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Abstract 

In this paper, we propose a new cubically convergent family of super-

Halley method based on power means. Some well-known methods can be 

regarded as particular cases of the proposed family. New classes of higher 

(third and fourth) order multipoint iterative methods free from second order 

derivative are derived by semi-discrete modifications of above-mentioned 

methods. It is shown that super-Halley method is the only method which 

produces fourth order multipoint iterative methods. Furthermore, these 

multipoint methods with cubic convergence have also been extended for 

finding the multiple zeros of non-linear functions. Numerical examples are 

also presented to demonstrate the performance of proposed multipoint 

iterative methods. 

 

Keywords and Phrases: Newton’s method, Halley’s method, Chebyshev-Halley type 

methods, Multiple zeros, Power means, Order of convergence 

 

1. Introduction 

The family of Chebyshev-Halley type methods [14] is given by 
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where   and  
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This family includes the classical Chebyshev’s method (when   = 0 ), the famous 

Halley’s method (when   = 0 .5) and the super-Halley method (when   =1). 

The purpose of this work is to provide some alternative derivations through 

power means and to revisit some well-known zero finding iterative methods. The 

work is organized as follows. In Section 2, definitions of various means are reviewed. 
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In Section 3, a family of super-Halley type methods [9, 16] based on power means has 

been presented which is cubically convergent. In Section 4, a generalization to a 

family of multipoint iterative methods and their convergence has been presented. In 

Section 5, extension to the cubically convergent family of iterative methods for 

multiple zeros of non-linear functional equations has been given. To demonstrate the 

performance of various proposed multipoint methods, some numerical examples and 

concluding remarks have been presented in Section 6. 

 

2. Review of Definition of Various Means 

For a given finite real number , the th - power mean m  of positive scalars a  

and b , is defined as (see [11]) 
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when 1 ,   1m
2

ba 
 ,  (Arithmetic mean)                          (5) 

when 0 ,  0m = bam 



 0
lim , (Geometric mean).                   (6)  

For given positive scalars a  andb , some other well-known means are defined as  

Heronian mean:  N
3

bbaa 
 ,                              (7) 
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Contra-harmonic mean: C
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Centroidal mean:  T  
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Logarithmic mean:  L
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loglog 


 .                                        (10) 

 

3. Iterative Family of Super-Halley Method Based on 

Power Means 

The well-known Newton’s formula for simple zero, and for multiple zeros [3], 

are given by 
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From (11) and (12), one can obtain 
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an alternative form of the well-known super-Halley method [9,16,17]. This can be 

rewritten as 
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which is no different from the formula (1) when 1 . 

Let  nxfa 2  and       nnn xfxfxfb  2 . For the quantities a and b  to be 

positive and different from zero, we see that 

        nnn xfxfxf 2 .          
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The quantity  nxfa 2  is obviously positive being the square of a nonzero real 

number. In the case if nxx   is a very good approximation to the root, then  nxf  

will be sufficiently close to zero and consequently the quantity 
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,                             (15) 

would be sufficiently small.  

We wish to generalize the formula (14) by th - power mean. For this, we take 

 nxfa 2  and       nnn xfxfxfb  2 . Clearly the quantity a  is positive and 

the quantity b is positive in view of (15).  Now approximating the correction factor in 

(14) by th - power mean as follows  
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This is called the th - power mean iterative family of super-Halley method. The 

formula (16) may be considered as the unification of several existing cubically 

convergent methods. For different values of ‘ ’, these well-known super-Halley 

formulae have been recovered in the foregoing analysis. It is clear that formula (16) 

requires three evaluations per iteration and has an efficiency index [2] 442.133  . 

Therefore, the family (16) of one-point methods does not have optimal order of 

convergence according to Kung-Traub conjecture [6].    

Special cases: 

For 1  (Arithmetic mean), and 1 (Harmonic mean), it is easy to see that 

formula (16) corresponds to the well known super-Halley and Halley’s methods 

respectively. For 0  (Geometric mean), formula (16) corresponds to the well-

known Ostrowski’s square-root formula [2]. While for
2

1
 , formula (16) reduces to 
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which further reduces to Chebyshev’s method after applying binomial theorem. 

 For 2 (root mean square), the formula (16) reduces to  
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Some other cubically convergent iterative methods based on Heronian mean, 

contra-harmonic mean, centroidal mean and logarithmic mean can also be obtained 

from formula (14) respectively.   

