
On Some Sequence Spaces ∗

Hemen Dutta†

Department of Mathematics, Gauhati University,

Kokrajhar Campus, Kokrajhar-783370, Assam, India

and

B. Surender Reddy‡

Department of Mathematics, PGCS, Saifabad,

Osmania University, Hyderabad-500004, A.P. , India

Received June 25, 2009, Accepted May 31, 2012.

Tamsui Oxford Journal of Information and Mathematical Sciences 28(1) (2012) 1-12
Aletheia University

Abstract

In this article we introduce some sequence spaces with base space
X, a real linear n-normed space. We also use an Orlicz function to
construct the spaces. We investigate these spaces for some algebraic
and topological structures.
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1. Introduction

Let w denote the space of all real or complex sequences. By c, c0 and `∞,
we denote the Banach spaces of all convergent, null and bounded sequences
x = (xk), respectively normed by ‖x‖ = sup

k
|xk|.
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An Orlicz function is a function M : [0,∞) −→ [0,∞) which is continuous,
non-decreasing and convex withM(0) = 0, M(x) > 0 , for x > 0 andM(x) −→
∞, as x −→∞.

Lindenstrauss and Tzafriri [9] used the Orlicz function and introduced the
sequence space `M as follows:

`M =

{
(xk) ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
.

They proved that `M is a Banach space normed by

‖(xk)‖ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

The concept of 2-normed spaces was initially developed by Gähler [2] in the
mid of 1960’s while that of n-normed spaces can be found in Misiak [10]. Since
then, many others have studied this concept and obtained various results, see
for instance Gunawan [4, 5], and Gunawan and Mashadi [7].

Let n ∈ N and let X be a real linear space of dimension d, where d ≥ n.
A real valued function ‖•, •, . . . , •‖ on Xn satisfying the following conditions:

nN1: ‖x1, x2, . . . , xn‖ = 0 if and only if x1, x2, . . . , xn are linearly depen-
dent,

nN2: ‖x1, x2, . . . , xn‖ is invariant under any permutation of x1, x2, . . . , xn,
nN3: ‖x1, x2, . . . , xn−1, αxn‖ = |α| ‖x1, x2, . . . , xn‖ for all α ∈ R,
nN4: ‖x1, x2, . . . , xn−1, y+z‖ ≤ ‖x1, x2, . . . , xn−1, y‖+‖x1, x2, . . . , xn−1, z‖

for all y, z, x1, x2, . . . , xn−1 ∈ X,
then the function ‖•, •, . . . , •‖ is called an n-norm onX and the pair (X, ‖•, •, . . . , •‖)
is called an n-normed space.

A trivial example of an n-normed space is X = Rn equipped with the
following Euclidean n-norm:

‖x1, x2, . . . , xn‖E = abs

∣∣∣∣∣∣
x11 L x1n
M O M
xn1 L xnn

∣∣∣∣∣∣
 ,

where xi = (xi1, . . . , xin) ∈ Rn for each i = 1, 2, . . . , n.
Gunawan and Mashadi [7] showed that if (X, ‖•, •, . . . , •‖) be an n-normed

space of dimension d ≥ n ≥ 2 and {a1, a2, . . . , an} be a linearly independent
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set in X. Then the following function ‖•, •, . . . , •‖∞ on Xn−1 defined by

‖x1, x2, . . . , xn−1‖∞ = max{‖x1, x2, . . . , xn−1, ai‖ : i = 1, 2, . . . , n} (1.1)

defines an (n− 1) norm on X with respect to {a1, a2, . . . , an}.
Gunawan and Mashadi [7] also defined the standard n-norm on X, a real

inner product space of dimension d ≥ n as follows:

‖x1, x2, . . . , xn‖S =

∣∣∣∣∣∣
< x1, x1 > L < x1, xn >

M O M
< xn, x1 > L < xn, xn >

∣∣∣∣∣∣
1
2

,

where < •, • > denotes the inner product on X. If X = Rn, then this n-norm is
exactly the same as the Euclidean n-norm ‖x1, x2, . . . , xn‖E mentioned earlier.

