Hyers-Ulam-Rassias Stability of A Pexider Functional Equation In Non-Archimedean Spaces *

Hassan Azadi Kenary ${ }^{\dagger}$
Department of Mathematics, College of Sciences, Yasouj University, Yasouj 75914-353, Iran

Received April 12, 2010, Accepted January 13, 2012.

Abstract

Recently the stability of the quadratic functional equation $f(x+y)+$ $f(x-y)=2 f(x)+2 f(y)$ was proved in the earlier works. In this article, we prove the generalized Hyers-Ulam stability of the pexiderial functional equation $f(x+y)+f(x-y)=2 g(x)+2 g(y)$ in non-Archimedean normed spaces. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

Keywords and Phrases: Hyers-Ulam stability, Non-Archimedean normed spaces

[^0]
1. Introduction

The stability problem of functional equations originated from a question of Ulam [24] concerning the stability of group homomorphisms. Hyers [7] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Th. M. Rassias [18] for linear mappings by considering an unbounded Cauchy difference.

Theorem 1.1. (Th.M. Rassias) Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $0 \leq p<1$. Then the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies

$$
\|f(x)-L(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E$. Also, if for each $x \in E$ the function $f(t x)$ is continuous in $t \in \mathbb{R}$, then L is \mathbb{R}-linear.

The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The HyersUlam stability of the quadratic functional equation was proved by Skof [23] for mappings $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik [3] proved the HyersUlam stability of the quadratic functional equation.
The stability problems of several functional equations have been extensively investigated by a number of authors, and there are many interesting results concerning this problem (see also [1], [5],[10]-[22]).

In 1897, Hensel [6] has introduced a normed space which does not have the Archimedean property. It turned out that non-Archimedean spaces have
many nice applications (see [4],[8],[9],[15]).
In this paper, we consider the following Pexider functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 g(x)+2 g(y) \tag{1.1}
\end{equation*}
$$

and prove the Hyers-Ulam-Rassias stability of the functional equation (1.1) in non-Archimedean normed spaces.

2. Preliminary

Definition 2.1. By a non-Archimedean field we mean a field K equipped with a function(valuation) $||:. K \rightarrow[0, \infty)$ such that for all $r, s \in K$, the following conditions hold:
(i) $|r|=0$ if and only if $r=0$
(ii) $|r s|=|r||s|$
(iii) $|r+s| \leq \max \{|r|,|s|\}$.

Definition 2.2. Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valuation |.| . A function $\|\|:. X \rightarrow R$ is a nonArchimedean norm (valuation) if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$
(ii) $\|r x\|=|r|\|x\| \quad(r \in K, x \in X)$
(iii) The strong triangle inequality (ultrametric); namely

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\} . \quad x, y \in X
$$

Then $(X,\|\|$.$) is called a non-Archimedean space. Due to the fact that$

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: m \leq j \leq n-1\right\} \quad(n>m)
$$

Definition 2.3. A sequence $\left\{x_{n}\right\}$ is Cauchy if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in a non-Archimedean space. By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent. In [1], the authors investigated stability of approximate additive mappings $f: \mathbb{Q}_{p} \rightarrow \mathbb{R}$. They showed if $f: \mathbb{Q}_{p} \rightarrow \mathbb{R}$ is a continuous mapping for which there exists a fixed ε such that $\|f(x+y)-f(x)-f(y)\| \leq \varepsilon$ for all $x, y \in \mathbb{Q}_{p}$, then there exists a unique additive mapping $T: \mathbb{Q}_{p} \rightarrow \mathbb{R}$ such that $|f(x)-T(x)| \leq \varepsilon$ for
all $x \in \mathbb{Q}_{p}$.
In this paper, we solve the stability problem for the functional equations

$$
f(x+y)+f(x-y)=2 g(x)+2 g(y)
$$

when the unknown functions are with values in a non-Archimedean space, in particular in the field of p-adic numbers.

3. Non-Archimedean Stability of Functional Equation (1.1)

Throughout this section, using direct method, we prove the generalized HyersUlam stability of the functional equation (1.1) in non-Archimedean normed spaces.
In the rest of this paper, we assume that H is an additive semigroup and X is a complete non-Archimedean space.