3.1 Convergence Analysis 

Theorem 3.1. Let r be a simple zero of a sufficiently differentiable function 

If :  on an open interval I . If the initial guess 0x is sufficiently close to r , 

then for  , the methods defined by family (16) has cubic convergence with the 

following error equation 
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Proof: Since  xf  is sufficiently differentiable function, therefore expanding  nxf , 

 nxf   and  nxf   about rx   by means of Taylor’s expansion, we have 
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From (20)-(22), we may obtain 
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and 
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Case (i) For  0\ , formula (16) may be written as  
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Using binomial theorem and the formulae (23) and (24), the formula (25) yields    

  43

3

2

21
2

1
nnn eOecce 
















 



 .                                                (26) 

This proves cubic convergence. 

Case (ii) For 0 , we have seen that formula (16) reduces to Ostrowski’s square-

root method (not quartically convergent Ostrowski’s method), which converges 

cubically and the proof of which is given in Ref. [2].   

Therefore, it can be concluded that for all  , the th - power mean family (16) 

of super-Halley method converges cubically.  

 

4.  Generalized Family of Multipoint Iterative  
Methods without Memory 

  The practical difficulty associated with the above mentioned third-order 

methods given by (16) may be in the evaluation of second-order derivative. Recently, 

some new variants of Newton’s method free from second-order derivative have been 

developed in [1, 4, 5, 10, 13, 15] by discretization of second-order derivative or by 

considering different quadrature formulae for the computation of integral arising from 
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Newton’s theorem [12]. These multipoint methods calculate new approximations to a 

zero of  xf  by sampling  xf  and possibly its derivatives for a number of values of 

the independent variable, at each step. Nedzhibov et al. [5] have modified Chebyshev-

Halley methods to derive several third and fourth-order multipoint iterative methods 

free from second-order derivative. Recently, Wang and Li [7] further derived a family 

of new derivative-free third-order methods for solving non-linear equations 

numerically. Here, we also intend to develop and unify the general class of multipoint 

iterative methods free from second- order derivative. The main idea of the proposed 

generalized family lies in the discretization of second-order derivative involved in the 
th - power mean family of super-Halley type methods (16) (similar to Nedzhibov et 

al. [5]). Therefore, this work can be viewed as the generalization over Nedzhibov et al. 

[5], Wang and Li [7] families of multipoint iterative methods. We shall derive 

following three families free from second order derivative involved in the family (16). 

a. First family 

Expanding the function  uxf n  ,  0 but finite, about the point nxx   
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Using this approximate value of     nn xfxf   into formula (16), we have 
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This is the modification over Nedzhibov et al. formula (2.1) in [5]. It is seen that 

this family depends on the real parameters   and . 

Special cases: 

For different specific values of parameters   and  , the following various 

families of multipoint iterative methods can be stemmed from (29), e.g. 

i. For    1,1,  , we get the formula 
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This is the well-known fourth-order Traub-Ostrowski formula [5, 8, 15]. 

ii. For    1,1,  , we get 
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This is a cubically convergent Newton-Secant formula [5, 8, 15]. 

iii. For 0 and 1 , we get 
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This formula is a new for multipoint iterative method. 

Note that the family (29) can produce many more new multipoint methods by 

choosing different values of the parameters. 

b. Second family 

Replacing the second order derivative in (16) by the following definition, similar 

to Nedzhibov et al. [5] as 
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we get following new generalized family as 
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where  nxfa 2  and 
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Special cases: 

(I) For 1  in formula (34), we obtain the family based on arithmetic mean given by 
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Some interesting particular cases of (35) are: 

i. For 1  in (35), we get the formula 
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This formula is same as derived by Traub [8] independently. 

ii. For 3/2 , we get the formula 
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This is a well-known quartically convergent Jarratt’s multipoint iterative formula [10]. 

(II) For 1  in formula (34), we obtain the family based on harmonic mean given 

by 

  
 

     uxfxf

xf
xx

nn

n

nn







12

2
1 .     (38) 

This is the modification over the formula (3.8) of Weerakoon and Fernando [12]. 

