad(z \in U)
$$

which leads us immediately to the assertion (3.8) of Theorem 3.2.
The bound in (3.8) is sharp for each $m \in N$, with the extremal function $f(z)$ given by (3.10). The proof of Theorem 3.2 is thus completed.

4. Convolution Properties

For the functions

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z}+\sum_{k=p}^{\infty}\left|a_{k, j}\right| z^{k} \quad(j=1,2 ; p \in N) \tag{4.1}
\end{equation*}
$$

we denote by $\left(f_{1} * f_{2}\right)(z)$ the Hadamard product (or convolution) of the functions $f_{1}(z)$ and $f_{2}(z)$, that is,

$$
\left(f_{1} * f_{2}\right)(z)=\frac{1}{z}+\sum_{k=p}^{\infty}\left|a_{k, 1}\right|\left|a_{k, 2}\right| z^{k}
$$

Theorem 4.1. Let the functions $f_{j}(z)(j=1,2)$ defined by (4.1) be in the class $\Omega^{+}(p ; \alpha, \beta, \gamma, A, B, \lambda)$.

Then $\left(f_{1} * f_{2}\right)(z) \in \Omega^{+}(p ; \delta, \beta, \gamma, A, B, \lambda)$, where

$$
\delta=1-\frac{(B-A) \beta \gamma(1-\alpha)^{2}(1-2 \lambda)}{p\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(p-1)]} .
$$

The result is sharp for the functions

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z}+\frac{(B-A) \beta \gamma(1-\alpha)^{2}(1-2 \lambda)}{p\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(p-1)]} z^{p} \quad(j=1,2 ; p \in N) . \tag{4.2}
\end{equation*}
$$

Proof. Employing the technique used earlier by Schild and Silverman [13], we need to find the largest δ such that

$$
\sum_{k=p}^{\infty} \frac{k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)]}{(B-A) \beta \gamma(1-\delta)(1-2 \lambda)}\left|a_{k, 1}\right|\left|a_{k, 2}\right| \leq 1
$$

for $f_{j}(z) \in \Omega^{+}(p ; \alpha, \beta, \gamma, A, B, \lambda)(j=1,2)$. Since $f_{j}(z) \in \Omega^{+}(p ; \alpha, \beta, \gamma, A, B, \lambda)$ $(j=1,2)$, we readily see that

$$
\sum_{k=p}^{\infty} \frac{k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)]}{(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)}\left|a_{k, j}\right| \leq 1 \quad(j=1,2)
$$

Therefore, by the Cauchy - Schwarz inequality, we obtain

$$
\begin{equation*}
\sum_{k=p}^{\infty} \frac{k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)]}{(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)} \sqrt{\left|a_{k, 1}\right|\left|a_{k, 2}\right|} \leq 1 \tag{4.3}
\end{equation*}
$$

This implies that we need only to show that

$$
\frac{\left|a_{k, 1}\right|\left|a_{k, 2}\right|}{(1-\delta)} \leq \frac{\sqrt{\left|a_{k, 1}\right|\left|a_{k, 2}\right|}}{(1-\alpha)} \quad(k \geq p)
$$

or, equivalently, that

$$
\sqrt{\left|a_{k, 1}\right|\left|a_{k, 2}\right|} \leq \frac{(1-\delta)}{(1-\alpha)} \quad(k \geq p)
$$

Hence, by the inequality (4.3), it is sufficient to prove that

$$
\begin{equation*}
\frac{(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)}{k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)]} \leq \frac{(1-\delta)}{(1-\alpha)} \quad(k \geq p) . \tag{4.4}
\end{equation*}
$$

It follows from (4.10) that

$$
\delta \leq 1-\frac{(B-A) \beta \gamma(1-\alpha)^{2}(1-2 \lambda)}{k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)]} \quad(k \geq p)
$$

Now, defining the function $\varphi(k)$ by

$$
\varphi(k)=1-\frac{(B-A) \beta \gamma(1-\alpha)^{2}(1-2 \lambda)}{k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)]} \quad(k \geq p) .
$$

We see that $\varphi(k)$ is an increasing function of k. Therefore, we conclude that

$$
\delta \leq \varphi(p)=1-\frac{(B-A) \beta \gamma(1-\alpha)^{2}(1-2 \lambda)}{p\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(p-1)]},
$$

which evidently completes the proof of Theorem 4.1.
Using arguments similar to those in the proof of Theorem 4.1, we obtain the following result.

Theorem 4.2. Let the function $f_{1}(z)$ defined by (4.1) be in the class $\Omega^{+}(p ; \alpha, \beta, \gamma, A, B, \lambda)$. Suppose also that the function $f_{2}(z)$ defined by (4.1) be in the class $\Omega^{+}(p ; \zeta, \beta, \gamma, A, B, \lambda)$. Then $\left(f_{1} * f_{2}\right)(z) \in \Omega^{+}(p ; \zeta, \beta, \gamma, A, B, \lambda)$, where

$$
\xi=1-\frac{(B-A) \beta \gamma(1-\alpha)(1-\zeta)(1-2 \lambda)}{p\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(p-1)]}
$$

The result is sharp for the functions $f_{j}(z)(j=1,2)$ given by

$$
f_{1}(z)=\frac{1}{z}+\frac{(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)}{p\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(p-1)]} z^{p} \quad(p \in N),
$$

and

$$
f_{2}(z)=\frac{1}{z}+\frac{(B-A) \beta \gamma(1-\zeta)(1-2 \lambda)}{p\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(p-1)]} z^{p} \quad(p \in N) .
$$

Theorem 4.3. Let the functions $f_{j}(z)(j=1,2)$ defined by (4.1) be in the class $\Omega^{+}(p ; \alpha, \beta, \gamma, A, B, \lambda)$.