Theorem 3.1. Let $\psi: H \times H \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi\left(2^{n} x, 2^{n} y\right)}{|4|^{n}}=0 \tag{3.1}
\end{equation*}
$$

for all $x, y \in H$ and let for each $x \in H$ the limit

$$
\begin{equation*}
\Psi(x)=\lim _{n \rightarrow \infty} \max \left\{\left.\max \left\{\frac{\psi\left(2^{k} x, 2^{k} x\right)}{|4|^{k}}, \frac{|2| \psi\left(2^{k} x, 0\right)}{|4|^{k}}\right\} \right\rvert\, 0 \leq k<n\right\} \tag{3.2}
\end{equation*}
$$

exists. Suppose that $f, g: H \rightarrow X$ are mappings with $f(0)=g(0)=0$ and satisfying the following inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 g(x)-2 g(y)\| \leq \psi(x, y) \tag{3.3}
\end{equation*}
$$

for all $x \in X$. Then there exists a mapping $T: H \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{|4|} \Psi(x) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\|g(x)-T(x)\| \leq \max \left\{\frac{1}{|4|} \Psi(x), \frac{1}{|2|} \psi(x, 0)\right\} . \tag{3.5}
\end{equation*}
$$

for all $x \in X$. Moreover, if

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\max \left\{\frac{\psi\left(2^{k} x, 2^{k} x\right)}{|4|^{k}}, \frac{|2| \psi\left(2^{k} x, 0\right)}{|4|^{k}}\right\}, j \leq k<n+j\right\}=0 \tag{3.6}
\end{equation*}
$$

then T is the unique mapping satisfying (3.4) and (3.5).
Proof. Putting $y=0$ in (3.3), we get

$$
\begin{equation*}
\|f(x)-g(x)\| \leq \frac{\psi(x, 0)}{|2|} \tag{3.7}
\end{equation*}
$$

Substituting $y=x$ in (3.3), we have

$$
\begin{equation*}
\left\|\frac{f(2 x)}{4}-g(x)\right\| \leq \frac{\psi(x, x)}{|4|} \tag{3.8}
\end{equation*}
$$

So

$$
\begin{equation*}
\left\|\frac{f(2 x)}{4}-f(x)\right\| \leq \max \left\{\frac{\psi(x, 0)}{|2|}, \frac{\psi(x, x)}{|4|}\right\} \tag{3.9}
\end{equation*}
$$

for all $x \in H$. Replacing x by $2^{n-1} x$ in (3.9) and dividing both sides by 4^{n-1}, we get

$$
\begin{equation*}
\left\|\frac{f\left(2^{n} x\right)}{4^{n}}-\frac{f\left(2^{n-1} x\right)}{4^{n-1}}\right\| \leq \max \left\{\frac{\psi\left(2^{n-1} x, 2^{n-1} x\right)}{|4|^{n}}, \frac{|2| \psi\left(2^{n-1} x, 0\right)}{|4|^{n}}\right\} \tag{3.10}
\end{equation*}
$$

It follows from (3.1) and (3.10) that the sequence $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ is a Cauchy sequence. Since X is complete, so $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ is convergent. Set $T(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}}$. Using induction we see that

$$
\begin{equation*}
\left\|\frac{f\left(2^{n} x\right)}{4^{n}}-f(x)\right\| \leq \frac{1}{|4|} \max \left\{\left.\max \left\{\frac{\psi\left(2^{k} x, 2^{k} x\right)}{|4|^{k}}, \frac{|2| \psi\left(2^{k} x, 0\right)}{|4|^{k}}\right\} \right\rvert\, 0 \leq k<n\right\} \tag{3.11}
\end{equation*}
$$

It's clear that (3.11) holds for $n=1$ by (3.9). Now, if (3.11) holds for every
$0 \leq k<n-1$, we obtain

$$
\begin{aligned}
& \left\|\frac{f\left(2^{n} x\right)}{4^{n}}-f(x)\right\| \\
& =\left\|\frac{f\left(2^{n} x\right)}{4^{n}} \pm \frac{f\left(2^{n-1} x\right)}{4^{n-1}}-f(x)\right\| \\
& \leq \max \left\{\left\|\frac{f\left(2^{n} x\right)}{4^{n}}-\frac{f\left(2^{n-1} x\right)}{4^{n-1}}\right\|,\left\|\frac{f\left(2^{n-1} x\right)}{4^{n-1}}-f(x)\right\|\right\} \\
& \leq \max \left\{\max \left\{\frac{\psi\left(2^{n-1} x, 2^{n-1} x\right)}{|4|^{n}}, \frac{|2| \psi\left(2^{n-1} x, 0\right)}{|4|^{n}}\right\}\right. \\
& \left., \frac{1}{|4|} \max \left\{\max \left\{\frac{\psi\left(2^{k} x, 2^{k} x\right)}{|4|^{k}}, \left.\frac{|2| \psi\left(2^{k} x, 0\right)}{|4|^{k}} \right\rvert\, 0 \leq k<n-1\right\}\right\}\right\} \\
& \leq \frac{1}{|4|} \max \left\{\left.\max \left\{\frac{\psi\left(2^{k} x, 2^{k} x\right)}{|4|^{k}}, \frac{|2| \psi\left(2^{k} x, 0\right)}{|4|^{k}}\right\} \right\rvert\, 0 \leq k<n\right\}
\end{aligned}
$$