Some interesting particular cases of (38) are: 

i. For 1  in (38), we get the formula 

 
   uxfxf

xf
xx

nn

n

nn




2
1 .                                                                         (39)  

This formula was independently obtained by Traub [8] and Weerakoon and 

Fernando [12]. Some new third-order multipoint methods based on Heronian mean, 
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contra-harmonic mean, centroidal mean etc. can also be obtained from formula (39) as 

follows: 

Cubically convergent multipoint method based on Heronian mean is  

  
 

        
.

3
1

uxfuxfxfxf

xf
xx

nnnn

n

nn



   (40) 

 Cubically convergent multipoint method based on contra-harmonic mean is  

  
      

   uxfxf

uxfxfxf
xx

nn

nnn

nn



 221

.     (41) 

Cubically convergent multipoint method based on centroidal mean is  

  
      

        uxfxfuxfxf

uxfxfxf
xx

nnnn

nnn

nn



 221

2

3
.   (42)   

ii. For 
2

1
  in (38), we get the formula 

 













uxf

xf
xx

n

n

nn

2

1
1 .                                                                                   (43) 

This is a well-known cubically convergent iterative formula [8]. 

iii. For 2  in (38), we get another new formula given by 

 
   uxfxf

xf
xx

nn

n

nn
23

4
1


 .                                                                     (44) 

(III) For 0  in formula (34), we obtain the family based on geometric mean as 

          
       

.
1

)()('
201

uxfxfxf
xfxfsignxx

nnn

nnn







             

 (45) 

Some interesting particular cases of family (45) are: 

i. For 1  and 1 , we get the formulas 

 

      uxfxfxfsign

xf
xx

nn

n

nn




0

1 ,                                                      (46) 

and  
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 

        uxfxfxfxfsign

xf
xx

nnn

n

nn




2

0

1

2
,                                      (47) 

where the positive sign is taken if rxn   and the negative sign is taken if rxn  .  

These are cubically convergent multipoint iterative formulae. Formula (46) is 

also derived by Lukić and Ralević [13] independently.  

Other modifications can directly be obtained from formula (14) by replacing the 

second derivative in (14) by a finite difference (33). This gives 

  
 

       













uxfxfxf

xf
xx

nnn

n

nn




1

1

2
1

.          (48) 

 If we rewrite the formula (48) as 

 
     

   






























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




n

nnn

n

nn

xf
xfuxfxf

xf
xx

2
2

2

1

2
1





,          (49) 

and replace the arithmetic mean     nn xfuxf  
2

1
 with the midpoint value 

  2)( nn xuxf    in (49), we obtain a new family of methods given by 

  
 

       













nnn

n

nn
xfuxfxf

xf
xx

25.02

1

2
1




.       (50) 

For 1 , the formula (50), yields a new formula given by 

  
 

     













nnn

n

nn
xfuxfxf

xf
xx

5.02

11

2
1 .                (51)

  

This formula can be obtained from family (48), if 21 .    

(ii) For 41 and 1  in formula (48), we get the formulas 
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 
     
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











nnn
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nn
xfuxfxf

xf
xx
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2
1

,                                 (52) 

and 

 
 

     













uxfxfxf

xf
xx

nnn

n

nn
2

11

2
1

.                             (53) 

These are other new cubically convergent iterative formulas. 

c. Third family 

Replacing the second derivative in (16) by a finite difference similar to 

Nedzhibov [5] as 

   
   

u

uxf
u

xfxf

xf

nnn

n





3

2
45 










 ,  ,0          (54) 

we get new generalized family as   

 

       
,

2

2
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1

2

1
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


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


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

 
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



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






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
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xfxfxf

xf
xx

nnnn
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nn
(55) 

where  nxfa 2 and  

         



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
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
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
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



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2
453 2

nnnnn xfuxfxf
u

xfxf

b . 

For particular values of   and , some interesting particular cases of this family 

are: 

i. For    1,1,  , we get the formula 
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 
 

   
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2
42
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u
xfxfuxf

uxf
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xfxf
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xf
xx

nnn

nnn

n
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nn .              (56) 

This is an order four new multipoint iterative formula. It is clear that formula (56) 

requires four evaluations per iteration and has an efficiency index 414.14 4

1

 , which 

is the same as the classical Newton’s method.  

ii. For    1,1,  , we get the formula 

 

   uxf
u

xfxf

xf
xx

nnn

n

nn













2
4

6
1 .                                                 (57)   

This is a cubically convergent formula explored by Hasanov et al. [5, 14]. It is 

clear that formula (57) requires four evaluations per iteration and has an efficiency 

index 316.134

1

 . Therefore, efficiency index of method (56) is better than Hasnov et 

al. method (57). 

