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Abstract

Recently the stability of the quadratic functional equation f(z+y)+

flz—y) =2f(x)+2f(y) was proved in the earlier works. In this article,
we prove the generalized Hyers-Ulam stability of the pexiderial func-
tional equation f(z+vy)+ f(z—y) = 2¢9(z) +2¢(y) in non-Archimedean
normed spaces.
The concept of Hyers-Ulam-Rassias stability originated from Th. M.
Rassias stability theorem that appeared in his paper: On the stability
of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72
(1978), 297-300.
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1. Introduction

The stability problem of functional equations originated from a question of
Ulam [24] concerning the stability of group homomorphisms. Hyers [7] gave
a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers’ Theorem was generalized by Th. M. Rassias [18] for linear mappings
by considering an unbounded Cauchy difference.

Theorem 1.1. (Th.M. Rassias) Let f : E— E' be a mapping from a normed
vector space E into a Banach space E' subject to the inequality

1z +y) = f@) = F)ll < e(ll]” + llyl”)

for all xz,y € E, where € and p are constants with € >0 and 0 < p < 1. Then

the limat on
L(z) = lim f(2"r)

n—00 on

exists for all v € E and L : E — E' is the unique additive mapping which

satisfies )
€
15@) ~ L@ < 5o

for all x € E. Also, if for each x € E the function f(tx) is continuous in
t € R, then L is R-linear.

[

The functional equation

flx+y)+ flr—y)=2f(x)+2f(y)

is called a quadratic functional equation. In particular, every solution of the
quadratic functional equation is said to be a quadratic mapping. The Hyers-
Ulam stability of the quadratic functional equation was proved by Skof [23]
for mappings f : X — Y, where X is a normed space and Y is a Banach
space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant
domain X is replaced by an Abelian group. Czerwik [3] proved the Hyers-
Ulam stability of the quadratic functional equation.
The stability problems of several functional equations have been extensively
investigated by a number of authors, and there are many interesting results
concerning this problem (see also [1], [5],[10]-[22]).

In 1897, Hensel [6] has introduced a normed space which does not have
the Archimedean property. It turned out that non-Archimedean spaces have
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many nice applications (see [4],[8],[9],[15]).
In this paper, we consider the following Pexider functional equation

flx+y) + flz—y) = 2g9(x) +29(y) (1.1)

and prove the Hyers-Ulam-Rassias stability of the functional equation (1.1) in
non-Archimedean normed spaces.

2. Preliminary

Definition 2.1. By a non-Archimedean field we mean a field K equipped
with a function(valuation) |.| : K — [0,00) such that for all r,s € K, the
following conditions hold:

(i) |r] =0 if and only if r =0

(ii) |rs| = |rlls]

(1ii) |r + s| < max{|r|,|s|}.

Definition 2.2. Let X be a vector space over a scalar field K with a
non-Archimedean non-trivial valuation |.| . A function ||.|| : X — R is a non-
Archimedean norm (valuation) if it satisfies the following conditions:

(i) ||z||=0 if and only if =0

(@) |lrzf| = [r[ll2|] (r € K,z € X)

(737) The strong triangle inequality( ultrametric); namely

|z +yll < mazffz]], [[yll}. zyeX
Then (X, [|.||) is called a non-Archimedean space. Due to the fact that
|20 = 2| < maz{lzjia — 25l :m <j<n—1}  (n>m)

Definition 2.3. A sequence {z,} is Cauchy if and only if {z,,+1 — =, } con-
verges to zero in a non-Archimedean space. By a complete non-Archimedean
space we mean one in which every Cauchy sequence is convergent. In [1], the
authors investigated stability of approximate additive mappings f : Q, — R.
They showed if f : Q, — R is a continuous mapping for which there exists a
fixed € such that ||f(x +y) — f(z) — f(y)|| < e for all z,y € Q,, then there
exists a unique additive mapping 7" : Q, — R such that |f(z) — T'(x)| < ¢ for
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all x € Q.

In this paper, we solve the stability problem for the functional equations

flx+y)+ flz —y) =29(x) +29(y)

when the unknown functions are with values in a non-Archimedean space, in
particular in the field of p-adic numbers.

3. Non-Archimedean Stability of Functional
Equation (1.1)

Throughout this section, using direct method, we prove the generalized Hyers-
Ulam stability of the functional equation (1.1) in non-Archimedean normed
spaces.

In the rest of this paper, we assume that H is an additive semigroup and X
is a complete non-Archimedean space.