For n = 1, this n-norm is the usual norm ‖x1‖ =< x1, x1 >
1
2 .

A sequence (xk) in an n-normed space (X, ‖•, •, . . . , •‖) is said to converge
to some L ∈ X in the n-norm if lim

k→∞
‖xk − L,w2, w3 . . . , wn‖ = 0, for every

w2, w3 . . . , wn ∈ X.
A sequence (xk) in an n-normed space (X, ‖•, •, . . . , •‖) is said to be

Cauchy sequence with respect to the n-norm if lim
k,l→∞

‖xk−xl, w2, w3 . . . , wn‖ =

0, for every w2, w3 . . . , wn ∈ X.
If every Cauchy sequence in X converges to some L ∈ X, then X is said

to be complete with respect to the n-norm. Any complete n-normed space is
said to be n-Banach space.

Now we state the following three usefull results as Lemmas which can be
found in [7].

Lemma 1.1. Every n-normed space is an (n−r)-normed space for all r =
1, 2, . . . , n− 1. In particular, every n-normed space is a normed space.

Lemma 1.2. A standard n-normed space is complete if and only if it is com-
plete with respect to the usual norm ‖ • ‖S =< •, • > 1

2 .

Lemma 1.3. On a standard n-normed space X, the derived (n-1)-norm ‖., . . . , .‖∞,
defined with respect to orthonormal set {e1, e2, . . . , en}, is equivalent to the
standard (n-1)-norm ‖•, •, . . . , •‖S. Precisely, we have

‖x1, x2, . . . , xn−1‖∞ ≤ ‖x1, x2, . . . , xn−1‖S ≤
√
n‖x1, x2, . . . , xn−1‖∞

for all x1, x2, . . . , xn−1, where

‖x1, x2, . . . , xn−1‖∞ = max{‖x1, x2, . . . , xn−1, ei‖S : i = 1, 2, . . . , n}.
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Let (‖•, •, . . . , •‖X) be a real linear n-normed space and w(X) denotes the
X-valued sequence space. Then for an Orlicz function M we define the follow-
ing sequence spaces:
c0(X,M) ={

(xk) ∈ w(X) : lim
k→∞

M
(∥∥∥xkρ , z1, . . . , zn−1∥∥∥

X

)
= 0, z1, . . . , zn−1 ∈ X, for some ρ > 0

}
,

c(X,M) = {(xk) ∈ w(X) : lim
k→∞

M

(∥∥∥∥xk − Lρ
, z1, . . . , zn−1

∥∥∥∥
X

)
= 0,

z1, . . . , zn−1 ∈ X and for some L ∈ X, ρ > 0},
`∞(X,M) ={

(xk) ∈ w(X) : sup
k≥1, z1,...,zn−1∈X

M
(∥∥∥xkρ , z1, . . . , zn−1∥∥∥

X

)
<∞, for some ρ > 0

}
.

In the above definition of spaces, n-norm ‖•, •, . . . , •‖X on X is either a
standard n-norm or a non-standard n-norm. In general we write ‖•, •, . . . , •‖X
and for standard case we write ‖•, •, . . . , •‖S. Again for derived norm we use
‖•, •, . . . , •‖∞.

It is obvious that c0(X,M) ⊂ c(X,M). Again c(X,M) ⊂ `∞(X,M) follows
from the following inequality:

M

(∥∥∥∥xk2ρ
, z1, . . . , zn−1

∥∥∥∥
X

)
≤ 1

2
M

(∥∥∥∥xk − Lρ
, z1, . . . , zn−1

∥∥∥∥
X

)
+

1

2
M

(∥∥∥∥Lρ , z1, . . . , zn−1
∥∥∥∥
X

)

2. Main Results

In this section we investigate the main results of this article involving the
sequence spaces c0(X,M), c(X,M) and `∞(X,M).

Theorem 2.1. The spaces c0(X,M), c(X,M) and `∞(X,M) are linear spaces.

