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Abstract

In this article we introduce some sequence spaces with base space
X, a real linear n-normed space. We also use an Orlicz function to
construct the spaces. We investigate these spaces for some algebraic
and topological structures.
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1. Introduction

Let w denote the space of all real or complex sequences. By ¢, ¢y and /4,
we denote the Banach spaces of all convergent, null and bounded sequences
x = (xy), respectively normed by ||x|| = sup |zg|.
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An Orlicz function is a function M : [0, 00) — [0, 00) which is continuous,
non-decreasing and convex with M (0) = 0, M(xz) > 0, forx > 0 and M(x) —
00, as T — 00.

Lindenstrauss and Tzafriri [9] used the Orlicz function and introduced the
sequence space £, as follows:

EM:{(xk)Gw:ZM(@) < 00, forsomep>0}.

k=1 P

They proved that £, is a Banach space normed by

) =inf{p>o:ij(’$—;’) < 1}.

k=1

The concept of 2-normed spaces was initially developed by Géhler [2] in the
mid of 1960’s while that of n-normed spaces can be found in Misiak [10]. Since
then, many others have studied this concept and obtained various results, see
for instance Gunawan [4, 5], and Gunawan and Mashadi [7].

Let n € N and let X be a real linear space of dimension d, where d > n.

A real valued function ||e, e ... e| on X™ satisfying the following conditions:
niNy:  ||x1,xo,...,z,|| = 0 if and only if x1, z,. .., z, are linearly depen-
dent,
nNy:  ||z1, 29, . .., x| is invariant under any permutation of xq, xa, . .., o,
nNs: |1, 22, ..., xn1, @z = |af |21, 22, ..., z,|| for all « € R,
nNg: ||xy, zo, ..o Tone1, y+2|| < |21, 22y oo o1, Y| |21, 22y T, 2|
for all y, 2z, 1, 20,..., 2,1 € X,
then the function ||e, e, ... || is called an n-norm on X and the pair (X, ||e, o, ... o)

is called an n-normed space.
A trivial example of an n-normed space is X = R" equipped with the
following Euclidean n-norm:

11 L oz,
|x1, 22, ..., xp]|[e=abs | |M O M]|]|,
Tn1 L Tnn

where z; = (z41,...,2;,) € R" foreach i = 1,2,... n.
Gunawan and Mashadi [7] showed that if (X ||e,e, ... e||) be an n-normed
space of dimension d > n > 2 and {aq,as,...,a,} be a linearly independent
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set in X. Then the following function ||e,e. ... ||, on X" ! defined by
|1, 22, -« o Tpot|eo = max{||xy, 22, .. ., 21, a4l 1 =1,2,...,n} (1.1)

defines an (n — 1) norm on X with respect to {ay,as,...,a,}.
Gunawan and Mashadi [7] also defined the standard n-norm on X, a real
inner product space of dimension d > n as follows:

[N

<zy,r1> L <zx1,2, >
Hxlvaa"'7xn||S: M O M )
< xp,x1> L <xp,x, >

where < o, ® > denotes the inner product on X. If X = R", then this n-norm is

exactly the same as the Euclidean n-norm ||z, zs, .. ., x,|| g mentioned earlier.
. : 1

For n = 1, this n-norm is the usual norm ||z|| =< z,2; >2.

A sequence (xy) in an n-normed space (X, ||, e, ... o||)is said to converge
to some L € X in the n-norm if lim ||zy — L,we,ws...,w,| = 0, for every

k—o0

Wo, W3 ..., Wy € X.

A sequence (zy) in an n-normed space (X, |le,e, ... o|) is said to be
Cauchy sequence with respect to the n-norm if klllgloo |ek— 2, wa, w3 ... wy|| =
0, for every wo, w3 ..., w, € X.

If every Cauchy sequence in X converges to some L € X, then X is said
to be complete with respect to the n-norm. Any complete n-normed space is
said to be n-Banach space.

Now we state the following three usefull results as Lemmas which can be
found in [7].

Lemma 1.1. Every n-normed space is an (n—r)-normed space for all r =
1,2,....,n— 1. In particular, every n-normed space is a normed space.

Lemma 1.2. A standard n-normed space is complete if and only if it is com-
. 1
plete with respect to the usual norm || e ||g =< o, @ >2.