Theorem 3.1. Let ¢ : H x H — [0,+00) be a function such that

2Mx, 2"

n—00 |4|”

=0 (3.1)

for all z,y € H and let for each x € H the limit

U(z) = lim maz {maa: {w(%’zkx), |2|¢(2kx’0)} ( 0<k< n} (3.2)

n—oo 4% [4]*

exists. Suppose that f,g : H — X are mappings with f(0) = ¢g(0) = 0 and
satisfying the following inequality

1 f(z+y) + flz—y) —29(x) —29(y)|] < ®(z,y) (3.3)

for all x € X. Then there exists a mapping T : H — X such that
1
1f(z) = T(2)]] < m‘lf(w) (3.4)

and
1

lg(a) - T(@)]] < max {ﬁwx), e o>} . (3.5)
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for all x € X. Moreover, if

(24, 2%) 22t 0)
aF R

lim lim maz {ma:c {

J—00 n—00

} ,j§k<n+j}:0

then T s the unique mapping satisfying (3.4) and (3.5). 0
Proof. Putting y = 0 in (3.3), we get
I(a) = gtal] < A5 (3.7
Substituting y = x in (3.3), we have
s
So
e s T

for all z € H. Replacing z by 2" 'z in (3.9) and dividing both sides by 4",
we get

Smw{ﬂ%ﬁgﬁ%@)MMi;am} 5.10)

It follows from (3.1) and (3.10) that the sequence {M} is a Cauchy se-

4TL
quence. Since X is complete, so {m} is convergent. Set T'(z) := lim,, oo ! (i:x).

Hf (2"z)  f(2"'x)
An An-1

4n
Using induction we see that

1 P(2kx, 2%x) |2/ (2Fx, 0
§mmax{max{ [ , [P )}’0§k<n}.
(3.11)

It’s clear that (3.11) holds for n = 1 by (3.9). Now, if (3.11) holds for every

— f(z)

H f (z:fﬂ)
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0 <k <n-—1, we obtain

Ll

N L B

S (LT L Y
Sm{m (pronrs pue-ao)
i - )y
e R e

So for alln € N and all x € H, (3.11) holds. By taking n to approach infinity
in (3.11) and using (3.2) one obtains (3.4). On the other hand, by (3.7), we

obtain
maz{|lg(x) = f@)[, [/ (x) = T(=)[|}
1 1
max U(x), =(z, 0)}
{ 14| 12
If S be another mapping satisfies (3.4) and (3.5), then for all z € H, we get

IT(x) = S(@)l|
H T(2ja:) S(Qj:c)

lg(z) = T(2)]]

IN

IN

= lim
]—>OO

(2z)  S(2z)

4 4 }

¢(2’“m,2’%) 12[¢(252,0) | . :
< — |4| jli%oylll)xgoma:c{max{ [ , " ‘j§k<n+j

< lim max
]*)OO

)

{H (z) _ m)

= 0.

Therefore 7' = S. This completes the proof.
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Corollary 3.1. Let A : [0,00) — [0,00) be a function satisfying
A(12[8) < A2DAG) - (£=0),  A([2]) < 4]

Let 6 > 0, H be a normed space and let f,g : H — X are mappings with
f(0) = g(0) = 0 and satisfying

1f(x+y) + flz —y) = 29(x) = 29(»)[] < SAl]]]) + Allyl])

for all x,y € H. Then there exists a unique mapping T : H — X such that

20\
1f(z) = T(x)]| < #
and
lg(x) = T(x)]| < magy{%}‘(”xm’ M(me}
14| 2]
for all x € H.
Proof. Defining ¢ : H? — [0,00) by ¢(2,y) := d(A(l[z][) + A([lyl])), then we
have
lim % < lim {%} Hay) =0 -

for all z,y € H. On the other hand

U(z) = lim maz {mam {1@(2%’2%) , 21922, 0) } ‘0 <k< n}

. [4]* 4%

= max{(z, ), 2| (x, 0)}

exists for all z € H.
Also

lim lim max
J—00 N—+00

{mm {¢(2kx, oy} (2kz,0)

[ T }‘j§k<n—|—j}:0.

(3.13)
Applying Theorem 3.1, we conclude desired result.

Corollary 3.2. Let A : [0,00) — [0,00) be a function satisfying

A(2[E) < A(2DAE) - (E=0),  A(2]) <[4
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Let 6 > 0, H be a normed space and let f,g : H — X be mappings with
f(0) = g(0) = 0 and satisfying

1F(z +y) + [z —y) = 29(z) = 29(y)I| < S{AI2[D)-Ally[])}

for all x,y € H. Then there exists a unique mapping T : H — X such that

1f(2) - T(@)]] < W (3.14)
and SO0 )

lg(z) - T(@)]| < % (3.15)
forall x € H.

Proof. Defining ¢ : H x H — [0, +00) by ¢(x,y) == 6{A(||2[])-A(lly[])}
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