Proof. The proof of this theorem can be proved very easily.

Theorem 2.2. The spaces c0(X,M), c(X,M) and `∞(X,M) are normed lin-
ear spaces, normed by ‖ • ‖0 defined by

‖x‖0 = inf

{
ρ > 0 : sup

k≥1, z1,...,zn−1∈X
M

(∥∥∥∥xkρ , z1, . . . , zn−1
∥∥∥∥
X

)
≤ 1

}
(2.1)
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Proof. If x = θ, then clearly ‖x‖0 = 0. Conversely assume ‖x‖0 = 0, Then
using equation (2.1), we have

inf

{
ρ > 0 : sup

k≥1, z1,...,zn−1∈X
M

(∥∥∥∥xkρ , z1, . . . , zn−1
∥∥∥∥
X

)
≤ 1

}
= 0.

This implies that for a given ε > 0, there exists some ρε (0 < ρε < ε) such
that

sup
k≥1, z1,...,zn−1∈X

M

(∥∥∥∥xkρε , z1, . . . , zn−1
∥∥∥∥
X

)
≤ 1. So, M

(∥∥∥∥xkρε , z1, . . . , zn−1
∥∥∥∥
X

)
≤ 1,

for every k ≥ 1 and z1, . . . , zn−1 ∈ X. Hence

M
(∥∥∥xk

ε
, z1, . . . , zn−1

∥∥∥
X

)
≤M

(∥∥∥∥xkρε , z1, . . . , zn−1
∥∥∥∥
X

)
≤ 1

for every k ≥ 1 and z1, . . . , zn−1 ∈ X. Suppose xni
6= 0, for some i. Let ε −→ 0

then
∥∥xni

ε
, z1, . . . , zn−1

∥∥
X
−→∞. It follows that M

(∥∥xni

ε
, z1, . . . , zn−1

∥∥
X

)
−→

∞ as ε −→ 0 for some ni ∈ N . This is a contradiction. Therefore xk = 0 for
all k ≥ 1. Thus x = θ.

Let x = (xk) and y = (yk) be any two elements. Then there exist ρ1, ρ2 > 0
such that

sup
k≥1, z1,...,zn−1∈X

M

(∥∥∥∥xkρ1 , z1, . . . , zn−1
∥∥∥∥
X

)
≤ 1

and sup
k≥1, z1,...,zn−1∈X

M

(∥∥∥∥ykρ2 , z1, . . . , zn−1
∥∥∥∥
X

)
≤ 1

Let ρ = ρ1 + ρ2. Then by the convexity of M , we have
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sup
k≥1, z1,...,zn−1∈X

M

(∥∥∥∥xk + yk
ρ

, z1, . . . , zn−1

∥∥∥∥
X

)
≤

(
ρ1

ρ1 + ρ2

)
sup

k≥1, z1,...,zn−1∈X
M

(∥∥∥∥xkρ1 , z1, . . . , zn−1
∥∥∥∥
X

)
+

(
ρ2

ρ1 + ρ2

)
sup

k≥1, z1,...,zn−1∈X
M

(∥∥∥∥ykρ2 , z1, . . . , zn−1
∥∥∥∥
X

)
≤ 1.

Now ‖x+ y‖0 = inf

{
ρ : sup

k≥1, z1,...,zn−1∈X
M

(∥∥∥∥(xk + yk)

ρ
, z1, . . . , zn−1

∥∥∥∥
X

)
≤ 1

}

≤ inf

{
ρ1 : sup

k≥1, z1,...,zn−1∈X
M

(∥∥∥∥xkρ1 , z1, . . . , zn−1
∥∥∥∥
X

)
≤ 1

}

+ inf

{
ρ2 : sup

k≥1, z1,...,zn−1∈X
M

(∥∥∥∥ykρ2 , z1, . . . , zn−1
∥∥∥∥
X

)
≤ 1

}
.