Lemma 1.3. On a standard n-normed space X, the derived (n-1)-norm ||., ..., .||so,
defined with respect to orthonormal set {ey,es,...,e,}, is equivalent to the
standard (n-1)-norm ||e, e, ... e||s. Precisely, we have

Hl’l, Lo,y ... ,.fL'n,1H00 S H.’El, Ty ... ,(’lﬁn,lHS S \/ﬁHxl,xQ, Ce ,Z’nfluoo
for all x1,xq,...,2x,_1, where

|le1, 22, ooy Tpo1]|eo = max{||xy, 22, ..., 20 1, €ls i =1,2,... ,n}.
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Let (||e, e, ..., ®|x) be areal linear n-normed space and w(X) denotes the
X-valued sequence space. Then for an Orlicz function M we define the follow-
ing sequence spaces:
co(X, M) =

{(xk) € w(X): lim M (

%’Zl"”’zn_le> =0, z1,...,2,1 € X, for some p > O},
ZL‘k—L

)-o
P X

21,y 2n—1 € X and for some L € X, p > 0},

121y e o5 Rn—1

(X, M) = {(zx) € w(X) : lim M(

k—o0

loo(X, M) =

(xr) € w(X) : sup M(H%’“,Zl,...,zn_lH > < o0, for somep>0}.
X

k>1, z1,...,2n—1€X

In the above definition of spaces, n-norm ||e, e ... e||x on X is either a
standard n-norm or a non-standard n-norm. In general we write ||e, o ... o|
and for standard case we write ||, o, ... o|s. Again for derived norm we use
oo ol

It is obvious that ¢y (X, M) C ¢(X, M). Again ¢(X, M) C lo(X, M) follows
from the following inequality:

) = |
X X

M( CBk—L
P
L
M (H_vzla"'7zn—1
P

T
2p

N

3 Zly o+ vy An—1

y

y Zly o+ vy An—1

N = N~

+

2. Main Results

In this section we investigate the main results of this article involving the
sequence spaces co(X, M), ¢(X, M) and (o (X, M).

Theorem 2.1. The spaces co(X, M), ¢(X, M) and (X, M) are linear spaces.
Proof. The proof of this theorem can be proved very easily.

Theorem 2.2. The spaces co(X, M), c¢(X, M) and (X, M) are normed lin-
ear spaces, normed by || e ||o defined by
) <1 (2.1)
be

Ty
Ty Rly- 5 An—1

|z]lo = inf {p >0: sup M (

k=1, z1,...,z2n—1€X
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Proof. If z = 0, then clearly ||z||p = 0. Conversely assume ||z||o = 0, Then
using equation (2.1), we have

inf{p>0:

sup
k>1, z1,...,2n—1€X

Tk

Ty Ry ey Rn—1

i

)eif

This implies that for a given ¢ > 0, there exists some p. (0 < p. < ¢) such

that

Tk
sup
k>1, 21 Zn_1€X

£

.....

for every kK > 1 and 2y, .

T

V(I

Ty Rl

for every £ > 1 and 2z, .
then H%,zl, .. "zn—le — 00. It follows that M (||

o (]

y Zn—1

7Ry - -+ An—1

..y 2n—1 € X. Hence

Lk

QSM(;

€

N ATERE

.y Zn—1 € X. Suppose x,, # 0,

)gl.So,M(
X p

T,

T
Ty Ry e e

£

for some 7. Let e — 0

c 7217"'a2n—1HX) —

oo as ¢ — 0 for some n; € N. This is a contradiction. Therefore z;, = 0 for

all k> 1. Thus x = 6.

Let z = (xx) and y = (yx) be any two elements. Then there exist p1, p2 > 0

such that

Ty
sup M( — 21y ey Zno1 )gl
k>1, z1,..2n—1€X P1 X
Yk
and sup M( N P - <1
E>1, 21,..,2n—1€X P2 X

Let p = p; + p2. Then by the convexity of M, we have
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=)
Gl ) sup M (
k>1, z1,y..02n—1€X P

sup M
k>1, z1,..02n—1€X

VAN
7~ N 7 N 7 N
=
+
s
[ \V]

+ P2 ) sup M(‘ %,21,...,2’”_1 > <1
P1+ P2/ k>1, 21, zn1€X P2 ¥
) Ty +
Now |lz+uylo = infq{p: sup M< M,zl, s Zn1 ) <1
k>1, z1,...,2n—1€X 1% D'
x
< inf< py: sup M( —k,zl,...,zn_l >§1
k>1, z1,..0,2n—1€X P1 X
. Yk
+ inf < py: sup M('—,zl,...,zn_l >§1 )
k>1, z1,..0,2n—1€X P2 X

Thus ||z + yllo < |z|lo + ||yllo. Finally let o be any scalar. Then

|laz|lo = inf{p: sup M( > < 1}
k>1, z1,0.2n—1€X X

= inf{\a|)\>(): sup M(Hﬁ,zb...,zn,l )gl},
A X

k‘Zl, Zl,...,znfléX
Remark 2.3. Let {ay,as,...,a,} be a linearly independent set in X. Then by

[0 %%
TRl Rn—1

where \ = L
||

= laf [lzllo

equation (1.1), ||z, 21, 22, -« Zn—r—1||loo = max {||x, 21, 22, . . ., Zn—r—1, Ay - - - Qi || x },
{i1,d9,...,4,} € {1,2,...,n} is an deriwed (n—r)-norm on X, for each r =
1,2,...,n—1. Hence we have the following theorem.

