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Abstract

Recently the stability of the quadratic functional equation f(x+y)+
f(x−y) = 2f(x)+2f(y) was proved in the earlier works. In this article,
we prove the generalized Hyers-Ulam stability of the pexiderial func-
tional equation f(x+y)+f(x−y) = 2g(x)+2g(y) in non-Archimedean
normed spaces.
The concept of Hyers-Ulam-Rassias stability originated from Th. M.
Rassias stability theorem that appeared in his paper: On the stability
of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72
(1978), 297-300.
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1. Introduction

The stability problem of functional equations originated from a question of
Ulam [24] concerning the stability of group homomorphisms. Hyers [7] gave
a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers’ Theorem was generalized by Th. M. Rassias [18] for linear mappings
by considering an unbounded Cauchy difference.

Theorem 1.1. (Th.M. Rassias) Let f : E → E ′ be a mapping from a normed
vector space E into a Banach space E ′ subject to the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ E, where ε and p are constants with ε > 0 and 0 ≤ p < 1. Then
the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and L : E → E ′ is the unique additive mapping which
satisfies

‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ E. Also, if for each x ∈ E the function f(tx) is continuous in
t ∈ R, then L is R-linear.

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the
quadratic functional equation is said to be a quadratic mapping. The Hyers-
Ulam stability of the quadratic functional equation was proved by Skof [23]
for mappings f : X → Y , where X is a normed space and Y is a Banach
space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant
domain X is replaced by an Abelian group. Czerwik [3] proved the Hyers-
Ulam stability of the quadratic functional equation.
The stability problems of several functional equations have been extensively
investigated by a number of authors, and there are many interesting results
concerning this problem (see also [1], [5],[10]–[22]).

In 1897, Hensel [6] has introduced a normed space which does not have
the Archimedean property. It turned out that non-Archimedean spaces have
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many nice applications (see [4],[8],[9],[15]).
In this paper, we consider the following Pexider functional equation

f(x+ y) + f(x− y) = 2g(x) + 2g(y) (1.1)

and prove the Hyers-Ulam-Rassias stability of the functional equation (1.1) in
non-Archimedean normed spaces.

2. Preliminary

Definition 2.1. By a non-Archimedean field we mean a field K equipped
with a function(valuation) |.| : K → [0,∞) such that for all r, s ∈ K, the
following conditions hold:
(i) |r| = 0 if and only if r = 0
(ii) |rs| = |r||s|
(iii) |r + s| ≤ max{|r|, |s|}.

Definition 2.2. Let X be a vector space over a scalar field K with a
non-Archimedean non-trivial valuation |.| . A function ||.|| : X → R is a non-
Archimedean norm (valuation) if it satisfies the following conditions:
(i) ||x|| = 0 if and only if x = 0
(ii) ||rx|| = |r|||x|| (r ∈ K, x ∈ X)
(iii) The strong triangle inequality( ultrametric); namely

||x+ y|| ≤ max{||x||, ||y||}. x, y ∈ X

Then (X, ||.||) is called a non-Archimedean space. Due to the fact that

||xn − xm|| ≤ max{||xj+1 − xj|| : m ≤ j ≤ n− 1} (n > m)

Definition 2.3. A sequence {xn} is Cauchy if and only if {xn+1 − xn} con-
verges to zero in a non-Archimedean space. By a complete non-Archimedean
space we mean one in which every Cauchy sequence is convergent. In [1], the
authors investigated stability of approximate additive mappings f : Qp → R.
They showed if f : Qp → R is a continuous mapping for which there exists a
fixed ε such that ||f(x + y) − f(x) − f(y)|| ≤ ε for all x, y ∈ Qp, then there
exists a unique additive mapping T : Qp → R such that |f(x)− T (x)| ≤ ε for
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all x ∈ Qp.
In this paper, we solve the stability problem for the functional equations

f(x+ y) + f(x− y) = 2g(x) + 2g(y)

when the unknown functions are with values in a non-Archimedean space, in
particular in the field of p-adic numbers.