Thus ‖x+ y‖0 ≤ ‖x‖0 + ‖y‖0. Finally let α be any scalar. Then

‖αx‖0 = inf

{
ρ : sup

k≥1, z1,...,zn−1∈X
M

(∥∥∥∥αxkρ , z1, . . . , zn−1

∥∥∥∥
X

)
≤ 1

}

= inf

{
|α|λ > 0 : sup

k≥1, z1,...,zn−1∈X
M
(∥∥∥xk

λ
, z1, . . . , zn−1

∥∥∥
X

)
≤ 1

}
,

where λ =
ρ

|α|
= |α| ‖x‖0

Remark 2.3. Let {a1, a2, . . . , an} be a linearly independent set in X. Then by
equation (1.1), ‖x, z1, z2, . . . , zn−r−1‖∞ = max {‖x, z1, z2, . . . , zn−r−1, ai1 , . . . , air‖X},
{i1, i2, . . . , ir} ⊆ {1, 2, . . . , n} is an derived (n−r)-norm on X, for each r =
1, 2, . . . , n− 1. Hence we have the following theorem.

Theorem 2.4. Let {a1, a2, . . . , an} be a linearly independent set in X. Then
c0(X,M), c(X,M) and `∞(X,M) are normed linear spaces, normed by ‖ • ‖r,
defined by

‖x‖r = inf

{
ρ > 0 : sup

k≥1, z1,...,zn−r−1∈X
M

(∥∥∥∥xkρ , z1, . . . , zn−r−1
∥∥∥∥
∞

)
≤ 1

}
, (2.2)
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for each i = 1, 2, . . . , n− 1. We call these norms as derived norms.

Proof. Proof is same with Theorem 2.2.

Theorem 2.5. Let X be an n-Banach space. Then c0(X,M), c(X,M) and
`∞(X,M) are Banach spaces under the norm defined in equation (2.1)

Proof. Let Y be any one of the spaces c0(X,M), c(X,M) and `∞(X,M).
Let (xi) be any Cauchy sequence in Y . Let x0 > 0 be fixed and t > 0 be such
that for 0 < ε < 1, ε

x0t
≥ 1. Then there exists a positive integer n0 such that

‖xi − xj‖0 < ε
x0t

, for all i, j ≥ n0. Using equation (2.1), we get

inf

{
ρ > 0 : sup

k≥1, z1,...,zn−1∈X
M

(∥∥∥∥∥xik − xjkρ
, z1, . . . , zn−1

∥∥∥∥∥
X

)
≤ 1

}
<

ε

x0t
,

for all i, j ≥ n0. Hence we have,

sup
k≥1, z1,...,zn−1∈X

M

(∥∥∥∥∥ xik − x
j
k

‖xi − xj‖0
, z1, . . . , zn−1

∥∥∥∥∥
X

)
≤ 1, for all i, j ≥ n0

It follows that for all i, j ≥ n0,

M

(∥∥∥∥∥ xik − x
j
k

‖xi − xj‖0
, z1, . . . , zn−1

∥∥∥∥∥
X

)
≤ 1, for each k ≥ 1 and z1, . . . , zn−1 ∈ X.

For t > 0 with M( tx0
2

) ≥ 1, we have

M

(∥∥∥∥∥ xik − x
j
k

‖xi − xj‖0
, z1, . . . , zn−1

∥∥∥∥∥
X

)
≤M

(
tx0
2

)
This implies that ‖xik − x

j
k, z1, . . . , zn−1‖X ≤ tx0

2
. ε
tx0

= ε
2
, for each k ≥ 1 and

z1, . . . , zn−1 ∈ X. Hence (xik) is a Cauchy sequence in X for all k ∈ N . Since
X is an n-Banach space, (xik) is convergent in X for all k ∈ N . For simplicity,
let lim

i−→∞
xik = xk, for each k ∈ N . Again we can find that

inf

ρ : sup
k≥1, z1,...,zn−1∈X

M

∥∥∥∥∥∥
xik − lim

j→∞
xjk

ρ
, z1, . . . , zn−1

∥∥∥∥∥∥
X

 ≤ 1

 < ε,
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for all i ≥ n0. Thus,

inf

{
ρ : sup

k≥1, z1,...,zn−1∈X
M

(∥∥∥∥xik − xkρ
, z1, . . . , zn−1

∥∥∥∥
X

)
≤ 1

}
< ε, for all i ≥ n0

It follows that (xi − x) ∈ Y . Since (xi) ∈ Y and Y is a linear space, so we
have x = xi − (xi − x) ∈ Y . This completes the proof of the theorem.