The order of convergence of family (29), (34) and (55) will be studied in 

Theorems (4.1), in the subsequent section. 

4.1. Analysis of Convergence of Multipoint Methods  

Theorem 4.1. Let If :  be continuous and sufficiently differentiable function 

defined in the open interval I . If )(xf  has a simple root Ir , then for sufficiently 

close initial guess 0x to r ,  

(i) the family (29) has 3
rd

 order of convergence, for 

1&1   , 

1&1   , 

1&1   , 

&   0  &  , 

and 4
th

 order of convergence for    1,1,  . 

(ii) the family (34) has 3
rd

 order of convergence, for  
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32&1   , 

32&1   , 

32&1   , 

& 0  &  , 

and 4
th

 order of convergence    32,1,  . 

(iii) the family (55) has 3
rd

 order of convergence for  

1&1   , 

1&1   , 

1&1   , 

&  0  &  , 

and 4
th

 order convergence for    1,1,  . 

Proof: Since  xf  is sufficiently differentiable, expanding  nxf  and  nxf   about 

rx   by Taylor’s expansion, we have 

       65

5

4

4

3

3

2

2 nnnnnnn eOececececerfxf  ,                          (58) 

and 

      54

5

3

4

2

32 54321 nnnnnn eOececececrfxf  ,               (59) 

where kc , ne  are defined earlier.  

Using (58) and (59), we have 

 
 
 
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
 .   (60) 

Also using (60), we have 

 
32

23

2

2 )22( nnnnn ecceceeue    543

2324 473 nn eOecccc  ,  (61) 

and 

 

            .144610)1(32121
433

4

3

232

2

32

2

3

22

22 nnnn

n

eOecccccceccecrf
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




                                                                                                                    

(62) 

Upon using (59) and (62), we get 
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 
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                       (63) 

and 
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                                                                                                                                   (64) 

Case (i) For  0\ , using binomial theorem in (55) and making use of (60), (63), 

(64), we obtain 

1ne  

              .31132321
2

1 54
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3
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2
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 
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 (65) 

For the cases: 1&1   , 1&1    and 1&1   , we see that from 

(65) that the family (55) has 3
rd

 order convergence. While for    1,1,  , we have 

     ,54

32

3

21 nnn eOeccce   

which proves the 4
th
 order convergence of family (55).  

Case (ii) For 0 , formula (55) can be written as  
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453

3
1   .                        (66) 

Upon using equations (60), (63) and (64) and making use of binomial theorem in 

(66), we obtain  
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       43

3

2

2 1
2

1
nnn eOecce 








  .    (67) 

Using (67) in (66), we have  

   43

3

2

21 1
2

1
nnn eOecce 








  ,                 (68) 

which proves 3
rd

 order convergence of family (55) for 0 . 

 

The proofs of said convergence of families (29) and (34) can be proved on similar 

lines.  

5. Extension for Multiple Zeros 

   These multipoint iterative schemes for simple zero can further be extended to 

the case of multiple zeros with cubic convergence. These results are rather interesting 

in view of the fact that usual third and fourth-order multipoint iterative methods e.g., 

Jarratt’s method, Newton-secant method, Traub-Orstrowski’s method etc. show linear 

convergence in case of multiple roots. For the purpose of demonstration, the iteration 

scheme (48) meant for simple zero can be extended for multiple zeros of nonlinear 

functions by introducing unknown auxiliary functions 1 , 2 and may be described 

through the following theorem: 

Theorem 5.1 Let  Df :  be a function for an open interval D . Let )(xf  

has a multiple root, say Drx m  with multiplicity 1m  and 0x  be the initial guess 

to the multiple root. Assume that f  is sufficiently differentiable in D , then the 

iterative scheme 
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where
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m
andm   

 (i)  will have third-order convergence in the vicinity of mr , if 
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and 
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 (ii) will satisfy the following error equation: 

1ne  
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 (72) 

where  

  ,220 mmA                                            (73) 

       ,129632
222

1 mmmmmmA                             (74) 

          .125127232
23223

2 mmmmmmmmmA       (75) 
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Proof: Since  xf  is sufficiently differentiable function, therefore expanding  nxf  

about mrx   by Taylor’s expansion and using        0... 1  

m

m

mm rfrfrf   and 

   0m

m rf (a condition for mrx   to be a root of multiplicity m ), we have 

  
 

  32

321
!

