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Abstract

In this paper, we obtain the solution of a time-space fractional dif-
fusion equation by integral transform method. The method of integral
transform based on using a fractional generalization of the Fourier trans-
form and the classical Laplace transform. The solution is derived in a
closed and computational form in terms of the Mittag-Leffler function.
It provides an elegant extension of a result given earlier by Nikolova
and Boyadjiev [20].
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1. Introduction

Fractional calculus is a field of applied mathematics that deals with deriva-
tives and integrals of arbitrary orders. In recent years, considerable amount of
research in fractional calculus was published in engineering and mathematical
physics literature. Indeed, recent advances of fractional calculus are domi-
nated by modern examples of applications in turbulence and fluid dynamics,
stochastic dynamical system, plasma physics and controlled thermonuclear fu-
sion, non-linear control theory, image processing, non-linear biological systems,
astrophysics and electrochemistry. There is no doubt that fractional calcu-
lus has become an exciting new mathematical method of solution of diverse
problems in science, engineering and applied mathematics. One of the main
applications of the fractional calculus is modeling of the intermediate physical
process. A very important model is the fractional diffusion and wave equations.
A space-time fractional diffusion equation, obtain from the standard diffusion
equation by replacing the second order space-derivative by a fractional Riesz
derivative and the first order time-derivative by a Caputo fractional derivative,
has been treated by Saiche and Zaslavsky [25], Gorenflo et al. [6], Uchajkin
and Zototarev [29], Scalas et al. [27], Metzler and Klafter [14], Mainardi et
al. [10]. The results obtained in [6] are complemented in [10], where the
space-time fractional diffusion equation expressed by the Riesz-Feller space-
fractional derivative and the Caputo time fractional derivative is considered.
The fundamental solution of the corresponding Cauchy problem is found in the
cited paper by means of Fourier-Laplace transform. Namias [17] introduced
the fractional Fourier transform (FRFT) as a way to solve certain classes of
ordinary and partial differential equations appearing in quantum mechanics.
For further detail and properties of FRFT (see [1], [3], [12], [20], [22], [23],
[31] and [32]). In this article we derive the solution of a time-space fractional
diffusion equation by the method of integral transform based on FRFT and
the Laplace transform. The Laplace transform of a function f(t) is defined as

L [f(t) ; s] =

∫ ∞

0

e−st f(t) dt. (1)
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2. Mathematics Prerequisites

For a function u of the class S of a rapidly decreasing test functions on the
real axis R, the Fourier transform is defined as

u∗(k) = F [u(x) ; k] =

∫ +∞

−∞

eikx u(x) dx, k ∈ R (2)

and the inverse Fourier transform has the form

u(x) = F−1 [u∗(k) ; x] =
1

2π

∫ +∞

−∞

e−ikxu∗(k) dk, x ∈ R. (3)

In this paper we adopt the following FRFT as introduced in [8].

Definition 2.1. For a function u ∈ φ(R), the FRFT u∗αof the order α (0 < α
≤ 1) is defined as

u∗α(k) = Fα[u(x) ; k] =

∫ +∞

−∞

eα(k, x) u(x) dx, k ∈ R (4)

where

eα(k, x) =

{
e−i | k |

1
α x , k ≤ 0

ei | k |
1
α x, k > 0 .

(5)

Evidently if α = 1 the kernel (5) reduces to the kernel of (2). The relation
between the FRFT (4) and the classical Fourier transform (2) is given by the
equality

u∗α(k) = Fα[u(x) ; k] = F1[u(x) ; ω] = u∗(ω), (6)

where

ω =

{
− | k |

1
α , k ≤ 0

| k |
1
α , k > 0 .

(7)

Thus, if
Fα[u(x); k] = F1[u(x) ; ω] = φ(ω),

then
u(x) = F−1α [u∗α(k) ; x] = F−11 [φ(ω); x] . (8)

Some properties of FRFT
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Theorem 2.1 [20]. If 0 ≤ α < 1 and u(n)(x) ∈ φ(R), then

Fα[u(n)(x); k] = (− i sign k | k |1/α)n u∗α(k) , k ∈ R.

Theorem 2.2 (Convolution theorem) [20]. If 0 < α ≤ 1 and u(x), v(x) ∈
φ(R), then

Fα[(u ∗ v) (x) ; k] = u∗α(k) v∗α(k),

where

(u ∗ v) (x) =

∫ +∞

−∞

u (x− ξ) v(ξ)dξ,

and

Fα[u(x) ; k] = u∗α(k) , Fα[v(x) ; k] = v∗α(k).