3. Non-Archimedean Stability of Functional

Equation (1.1)

Throughout this section, using direct method, we prove the generalized Hyers-
Ulam stability of the functional equation (1.1) in non-Archimedean normed
spaces.
In the rest of this paper, we assume that H is an additive semigroup and X
is a complete non-Archimedean space.

Theorem 3.1. Let ψ : H ×H → [0,+∞) be a function such that

lim
n→∞

ψ(2nx, 2ny)

|4|n
= 0 (3.1)

for all x, y ∈ H and let for each x ∈ H the limit

Ψ(x) = lim
n→∞

max

{
max

{
ψ(2kx, 2kx)

|4|k
,
|2|ψ(2kx, 0)

|4|k

} ∣∣∣ 0 ≤ k < n

}
(3.2)

exists. Suppose that f, g : H → X are mappings with f(0) = g(0) = 0 and
satisfying the following inequality

||f(x+ y) + f(x− y)− 2g(x)− 2g(y)|| ≤ ψ(x, y) (3.3)

for all x ∈ X. Then there exists a mapping T : H → X such that

||f(x)− T (x)|| ≤ 1

|4|
Ψ(x) (3.4)

and

||g(x)− T (x)|| ≤ max

{
1

|4|
Ψ(x),

1

|2|
ψ(x, 0)

}
. (3.5)
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for all x ∈ X. Moreover, if

lim
j→∞

lim
n→∞

max

{
max

{
ψ(2kx, 2kx)

|4|k
,
|2|ψ(2kx, 0)

|4|k

}
, j ≤ k < n+ j

}
= 0

(3.6)
then T is the unique mapping satisfying (3.4) and (3.5).

Proof. Putting y = 0 in (3.3), we get

||f(x)− g(x)|| ≤ ψ(x, 0)

|2|
. (3.7)

Substituting y = x in (3.3), we have∥∥∥∥f(2x)

4
− g(x)

∥∥∥∥ ≤ ψ(x, x)

|4|
. (3.8)

So ∥∥∥∥f(2x)

4
− f(x)

∥∥∥∥ ≤ max

{
ψ(x, 0)

|2|
,
ψ(x, x)

|4|

}
(3.9)

for all x ∈ H. Replacing x by 2n−1x in (3.9) and dividing both sides by 4n−1,
we get∥∥∥∥f(2nx)

4n
− f(2n−1x)

4n−1

∥∥∥∥ ≤ max

{
ψ(2n−1x, 2n−1x)

|4|n
,
|2|ψ(2n−1x, 0)

|4|n

}
(3.10)

It follows from (3.1) and (3.10) that the sequence
{

f(2nx)
4n

}
is a Cauchy se-

quence. SinceX is complete, so
{

f(2nx)
4n

}
is convergent. Set T (x) := limn→∞

f(2nx)
4n

.

Using induction we see that∥∥∥∥f(2nx)

4n
− f(x)

∥∥∥∥ ≤ 1

|4|
max

{
max

{
ψ(2kx, 2kx)

|4|k
,
|2|ψ(2kx, 0)

|4|k

} ∣∣∣ 0 ≤ k < n

}
.

(3.11)
It’s clear that (3.11) holds for n = 1 by (3.9). Now, if (3.11) holds for every
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0 ≤ k < n− 1, we obtain∥∥∥∥f(2nx)

4n
− f(x)

∥∥∥∥
=

∥∥∥∥f(2nx)

4n
± f(2n−1x)

4n−1 − f(x)

∥∥∥∥
≤ max

{∥∥∥∥f(2nx)

4n
− f(2n−1x)

4n−1

∥∥∥∥ ,

∥∥∥∥f(2n−1x)

4n−1 − f(x)

∥∥∥∥}
≤ max

{
max

{
ψ(2n−1x, 2n−1x)

|4|n
,
|2|ψ(2n−1x, 0)

|4|n

}
,

1

|4|
max

{
max

{
ψ(2kx, 2kx)

|4|k
,
|2|ψ(2kx, 0)

|4|k
∣∣∣0 ≤ k < n− 1

}}}
≤ 1

|4|
max

{
max

{
ψ(2kx, 2kx)

|4|k
,
|2|ψ(2kx, 0)

|4|k

} ∣∣∣ 0 ≤ k < n

}
.