)(
)( nnn

m

n

m

m

n eOeCeCe
m

rf
xf  ,    (76) 

where mnn rxe  and
 
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k
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Similarly, for ),( nxf   it may be shown that 
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xf .  (77) 

The expressions of Taylor’s polynomials in terms of ne  for the different 

functions involved in formula (69) are cumbersome and lead to tedious calculations. 

Therefore, we shall make use of symbolic computation in programming package 

Mathematica7 to find out  21,   and to derive the corresponding error equation. Let 

us introduce the following abbreviations used in this program: 

       ,,1,1,, mnnm

m

nnk rxeerfafxfxfxffxCCk   

 
 
 

 
     uxfxf

xf
fz

xf

xf
uuxfyf

nn

n

n

n

n











1
,,2,1,1 21

and   .1 11 mnn rxee    

a) Program code in Mathematica7 for finding the auxiliary functions 
1  and 

2  

In[1]:=    fx = (f1a/m!)*e^m*(1 + C2*e + C3*e^2); 

In[2]:=    f1x  

= (f1a/(m - 1)!)*e^(m - 1)*(1 + ((m + 1)/m)*C2*e + ((m + 2)/m)*C3*e^2); 

In[3]:=      u = Series[fx/f1x, {e, 0, 3}] // FullSimplify; 

In[4]:=     Clear[ 2,1  ]; 

In[5]:=     v = e -  *u; 

In[6]:=      fy = (f1a/m!)*v^m*(1 + C2*v + C3*v^2); 

In[7]:=    f1y  
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= (f1a/(m - 1)!)*v^(m - 1)*(1 + ((m + 1)/m)*C2*v + ((m + 2)/m)*C3*v^2); 

In[8]:=      fz = Series[ *fx/((  - 1)*f1x + f1y), {e, 0, 3}] // FullSimplify; 

In[9]:=     e1 = e - ( 1/2)*u - ( 2 /2)*fz // Simplify; 

In[10]:=     a1 = Coefficient[e1, e] // Simplify; 

In[11]:=     a2 = Coefficient[e1, e^2] // Simplify; 

In[12]:=  Solve[{a1 == 0, a2 == 0}, { 1 , 2 }] // Simplify 

Out[12]:=           
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After some simplification, we obtain (70) and (71). This completes the proof of 

the first part of the theorem.  

For second part of the theorem, we substitute the values of 1 , 2  and 

u (obtained from In[3]) and fz   (obtained from In[8]) into scheme equation (69).  

 

b) Program code in Mathematica7 for proving  the second part of the theorem 

In[13]:=   fx=(f1a/m!)*e^m*(1+C2*e+C3*e^2); 

In[14]:=   f1x=(f1a/(m-1)!)*e^(m-1)*(1+((m+1)/m)*C2*e 

      +((m+2)/m)*C3*e^2);        

In[15]:=   u=Series[fx/f1x,{e,0,3}]//FullSimplify; 

In[16]:=   Clear[1,2]; 
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In[17]:= 
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In[19]:=   v=e-*u; 

In[20]:=   f1y=(f1a/(m-1)!)*v^(m-1)*(1+((m+1)/m)*C2*v 

  +((m+2)/m)*C3*v^2); 

In[21]:=fz 

=Series[*fx/((-1)*f1x+f1y),{e,0,3}]//Simplify; 

In[22]:=   e1=e-(1/2)*u-(2/2)*fz//Simplify; 

In[23]:=   a1=Coefficient[e1,e]//Simplify 

In[24]:=   a2=Coefficient[e1,e^2]//FullSimplify 

In[25]:=   a3=Coefficient[e1,e^3]//FullSimplify 

  

Out[23]:= 0 

Out[24]:= 0 

Out[25]:=     
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Out[25] gives the required coefficient of 
3

ne .  Therefore, the final error equation 

(72) for the formula (69) is fully achieved. This completes the proof of the first part of 

the theorem.   
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For 1m (simple root), 1  and 
2  given by (70) and (71) are both unity 

respectively. 

Following example shows the working of the procedure (69) for 2 .  