The right-sided Riemann-Liouville fractional integral of order α is defined by
Miller and Ross [15, p.45], Samko et al. [26]:

RL
a D−αt f(t) =

1

Γ(α)

∫ t

a

(t− τ)α−1 f(τ) dτ, (t > a) (9)

where R(α) > 0.

The right-sided Riemann-Liouville fractional derivative of order α is defined
as

RL
a Dα

t f(t) =

(
d

dt

)n

(In−αa f(t)) (Re(α) > 0, n = [Re(α)] + 1), (10)

where [α] represents the integral part of the number α.

The following fractional derivative of order α > 0 is introduced by Caputo
[4] in the form (if m − 1 < α ≤ m, Re(α) > 0, m ∈ N):

c
0D

α
t f(t) =

1

Γ(m− α)

∫ t

0

f(m)(τ) dτ

(t− τ)α+1−m

=
dm f(t)

dtm
, if α = m (11)
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where dmf(t)
dtm

is the m-th derivative of order m of the function f(t) with respect
to t. The Laplace transform of this derivative given in [24] in the form

L {c0D
α
t f(t) ; s} = sα f̄(s) −

m−1∑
r=0

sα−r−1 f(r)( 0 + ), (m− 1 < α ≤ m) . (12)

A generalization of the Riemann-Liouville fractional derivative operator (10)
and Caputo fractional derivative operator (11) is given by Hilfer [7], by intro-
ducing a right-sided fractional derivative operator of two parameters of order
0 < α < 1 and 0 ≤ β ≤ 1 in the form

0D
α,β
a+ f(t) =

(
I
β(1−α)
a+

d

dt

(
I
(1−β) (1−α)
a+ f(t)

))
. (13)

It is interesting to observe that for β = 0, (13) reduces to the classical Riemann-
Liouville fractional derivative operator (10). On the other hand, for β = 1 it
yields the Caputo fractional derivative operator defined by (11). The Laplace
transform formula for this operator is given by Hilfer [7]

L {0D
α,β
0+ f(t) ; s} = sαf̄(s) − sβ(α−1) I

(1−β) (1−α)
0+ f(0 + ), (0 < α < 1), (14)

where the initial value term

I
(1−β) (1−α)
0+ f(0 + ), (15)

involves the Riemann-Liouville fractional integral operator of order (1−β)
(1−α) evaluated in the limit as t → 0+. For more details and properties
of this operator see Tomovski et al. [28]. For generalization of the time-space
diffusion equation, we use the fractional derivative operator of the form

Dα
β u(x) = (1− β) Dα

+ u(x)− βDα
− u(x), 0 < α ≤ 1, β ∈ R (16)

where Dα
+ and Dα

− are the Riemann-Liouville fractional derivatives on the real
axis given as

Dα
+ u(x) =

1

Γ(1− α)

d

dx

∫ x

−∞

(x− τ)α−1 u(τ) dτ

and

Dα
− u(x) = − 1

Γ(1− α)

d

dx

∫ ∞

x

(τ − x)α−1 u(τ) dτ.
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A key role in our consideration is given to a relation established in [8] according
to which for 0 < α ≤ 1, any value of β and a function u(x) ∈ φ(R),

Fα[Dα
βu(x); k] = (− i Cαk) Fα[u(x) ; k] , k ∈ R, (17)

where
Cα = sin (απ/2) + isignk(1− 2β) cos (απ/2).

3. Generalized Fractional Diffusion Equation

In this section we apply the FRFT (4) for the Cauchy-type problem for the
fractional diffusion equation

0D
α,β
t u(x, t) = µDγ+1

η u (x, t), x ∈ R, t > 0 (18)

subject to the initial condition

I
(1−β)(1−α)
0+ u (x, 0 + ) = f(x), (19)

where 0D
α,β
t is the generalized Riemann-Liouville fractional derivative opera-

tor, defined by (13),

I
(1−β)(1−α)
0+ u(x, 0 + ),

involves the Riemann-Liouville fractional integral operator of order (1−β)(1−α)
evaluated in the limit as t → 0+ and Dγ+1

η is the space fractional derivative
(16) we can refer to as generalized Riemann-Liouville space fractional deriva-
tive.