So for all n ∈ N and all x ∈ H, (3.11) holds. By taking n to approach infinity
in (3.11) and using (3.2) one obtains (3.4). On the other hand, by (3.7), we
obtain

||g(x)− T (x)|| ≤ max{||g(x)− f(x)||, ||f(x)− T (x)||}

≤ max

{
1

|4|
Ψ(x),

1

|2|
ψ(x, 0)

}
,

If S be another mapping satisfies (3.4) and (3.5), then for all x ∈ H, we get

||T (x)− S(x)||

= lim
j→∞

∥∥∥∥T (2jx)

4j
− S(2jx)

4j

∥∥∥∥
≤ lim

j→∞
max

{∥∥∥∥T (2jx)

4j
− f(2jx)

4j

∥∥∥∥ ,

∥∥∥∥f(2jx)

4j
− S(2jx)

4j

∥∥∥∥}
≤ 1

|4|
lim
j→∞

lim
n→∞

max

{
max

{
ψ(2kx, 2kx)

|4|k
,
|2|ψ(2kx, 0)

|4|k

} ∣∣∣ j ≤ k < n+ j

}
= 0.

Therefore T = S. This completes the proof.
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Corollary 3.1. Let λ : [0,∞)→ [0,∞) be a function satisfying

λ(|2|t) ≤ λ(|2|)λ(t) (t ≥ 0), λ(|2|) < |4|

Let δ > 0, H be a normed space and let f, g : H → X are mappings with
f(0) = g(0) = 0 and satisfying

||f(x+ y) + f(x− y)− 2g(x)− 2g(y)|| ≤ δ(λ(||x||) + λ(||y||))

for all x, y ∈ H. Then there exists a unique mapping T : H → X such that

||f(x)− T (x)|| ≤ 2δλ(||x||)
|4|

and

||g(x)− T (x)|| ≤ max

{
2δλ(||x||)
|4|

,
δλ(||x||)
|2|

}
for all x ∈ H.

Proof. Defining ψ : H2 → [0,∞) by ψ(x, y) := δ(λ(||x||) + λ(||y||)), then we
have

lim
n→∞

ψ(2nx, 2ny)

|4|n
≤ lim

n→∞

[
λ(|2|)
|4|

]n
ψ(x, y) = 0 (3.12)

for all x, y ∈ H. On the other hand

Ψ(x) = lim
n→∞

max

{
max

{
ψ(2kx, 2kx)

|4|k
,
|2|ψ(2kx, 0)

|4|k

} ∣∣∣0 ≤ k < n

}
= max{ψ(x, x), |2|ψ(x, 0)}

exists for all x ∈ H.
Also

lim
j→∞

lim
n→∞

max

{
max

{
ψ(2kx, 2ky)

|4|k
,
ψ(2kx, 0)

|4|k

} ∣∣∣ j ≤ k < n+ j

}
= 0.

(3.13)
Applying Theorem 3.1, we conclude desired result.

Corollary 3.2. Let λ : [0,∞)→ [0,∞) be a function satisfying

λ(|2|t) ≤ λ(|2|)λ(t) (t ≥ 0), λ(|2|) < |4|
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Let δ > 0, H be a normed space and let f, g : H → X be mappings with
f(0) = g(0) = 0 and satisfying

||f(x+ y) + f(x− y)− 2g(x)− 2g(y)|| ≤ δ{λ(||x||).λ(||y||)}

for all x, y ∈ H. Then there exists a unique mapping T : H → X such that

||f(x)− T (x)|| ≤ δ(λ(||x||))2

|4|
(3.14)

and

||g(x)− T (x)|| ≤ δ(λ(||x||))2

|4|
(3.15)

for all x ∈ H.