Then the function $h(z)$ defined by

$$
h(z)=\frac{1}{z}+\sum_{k=p}^{\infty}\left(\left|a_{k, 1}\right|^{2}+\left|a_{k, 2}\right|^{2}\right) z^{k}
$$

belongs to the class $\Omega^{+}(p ; \tau, \beta, \gamma, A, B, \lambda)$, where

$$
\tau=1-\frac{2(B-A) \beta \gamma(1-\alpha)^{2}(1-2 \lambda)}{p\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(p-1)]} .
$$

This result is sharp for the functions $f_{j}(z)(j=1,2)$ given already by (4.2).
Proof. Noting that

$$
\begin{gathered}
\sum_{k=p}^{\infty} \frac{(k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)])^{2}}{[(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)]^{2}}\left|a_{k, j}\right|^{2} \\
\leq\left(\sum_{k=p}^{\infty} \frac{k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)]}{(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)}\left|a_{k, j}\right|\right)^{2} \leq 1 \quad(j=1,2),
\end{gathered}
$$

for $f_{j}(z) \in \Omega^{+}(p ; \alpha, \beta, \gamma, A, B, \lambda)(j=1,2)$, we have

$$
\sum_{k=p}^{\infty} \frac{(k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)])^{2}}{2[(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)]^{2}}\left(\left|a_{k, 1}\right|^{2}+\left|a_{k, 2}\right|^{2}\right) \leq 1
$$

Therefore, we have to find the largest τ such that

$$
\frac{1}{(1-\tau)} \leq \frac{k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)]}{2(B-A) \beta \gamma(1-\alpha)(1-2 \lambda)} \quad(k \geq p)
$$

that is, that

$$
\tau \leq 1-\frac{2(B-A) \beta \gamma(1-\alpha)^{2}(1-2 \lambda)}{k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)]} \quad(k \geq p)
$$

Now, defining a function $\Psi(k)$ by

$$
\Psi(k)=1-\frac{2(B-A) \beta \gamma(1-\alpha)^{2}(1-2 \lambda)}{k\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)]}(k \geq p)
$$

We observe that $\Psi(k)$ is an increasing function of k. We thus conclude that

$$
\tau \leq \Psi(p)=1-\frac{2(B-A) \beta \gamma(1-\alpha)^{2}(1-2 \lambda)}{p\{1+\beta[(B-A) \gamma-B]\}[1+\lambda(k-1)]},
$$

which completes the proof of Theorem 4.3 .

References

[1] O. Altintas and S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Internat. J. Math. Math. Sci., 19(1996), 797-800.
[2] O. Altintas, O. Ozkan, and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett., 13 no. 3 (2000), 63-67.
[3] O. Altintas, O. Ozkan, and H. M. Srivastava, Neighborhoods of a certain family of multivalent functions with negative coefficient, Comput. Math. Appl., 47(2004), 1667-1672.
[4] N. E. Cho, On certain class of meromorphic functions with positive coefficients, J. Inst. Math. Comput. Sci. (Math. Ser.), 3 no. 2 (1990), 119-125.
[5] N. E. Cho, S. H. Lee, and S. Owa, A class of meromorphic univalent functions with positive coefficients, Kobe J. Math., 4(1987), 43-50.
[6] N. E. Cho, S. Owa, S. H. Lee, and O. Altintas, Generalization class of certain meromorphic univalent functions with positive coefficients, Kyungpook Math. J., 29 no. 2 (1989), 133-139.
[7] A. W. Goodman, Univalent functions and non analytic curves, Proc. Amer. math. Soc., 8(1957), 598-601.
[8] S. B. Joshi, S. R. Kulkarni, and H. M. Srivastava, Certain classes of meromorphic functions with positive and missing coefficients, J. Math. Anal. Appl., 193(1995), 1-14.
[9] J.- L. Liu, Properties of some families of meromorphically p-valent functions, Math. Japon., 52 no. 3 (2000), 425-434.
[10] J.- L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259(2001), 566-581.
[11] J.- L. Liu and H. M. Srivastava, Subclasses meromorphically multivalent functions associated with a certain linear operator, Math. Comput. Modelling, 39(2004), 35-44.
[12] St. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(1981), 521-527.
[13] A. Schild and H. Silverman, Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie - Sklodswska Sect. A, 29(1975), 99-107.

[^0]: *2010 Mathematics Subject Classification. Primary 30C45.
 †E-mail: mkaouf127@yahoo.com
 ${ }^{\ddagger}$ Corresponding author. E-mail: bafrasin@yahoo.com