Theorem 2.4. Let {ay,as,...,a,} be a linearly independent set in X. Then
co(X, M), (X, M) and (X, M) are normed linear spaces, normed by || e ||,

defined by
) < 1} , (2.2)

T
TRy ey Rn—r—1

|x||- = inf {p >0: sup M <

k>1, z1,...,zn—r—1€X
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foreacht=1,2,...,n—1. We call these norms as derived norms.
Proof. Proof is same with Theorem 2.2.

Theorem 2.5. Let X be an n-Banach space. Then co(X, M), ¢(X, M) and
loo(X, M) are Banach spaces under the norm defined in equation (2.1)

Proof. Let Y be any one of the spaces ¢o(X, M), ¢(X, M) and (. (X, M).
Let (z') be any Cauchy sequence in Y. Let x5 > 0 be fixed and ¢ > 0 be such
that for 0 <e <1, = > 1. Then there exists a positive integer ng such that

. . Ot -
|z* = a?llo < .5, for all 4, j > ng. Using equation (2.1), we get

€
inf<¢p>0: sup M <l < —
k>1, z1,...,2n—1€X ¥ .Z'ot

for all 7, j > ng. Hence we have,
> <1, foralli,j>ng
X

sup M
k>1, z1,..0,2n—1€X

It follows that for all 7,7 > ny,

o

For t > 0 with M (%) > 1, we have

i J
Lp — Ty

7 RLy+ vy Rn—1

i J
Lp — Tp

M,Zh---,zn—1

i J
Ty — T,

Mazlw"vzn—l

> <1, foreach k> 1and z,...,2,_1 € X.
X

zh — ] txg
M Z-—-kazla"-azn—l SM —_—
[ — 270 2
X
This implies that ||z} — xi,zl,...,zn_lﬂx < WTO% = 5, for each £ > 1 and

21, ..., 2n-1 € X. Hence (z}) is a Cauchy sequence in X for all k € N. Since
X is an n-Banach space, (%) is convergent in X for all £ € N. For simplicity,
let lim i = xy, for each k € N. Again we can find that

—>00
i ; J
o~ i o
inf ¢ p: sup M ||—— 21, -, 201 <1, <g¢,
k>1, z1,..,2n-1€X P

X
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for all © > ngy. Thus,

inf< p: sup M(
k>1, z1,...,2n—1€X

It follows that (z' —z) € Y. Since (z') € Y and Y is a linear space, so we
have z = 2' — (z' — x) € Y. This completes the proof of the theorem.

7 RLy - - -5 Rn—1

)gl} < ¢, for alli > ng
X

The following Corollary is due to Lemma 1.2.

Corollary 2.6. If X is a Banach space under the standard n-norm then the
spaces co(X, M), c¢(X, M) and l-(X, M) are Banach spaces under the norm
defined by equation (2.1)

Theorem 2.7. Let Y be any one of the spaces co(X, M), ¢(X, M) and lo (X, M).
If (2%) converges to x in'Y in the the norm || e ||o defined by equation (2.1),

then (x%) also converges to x in the derived norm || e ||, defined by equation
(2.2), forr=1.

Proof. Let (z') converges to  in Y in the norm || e||o. Then ||z —z|lo — 0,
as i —» 00. Using definition of norm equation (2.1), we get

Ty, — Tk
p

yRLy -+ vy Rn—1

]CZL Zl,...7zn,16X

inf{p>0: sup M( )gl}—>0,asi—>oo
X

Let {a1,as,...,a,} be alinearly independent set in X. Then

_ rt —x
inf<p>0: sup M( i k,Zh...,Zn_g,CLj >§1 — 0,
k>1, z1,...,2n—2€X 1% X
as ¢ — oo and for each 7 =1,2,...,n. Hence
) xt —
inff<p>0: sup M( k k,zl,...,zn,g >§1 — 0,
k>1, z1,...,2n—2€X p X

as 1 —» 00, using Remark 2.3. Thus ||z — z|; — 0, as i — co. Hence (z")
converges to x in the norm || e ||;.
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Theorem 2.8. Let X be a standard n-normed space and the derived (n—1)-
norm on X is with respect to an orthonormal set. Let' Y be any one of the
spaces co(X, M), c(X, M) and lo(X, M). Then (2%) is convergent in'Y in the
the norm || e ||o defined by equation (2.1) if and only if (z*) is convergent in' Y
in the derived norm || e ||, defined by equation (2.2), for r = 1.