So for all $n \in N$ and all $x \in H$, (3.11) holds. By taking n to approach infinity in (3.11) and using (3.2) one obtains (3.4). On the other hand, by (3.7), we obtain

$$
\begin{aligned}
\|g(x)-T(x)\| & \leq \max \{\|g(x)-f(x)\|,\|f(x)-T(x)\|\} \\
& \leq \max \left\{\frac{1}{|4|} \Psi(x), \frac{1}{|2|} \psi(x, 0)\right\}
\end{aligned}
$$

If S be another mapping satisfies (3.4) and (3.5), then for all $x \in H$, we get

$$
\begin{aligned}
& \|T(x)-S(x)\| \\
& =\lim _{j \rightarrow \infty}\left\|\frac{T\left(2^{j} x\right)}{4^{j}}-\frac{S\left(2^{j} x\right)}{4^{j}}\right\| \\
& \leq \lim _{j \rightarrow \infty} \max \left\{\left\|\frac{T\left(2^{j} x\right)}{4^{j}}-\frac{f\left(2^{j} x\right)}{4^{j}}\right\|,\left\|\frac{f\left(2^{j} x\right)}{4^{j}}-\frac{S\left(2^{j} x\right)}{4^{j}}\right\|\right\} \\
& \leq \frac{1}{|4|} \lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\left.\max \left\{\frac{\psi\left(2^{k} x, 2^{k} x\right)}{|4|^{k}}, \frac{|2| \psi\left(2^{k} x, 0\right)}{|4|^{k}}\right\} \right\rvert\, j \leq k<n+j\right\} \\
& =0 .
\end{aligned}
$$

Therefore $T=S$. This completes the proof.

Corollary 3.1. Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying

$$
\lambda(|2| t) \leq \lambda(|2|) \lambda(t) \quad(t \geq 0), \quad \lambda(|2|)<|4|
$$

Let $\delta>0, H$ be a normed space and let $f, g: H \rightarrow X$ are mappings with $f(0)=g(0)=0$ and satisfying

$$
\|f(x+y)+f(x-y)-2 g(x)-2 g(y)\| \leq \delta(\lambda(\|x\|)+\lambda(\|y\|))
$$

for all $x, y \in H$. Then there exists a unique mapping $T: H \rightarrow X$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \delta \lambda(\|x\|)}{|4|}
$$

and

$$
\|g(x)-T(x)\| \leq \max \left\{\frac{2 \delta \lambda(\|x \mid\|)}{|4|}, \frac{\delta \lambda(\|x\|)}{|2|}\right\}
$$

for all $x \in H$.
Proof. Defining $\psi: H^{2} \rightarrow[0, \infty)$ by $\psi(x, y):=\delta(\lambda(\|x\|)+\lambda(\|y\|))$, then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi\left(2^{n} x, 2^{n} y\right)}{|4|^{n}} \leq \lim _{n \rightarrow \infty}\left[\frac{\lambda(|2|)}{|4|}\right]^{n} \psi(x, y)=0 \tag{3.12}
\end{equation*}
$$

for all $x, y \in H$. On the other hand

$$
\begin{aligned}
\Psi(x) & =\lim _{n \rightarrow \infty} \max \left\{\left.\max \left\{\frac{\psi\left(2^{k} x, 2^{k} x\right)}{|4|^{k}}, \frac{|2| \psi\left(2^{k} x, 0\right)}{|4|^{k}}\right\} \right\rvert\, 0 \leq k<n\right\} \\
& =\max \{\psi(x, x),|2| \psi(x, 0)\}
\end{aligned}
$$

exists for all $x \in H$.
Also

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\left.\max \left\{\frac{\psi\left(2^{k} x, 2^{k} y\right)}{|4|^{k}}, \frac{\psi\left(2^{k} x, 0\right)}{|4|^{k}}\right\} \right\rvert\, j \leq k<n+j\right\}=0 \tag{3.13}
\end{equation*}
$$