The following Corollary is due to Lemma 1.2.

Corollary 2.6. If X is a Banach space under the standard n-norm then the
spaces c0(X,M), c(X,M) and `∞(X,M) are Banach spaces under the norm
defined by equation (2.1)

Theorem 2.7. Let Y be any one of the spaces c0(X,M), c(X,M) and `∞(X,M).
If (xi) converges to x in Y in the the norm ‖ • ‖0 defined by equation (2.1),
then (xi) also converges to x in the derived norm ‖ • ‖r defined by equation
(2.2), for r = 1.

Proof. Let (xi) converges to x in Y in the norm ‖ • ‖0. Then ‖xi−x‖0 −→ 0,
as i −→∞. Using definition of norm equation (2.1), we get

inf

{
ρ > 0 : sup

k≥1, z1,...,zn−1∈X
M

(∥∥∥∥xik − xkρ
, z1, . . . , zn−1

∥∥∥∥
X

)
≤ 1

}
−→ 0, as i −→∞

Let {a1, a2, . . . , an} be a linearly independent set in X. Then

inf

{
ρ > 0 : sup

k≥1, z1,...,zn−2∈X
M

(∥∥∥∥xik − xkρ
, z1, . . . , zn−2, aj

∥∥∥∥
X

)
≤ 1

}
−→ 0,

as i −→∞ and for each j = 1, 2, . . . , n. Hence

inf

{
ρ > 0 : sup

k≥1, z1,...,zn−2∈X
M

(∥∥∥∥xik − xkρ
, z1, . . . , zn−2

∥∥∥∥
X

)
≤ 1

}
−→ 0,

as i −→∞, using Remark 2.3. Thus ‖xi − x‖1 −→ 0, as i −→∞. Hence (xi)
converges to x in the norm ‖ • ‖1.
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Theorem 2.8. Let X be a standard n-normed space and the derived (n−1)-
norm on X is with respect to an orthonormal set. Let Y be any one of the
spaces c0(X,M), c(X,M) and `∞(X,M). Then (xi) is convergent in Y in the
the norm ‖ • ‖0 defined by equation (2.1) if and only if (xi) is convergent in Y
in the derived norm ‖ • ‖r defined by equation (2.2), for r = 1.

Proof. In view of the above Theorem 2.7, it is enough to prove that (xi)
convergent in the norm ‖ • ‖1 implies (xi) convergent in the norm ‖ • ‖0. Let
(xi) converges to x in Y in the norm ‖•‖1. Then ‖xi−x‖1 −→ 0, as i −→∞.
Using norm equation (2.2) for r = 1, we get

inf

{
ρ > 0 : sup

k≥1, z1,...,zn−1∈X
M

(∥∥∥∥xik − xkρ
, z1, . . . , zn−2

∥∥∥∥
∞

)
≤ 1

}
−→ 0,

as i −→∞. Now one can observe that

‖xik − xk, z1, . . . , zn−1‖S ≤ ‖xik − xk, z1, . . . , zn−2‖S ‖zn−1‖S,

where ‖•, •, . . . , •‖S and ‖ • ‖S on the right hand side denote the standard
(n−1)-norm and the usual norm on X respectively (see for instance [7]). Since
derived (n−1)-norm on X is with respect to an orthonormal set, using Lemma
1.3, we have