Proof. Defining ψ : H ×H → [0,+∞) by ψ(x, y) := δ{λ(||x||).λ(||y||)}
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[5] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of ap-
proximately additive mappings, J. Math. Anal. Appl., 184 no. 3 (1994),
431-436.

[6] K. Hensel, Ubereine news Begrundung der Theorie der algebraischen
Zahlen, Jahresber. Deutsch. Math. Verein, 6 (1897), 83-88.



Hyers-Ulam-Rassias Stability of A Pexider Functional Equation 135

[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat.
Acad. Sci. U.S.A., 27 (1941), 222-224.

[8] A. K. Katsaras and A. Beoyiannis, Tensor products of non-Archimedean
weighted spaces of continuous functions, Georgian Math. J., 6 no. 1
(1999), 33-44.

[9] A. Khrennikov, Non-Archimedean Analysis: quantum paradoxes, dynami-
cal systems and biological models, Mathematics and its Applications, 427.
Kluwer Academic Publishers, Dordrecht, 1997.

[10] D. Mihet and V. Radu, On the stability of the additive Cauchy functional
equation in random normed spaces, Journal of Mathematical Analysis and
Applications, 343 (2008), 567-572.

[11] A. K. Mirmostafaee, M. Mirzavaziri, and M. S. Moslehian, Fuzzy stability
of the Jensen functional equation, Fuzzy Sets and Systems, 159 no. 6
(2008), 730-738.

[12] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-
Rassias theorem, Fuzzy Sets and Systems, 159 no. 6 (2008), 720-729.

[13] Alireza Kamel Mirmostafaee, Approximately Additive Mappings in Non-
Archimedean Normed Spaces, Bull. Korean Math. Soc., 46 no. 2 (2009),
387-400.

[14] Abbas Najati and Asghar Rahimi, Homomorphisms Between C∗-Algebras
and Thier Stabilities, Acta Universitatis Apulensis, no. 19 (2009).

[15] P. J. Nyikos, On some non-Archimedean spaces of Alexandrof and
Urysohn, Topology Appl., 91 (1999), 1-23.

[16] Choonkil Park, Majid Eshaghi Gordji , and Abbas Najati, General-
ized Hyers-Ulam stability of an AQCQ- functional equation in non-
Archimedean Banach spaces, J. Nonlinear Sci. Appl., 3 no. 4 (2010),
272-281.

[17] C. Park, Fuzzy stability of a functional equation associated with inner
product spaces, Fuzzy set and sysyems, 160 (2009), 1632-1642.



136 Hassan Azadi Kenary

[18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces,
Proc. Amer. Math. Soc., 72 no. 2 (1978), 297-300.

[19] R. Saadati and C. Park, Non-Archimedean L-fuzzy normed spaces and
stability of functional equations (in press).

[20] R. Saadati, M. Vaezpour , and Y. J. Cho, A note to paper “On the stability
of cubic mappings and quartic mappings in random normed spaces”, J.
Ineq. Appl., Volume 2009, Article ID 214530, doi: 10.1155/2009/214530.

[21] Reza Saadati, M. M. Zohdi, and S. M. Vaezpour, Nonlinear L-Random
Stability of an ACQ Functional Equation, J. Ineq. Appl., Volume 2011,
Article ID 194394, 23 pages, doi:10.1155/2011/194394.

[22] M. Sal Moslehian and Th. M. Rassias, Stability of functional equations
in non- Archimedean spaces, Appl. Anal. Discrete Math., 1 no. 2 (2007),
325-334.

[23] F. Skof, Local properties and approximation of operators, Rend. Sem.
Mat. Fis. Milano 53 (1983), 113-129.

[24] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John
Wiley and Sons, 1964.