Applying Theorem 3.1, we conclude desired result.
Corollary 3.2. Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying

$$
\lambda(|2| t) \leq \lambda(|2|) \lambda(t) \quad(t \geq 0), \quad \lambda(|2|)<|4|
$$

Let $\delta>0$, H be a normed space and let $f, g: H \rightarrow X$ be mappings with $f(0)=g(0)=0$ and satisfying

$$
\|f(x+y)+f(x-y)-2 g(x)-2 g(y)\| \leq \delta\{\lambda(\|x\|) \cdot \lambda(\|y\|)\}
$$

for all $x, y \in H$. Then there exists a unique mapping $T: H \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{\delta(\lambda(\| x| |))^{2}}{|4|} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\|g(x)-T(x)\| \leq \frac{\delta(\lambda(\|x\|))^{2}}{|4|} \tag{3.15}
\end{equation*}
$$

for all $x \in H$.
Proof. Defining $\psi: H \times H \rightarrow[0,+\infty)$ by $\psi(x, y):=\delta\{\lambda(\| x| |) \cdot \lambda(\|y\|)\}$

References

[1] L. M. Arriola and W. A. Beyer, Stability of the Cauchy functional equation over p-adic fields, Real Anal. Exchange, 31 no. 1 (2005/06), 125-132.
[2] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Mathematicae, 27 (1984), 76-86.
[3] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
[4] D. Deses, On the representation of non-Archimedean objects, Topology Appl., 153 no 5-6 (2005), 774-785.
[5] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 no. 3 (1994), 431-436.
[6] K. Hensel, Ubereine news Begrundung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein, 6 (1897), 83-88.
[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224.
[8] A. K. Katsaras and A. Beoyiannis, Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian Math. J., 6 no. 1 (1999), 33-44.
[9] A. Khrennikov, Non-Archimedean Analysis: quantum paradoxes, dynamical systems and biological models, Mathematics and its Applications, 427. Kluwer Academic Publishers, Dordrecht, 1997.
[10] D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, Journal of Mathematical Analysis and Applications, 343 (2008), 567-572.
[11] A. K. Mirmostafaee, M. Mirzavaziri, and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, 159 no. 6 (2008), 730-738.
[12] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-UlamRassias theorem, Fuzzy Sets and Systems, 159 no. 6 (2008), 720-729.
[13] Alireza Kamel Mirmostafaee, Approximately Additive Mappings in NonArchimedean Normed Spaces, Bull. Korean Math. Soc., 46 no. 2 (2009), 387-400.
[14] Abbas Najati and Asghar Rahimi, Homomorphisms Between C^{*}-Algebras and Thier Stabilities, Acta Universitatis Apulensis, no. 19 (2009).
[15] P. J. Nyikos, On some non-Archimedean spaces of Alexandrof and Urysohn, Topology Appl., 91 (1999), 1-23.
[16] Choonkil Park, Majid Eshaghi Gordji , and Abbas Najati, Generalized Hyers-Ulam stability of an AQCQ- functional equation in nonArchimedean Banach spaces, J. Nonlinear Sci. Appl., 3 no. 4 (2010), 272-281.
[17] C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy set and sysyems, 160 (2009), 1632-1642.
[18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 no. 2 (1978), 297-300.
[19] R. Saadati and C. Park, Non-Archimedean \mathcal{L}-fuzzy normed spaces and stability of functional equations (in press).
[20] R. Saadati, M. Vaezpour, and Y. J. Cho, A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces", J. Ineq. Appl., Volume 2009, Article ID 214530, doi: 10.1155/2009/214530.
[21] Reza Saadati, M. M. Zohdi, and S. M. Vaezpour, Nonlinear L-Random Stability of an ACQ Functional Equation, J. Ineq. Appl., Volume 2011, Article ID 194394, 23 pages, doi:10.1155/2011/194394.
[22] M. Sal Moslehian and Th. M. Rassias, Stability of functional equations in non- Archimedean spaces, Appl. Anal. Discrete Math., 1 no. 2 (2007), 325-334.
[23] F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[24] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley and Sons, 1964.

[^0]: *2010 Mathematics Subject Classification. Primary 39B52, 46S10.
 †E-mail: azadi@mail.yu.ac.ir