Proof. In view of the above Theorem 2.7, it is enough to prove that (z%)
convergent in the norm || e ||; implies (z°) convergent in the norm || e ||o. Let
(z') converges to z in Y in the norm || e||;. Then ||z°—z|; — 0, as i — oc.

Using norm equation (2.2) for r = 1, we get
) < 1} — 0,

HJI/Z — Tk, 21y - - 7Zn71HS < HQTZ — Tk R1y - -0y ansz ||an1HS,

Ty, — T
P

y Rl vy Bn—2

k>1, 21,..,2n—1€X

inf{p>0: sup M<

as 1 — 0o0. Now one can observe that

where ||e, e ... o|ls and || @ ||s on the right hand side denote the standard
(n—1)-norm and the usual norm on X respectively (see for instance [7]). Since
derived (n—1)-norm on X is with respect to an orthonormal set, using Lemma
1.3, we have

|2k — 2, 215 2nalls < VRllTE — 28 215 -+ 2nalloo (|20t lls

and in this case ||e, e, ... o]/, on the right hand side is the derived (n—1)-norm
which we used to define the norm || e ||;. Therefore

. Tl —x
inf<¢p>0: sup M( k k,zl,...,zn_l )Sl <
k>1, z21,...,2n—1€X 1% S
. ), — Ty
1nf{p>0: sup M(\/ﬁ 21y Zn_2 ||zn_1||5) Sl}
k>1, 21,..,2n—1€X [e'e)

Since, n is arbitrarily fixed, let A = \/n sup ||z,_1]|s > 0 be fixed, then right

Zn—1€X
hand side of above inequality can be written as
p
<1, wheret = —.
OO) N } ’ A

Ty, — Tk
t Y

Rly+vyZn—2

)\inf{t>02 sup M(

k>1, z1,...,2n—2€X
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Ty, — Tk
p

yRLy+ -y Rn—1

k>1, z1,...,2n—1€X

Thus inf{p>0: sup M( )Sl}—ﬂ),
S

as 1 —» oo. Hence ||z° — z|l¢ — 0 as i —» oo. Therefore (z') is converges to

zin'Y in the norm | e ||o.

Using Lemma 1.3, we get the following Corollary.

Corollary 2.9. Let X be a standard n-normed space and the derived (n—r)-
norm on X are with respect to an orthonormal set. Let Y be any one of the
spaces co(X, M), ¢(X, M) and lo(X, M). Then a sequence in'Y is convergent
in the the norm || e ||o defined by equation (2.1) if and only if it is convergent
in the derived norm || e ||1 and by induction, in the derived norm || e ||, defined
by equation (2.2), for allr = 1,2,...,n — 1. In particular, a sequence in Y
is convergent in the norm || e ||o if and only if it is convergent in the derived

norm || ® ||,—1, defined by
) < 1} (2.3)

Theorem 2.10. Let X be a standard n-normed space and derived (n—r)-norm
on X forall v = 1,2,...,n — 1 are with respect to an orthonormal set. Let
Y be any one of the spaces co(X, M), ¢(X, M) and lo(X,M). Then Y is
complete with respect to the norm || e ||o defined by equation (2.1) if and only if
it is complete with respect to the derived norm || e ||y defined by equation (2.2).
By induction, Y is complete with respect to the norm || e || if and only if it is
complete with respect to the derived norm || e ||,—1, defined by equation (2.3).

Ty

|z|[n—1 = inf {p >0:supM (‘
e P

Proof. By replacing the phrase ‘ (z') converges to z ’ with * (2¢) is Cauchy
sequence * and ¢ ' —z ’ with ¢ ' — 27 ’, we see that the analogues of Theorem
2.7, Theorem 2.8 and Corollary 2.9 hold for Cauchy sequences. This completes
the proof.

Remark 2.11. Associated to the derived norm || e ||,,—1, we can defined open
balls S(x, ) centered at x and radius € as S(x,e) = {y : ||z — y|| < e}.

Using these balls, Corollary 2.9, becomes:

Lemma 2.12. Let Y be any one of the spaces co(X, M), c¢(X, M) and l+ (X, M).
A sequence (xy) is convergent to x in'Y if and only if for every e > 0, there
exists ng € N such that xy, € S(z,¢) for all k > nyg.
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Hence we have the following result.

Theorem 2.13. The spaces co(X, M), c(X, M) and l-(X, M) are normed
spaces and their topology agrees with that generated by the derived norm || e||,—1
defined by equation (2.3).

Acknowledgements. The author is grateful to the referee for careful reading
of the article and suggested improvements.
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