Example: Consider the following example  

      022
43
 xx . 

This equation has multiple roots at 2x  and 2x  with multiplicity 3m  

and 4m .  

For 2 , let 10 x be the initial guess for the triple positive root. To apply 

method (69), 1  and 2  are required and they can be computed from (70), (71) 

respectively. We obtain the required root 000000000000000.2  after five iterations. 

For an initial guess 40 x , the formula (69) gives the root after six iterations. On the 

other hand, it is seen in Ref. [10] that using geometric mean Newton’s method, the 

required root of this problem is obtained after twenty one iterations when 10 x  and 

after twenty four iterations when 40 x . 

For the negative root, let 10 x be the initial guess. We obtain the required 

multiple root 000000000000000.2  only after six iterations. For initial guess 30 x , 

formula (69) gives the root only after four iterations while, Lukić and Ralević formula 

[10] gives the required root after thirty one and thirty iterations respectively.  

 It is seen that on applying the same idea to Nedzhibov et al. formula (2.1) in 

[4] , we can obtain other cubically convergent family of multipoint iterative methods 

for the case of multiple roots. 

6. Numerical Results 

In this section, we shall present the numerical results obtained by employing the 

methods namely Newton’s method (NM), formula (32), Traub’s formula (36) (TM), 

formula (51),  formula (52), Weerakoon and Fernando method (39) (WFM),  formula 

(40) based on Heronian mean, formula (46), formula (56) and Hasnov et al. method 

(57) (HM

) respectively to solve nonlinear equations given in Table 1. The results are 
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summarized in Table 2. Computations have been performed using C in double 

precision arithmetic. We use 1510 . The following stopping criteria are used for 

computer programs: 

  nn xxi 1)( ,    1)( nxfii . 

     

 

 

Table 1: Test problems 

No Problem    ba,   Initial guess     Root  r  

                                                                                       0x    

1.   011
6

x     3,1   1.1          2.000000000000000 

       3.0 

2. 0104 23  xx    2,0   0.1        1.3652300134140969 

       2.0 

3. 0cos  xx     2,0   0.0       0 .7390851332151600 

       2.0 

4. 0tan 1  x     2,1   -1.0         0.000000000000000 

       2.0 

5.   061cos4 23  xxx   3,5.0   1.8         1.000000000000000 

       3.0 
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Table 2: Results of problems (D below-stands for divergent) 

Number of iterations 

Problem NM  Formula  TM  Formula  Formula  WFM  Formula  Formula  Formula  HM

                     

   (32)      (36)    (51)    (52)      (39)     (40)         (46)        (56)     (57) 

1.    58    D         30   23     19           D        D           D           25  D 

     8    4           4    4      4            5           5           5  4  5 

2.     9    4           5         4            4            7           7            4  5          7 

     4    3           3          2      2            3           3           3  2          3 

3.     3    3           3          3           3            3           3           2  2          2 

     3    2           3           3      3            3           3           3  2          3  

4.     5    3           4           4      4            4           4           4  3          3 

     D    4           D          5      5            D          D           D  5          4 

5.     6    3            3          3          2            3           3           3  2          3 

     6    4            3           3      3            4           4           4  3           4  

 

7. Conclusions 

This work proposes a family of super-Halley type methods based on non-linear means. 

Proposed family (16) unifies some of the most known third-order iterative methods 

for solving non-linear equations and they also provide many more unknown processes. 

Further, we have also presented many new third and fourth order multipoint iterative 

methods free from second order derivative by dicretization. Super-Halley method is 

the only method which produces the multipoint iterative methods of 4
th

 order. 

Numerical examples presented here prove that the proposed multipoint iterative 

methods can compete with any of the existing methods including classical Newton’s 

method. A reasonably close initial guess is necessary for the multipoint methods to 

converge. This condition, however, applies to practically all the iterative methods for 

solving equations. Third-order multipoint iterative methods of first and second family 

have the efficiency indices equal to 442.133   (see [2]), which is better than the one 
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of Newton’s method having efficiency index 414.122  . In third family (55), we have 

obtained a new quartically convergent iterative method (56). Of course, the efficiency 

index of this method is the same as that of Newton’s method but it is better than 

Hasnov et al. method (57). Furthermore, family (48) has also been extended for 

finding multiple zeros of non-linear equations. 
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