‖xik − xk, z1, . . . , zn−1‖S ≤
√
n‖xik − xk, z1, . . . , zn−2‖∞ ‖zn−1‖S

and in this case ‖•, •, . . . , •‖∞ on the right hand side is the derived (n−1)-norm
which we used to define the norm ‖ • ‖1. Therefore

inf

{
ρ > 0 : sup

k≥1, z1,...,zn−1∈X
M

(∥∥∥∥xik − xkρ
, z1, . . . , zn−1

∥∥∥∥
S

)
≤ 1

}
≤

inf

{
ρ > 0 : sup

k≥1, z1,...,zn−1∈X
M

(√
n

∥∥∥∥xik − xkρ
, z1, . . . , zn−2

∥∥∥∥
∞
‖zn−1‖S

)
≤ 1

}
Since, n is arbitrarily fixed, let λ =

√
n sup
zn−1∈X

‖zn−1‖S > 0 be fixed, then right

hand side of above inequality can be written as

λ inf

{
t > 0 : sup

k≥1, z1,...,zn−2∈X
M

(∥∥∥∥xik − xkt
, z1, . . . , zn−2

∥∥∥∥
∞

)
≤ 1

}
, where t =

ρ

λ
.
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Thus inf

{
ρ > 0 : sup

k≥1, z1,...,zn−1∈X
M

(∥∥∥∥xik − xkρ
, z1, . . . , zn−1

∥∥∥∥
S

)
≤ 1

}
−→ 0,

as i −→∞. Hence ‖xi− x‖0 −→ 0 as i −→∞. Therefore (xi) is converges to
x in Y in the norm ‖ • ‖0.

Using Lemma 1.3, we get the following Corollary.

Corollary 2.9. Let X be a standard n-normed space and the derived (n−r)-
norm on X are with respect to an orthonormal set. Let Y be any one of the
spaces c0(X,M), c(X,M) and `∞(X,M). Then a sequence in Y is convergent
in the the norm ‖ • ‖0 defined by equation (2.1) if and only if it is convergent
in the derived norm ‖ • ‖1 and by induction, in the derived norm ‖ • ‖r defined
by equation (2.2), for all r = 1, 2, . . . , n − 1. In particular, a sequence in Y
is convergent in the norm ‖ • ‖0 if and only if it is convergent in the derived
norm ‖ • ‖n−1, defined by

‖x‖n−1 = inf

{
ρ > 0 : sup

k
M

(∥∥∥∥xkρ
∥∥∥∥
∞

)
≤ 1

}
(2.3)

Theorem 2.10. Let X be a standard n-normed space and derived (n−r)-norm
on X for all r = 1, 2, . . . , n − 1 are with respect to an orthonormal set. Let
Y be any one of the spaces c0(X,M), c(X,M) and `∞(X,M). Then Y is
complete with respect to the norm ‖•‖0 defined by equation (2.1) if and only if
it is complete with respect to the derived norm ‖•‖1 defined by equation (2.2).
By induction, Y is complete with respect to the norm ‖ • ‖0 if and only if it is
complete with respect to the derived norm ‖ • ‖n−1, defined by equation (2.3).

Proof. By replacing the phrase ‘ (xi) converges to x ’ with ‘ (xi) is Cauchy
sequence ’ and ‘ xi−x ’ with ‘ xi−xj ’, we see that the analogues of Theorem
2.7, Theorem 2.8 and Corollary 2.9 hold for Cauchy sequences. This completes
the proof.

Remark 2.11. Associated to the derived norm ‖ • ‖n−1, we can defined open
balls S(x, ε) centered at x and radius ε as S(x, ε) = {y : ‖x− y‖ < ε}.

Using these balls, Corollary 2.9, becomes:

Lemma 2.12. Let Y be any one of the spaces c0(X,M), c(X,M) and `∞(X,M).
A sequence (xk) is convergent to x in Y if and only if for every ε > 0, there
exists n0 ∈ N such that xk ∈ S(x, ε) for all k ≥ n0.
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Hence we have the following result.

Theorem 2.13. The spaces c0(X,M), c(X,M) and `∞(X,M) are normed
spaces and their topology agrees with that generated by the derived norm ‖•‖n−1
defined by equation (2.3).

Acknowledgements. The author is grateful to the referee for careful reading
of the article and suggested improvements.
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