Theorem 3.1. If f(x) ∈ φ(R), 0 < α < 1, 0 < β ≤ 1, 0 < γ ≤ 1 and for
every value of η ∈ R, the Cauchy type problem (18) – (19) is solvable and its
solution u(x,t) is given by the integral

u(x, t) =

∫ +∞

−∞

G(x− ξ, t) f(ξ) dξ, (20)

where

G (x, t) =
1

2π

∫ +∞

−∞

e−iωx tα−β(α−1)−1 Eα,α−β(α−1)(−iµ Cγ+1ω tα) dω.
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Proof. According to (17) it is clear that the application of the FRFT Fγ+1to
the equation (18) and the initial condition (19) results to the equation

0D
α,β
t u∗γ+1(k, t) = (− i µCγ+1k) u∗γ+1 (k, t), (21)

subject to the condition

I
(1−β)(1−α)
0+ u∗γ+1(k, 0 + ) = f∗γ+1(k). (22)

The Laplace transform (1) applied then to (21) and (22) implies

L [u∗γ+1 (k, t) ; s] =
sβ(α−1) f∗γ+1(k)

sα + i µCγ+1k
. (23)

The formula

L−1
[

sα−1

sβ + i µCγ+1k
; t

]
= tβ−α Eβ,β−α+1 (−i µCγ+1k tβ), (24)

enables us to conclude from (23) that

u∗γ+1(k, t) = f∗γ+1 (k) tα−β(α−1)−1 Eα,α−β(α−1) (−iµCγ+1 k tα).

Because of (6) and (7), the latest quantity gives

u∗(ω, t) = f∗(ω) tα−β(α−1)−1 Eα,α−β(α−1)(−i µCγ+1ω tα). (25)

By Theorem 2.2, we obtain from the equation (25) that the solution desired
is indeed given by (20), where

G(x, t) =
1

2π

∫ +∞

−∞

e−iωx tα−β(α−1)−1 Eα,α−β(α−1) (−iµCγ+1ω tα) dω.

4. Special Cases

If we set β = 0, then the Hilfer fractional derivative (13) reduces to a Riemann-
Liouville fractional derivative (10) and the theorem yields the following:
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Corollary 4.1. Consider the Cauchy-type problem for the fractional diffu-
sion equation

RL
0 Dα

t u(x, t) = µDγ+1
η u(x, t), x ∈ R, t > 0, 0 < α < 1, 0 < γ ≤ 1,

(26)
subject to the initial condition

RL
0 Dα−1

t u(x, 0) = f(x), (27)

where RL
0 Dα

t is the Riemann-Liouville fractional derivative operator of order α
defined by (10), [RL

0 Dα−1
t u(x, 0)]means the Riemann-Liouville fractional partial

derivative of u(x,t) with respect to t of order α−1 evaluated at t = 0 and Dγ+1
η

is the space fractional derivative (16) we can refer to as generalized Riemann-
Liouville space fractional derivative. Then for the solution of (26) with initial
condition (27), there holds the formula

u(x, t) =

∫ +∞

−∞

G (x− ξ, t) f(ξ) dξ, (28)

where

G(x, t) =
1

2π

∫ +∞

−∞

e−iωt tα−1 Eα,α (−i µCγ+1ω tα)dω. (29)

Finally, we take β = 1, then the Hilfer fractional derivative (13) reduces to
a Caputo fractional derivative operator (11) and it yields the following result
recently obtained by Nikolova and Boyadjiev [20]:

Corollary 4.2. Consider the Cauchy type problem for the fractional diffusion
equation

c
0D

α
t u(x, t) = µDγ+1

η u(x, t), x ∈ R, t > 0, 0 < α < 1, 0 < γ ≤ 1,
(30)

subject to the initial condition

u(x, 0) = f(x), (31)

where c
0D

α
t is the Caputo fractional derivative operator of order α and Dγ+1

η is
the space fractional derivative (16) we can refer to as generalized Riemann-
Liouville space fractional derivative. Then for the solution of (30) with initial
condition (31), there holds the formula

u(x, t) =

∫ +∞

−∞

G (x− ξ, t)φ(ξ) dξ, (32)
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where

G (x, t) =
1

2π

∫ +∞

−∞

e−iωx Eα(−iµCγ+1ω tα)dω. (33)
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