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Abstract

The paper deals with the study of growth of harmonic functions H in
R4 using the LaPlacian type integral operator (and inverse). Moreover,
we have characterized the order and type of H in terms of spherical
harmonic coefficients occurring in spherical harmonic expansions which
have not been studied so far. Our results apply satisfactorily for studing
the time dependent problems in R3.

Keywords and Phrases: Spherical harmonic coefficients, Integral trans-
form, Order and type, Analytic function associate and harmonic functions in
R4.

1. Introduction

The theory in R3 is well-developed. Several authors studied boundary value
problems [7], value distribution and growth and approximation [14,15,17,18,20]
of harmonic functions in R3. Some times it is reasonable and become interest-
ing when we restrict the time dependent problems in R3, it leds to the study
of harmonic functions in R4. There are only a few integral transforms avail-
able for harmonic functions in R4 ( see[6,8,12]). In this paper we study the
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growth of harmonic functions in R4 using the LaPlacian type integral operator
(and inverse) which is an isometry between analytic function of three complex
variables as an associate of harmonic function in R4 on suitable domains of
definition[19].

A function which is harmonic in a neighborhood of origin in R4 can be
expanded as a compactly convergent series

H(r, z, ζ, η) =
∞∑
k=0

Hk(r, z, ζ, η) (1.1)

in the sphere S(r0) : |X| < r0 whose radius is the distance from the origin to
the nearest singularity. Here X be a point in R4 whose spherical coordinates
(r, θ, φ, ϕ),are defined as [7, p.98] with r=|X| and angles 0 ≤ θ ≤ π, 0 ≤ φ <
2π, −2π ≤ ϕ < 2π.

The series (1.1) has an expansion in terms of complete set

Hk(r, z, ζ, η) =
m=k∑
m=−k

n=k∑
n=−k

W k
mna

k
mnH

k
mn(r, z, ζ, η),

k=0,1,2,3,..., of spherical harmonic polynomials [7,p.161].It is given [23,p.123]

Hk
mn(r, z, ζ, η) = r2kY k

mn(z, ζ, η)

Y k
mn(z, ζ, η) = P k

mn(z)ζmηn,

z = cosθ, ζ = exp(iφ), η = exp(iϕ),

with (m,n,k)∈ Ω := {(p, q, r) : −r ≤ p, q ≤ r, r = 0, 1, 2, 3, ...}.TheP k
mn corre-

spond to Jacobi polynomials

P µ,ν
j (z) = 2min−m(wkmn)−1(1− z)(n−m)/2(1 + z)(−n−m)/2P k

mn(z)

(wkmn)−1 = [(k −m)!(k +m)!/(k − n)!(k + n)!]1/2,

where

j = k + (µ+ ν)/2,m = (µ+ ν)/2, η = (ν − µ)/2
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with integer parameters µ = m+ n and ν = m− n[1; 7, p.125].

Let D be a simply connected domain about the origin in R4. A harmonic
functionH ∈ C2(D) is a solution of Laplace’s equation [7, p.494][
1/r3∂r

(
r3∂r + 4/r2

[
∂θθ + ctg(θ)∂θ + 1/ sin2 θ(∂θθ − 2cos(θ)∂φϕ + ∂ϕϕ)

])]
H(X) = 0.

(1.2)

Each harmonic function H is associated with a unique analytic function

h(z1, z2, z3) =
∞∑
k=0

hk(z1, z2, z3)

of three complex variables called the associate of H, where

hk(z1, z2, z3) =
m=k∑
m=−k

n=k∑
n=−k

akmnh
k
mn(z1, z2, z3)

and

hkmn(z1, z2, z3) = zm3 (zk−n1 zk+n
2 )

for (m,n,k) ∈ Ω. The initial domain of definition of h ∈ C3 is

Dε,r0 : |z1| < r2
0/2, |z2| < r2

0/2, 1− ε < |z3| < 1 + ε,

for some sufficiently small positive ε.

Construction of the ascending operator mapping W from analytic function
h(z1, z2, z3) of three complex variables onto harmonic function H(r, z, ζ, η) ∈
R4 begins with the Laplace type integral formulation [7, p.147]

wkmnP
k
mn(z) = 1/2πi

∫
Γ(s)

τ k−n1 τ k+n
2 smds/s. (1.3)

The contour Γ(s) is positively oriented upper semicircle |s|= 1 traversed
from s=-1 to s=1 and (m,n, k) ∈ Ω with generating variables

τ1 = τ1(z, s) = φ+(z)s1/2 + iφ(z)s−1/2
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τ2 = τ2(z, s) = iφ(z)s1/2 + φ+(z)s−1/2, φ±(z) = [(1± (z))/2]1/2

Using (1.3) we can express the spherical harmonics as

Hk = W [hk] = 1/2πi

∫
Γ(s)

hk((r
2/η)1/2τ1, (r

2η)1/2τ2, sζ)ds/s, k = 0, 1, 2, 3....

Therefore the ascending operator W : h→ H be defined as

H(r, z, ζ, η) = W [h(z1, z2, z3)]

= 1/2πi

∫
Γ(s)

h((r2/η)1/2τ1(z, s), (r2η)1/2τ2(z, s), sζ)ds/s.

The inverse operator applies orthogonality of the surface harmonics in
terms of the functions P k

mn[7, p, 161] to define the transform

h(z1, z2, z3) = W−1[H(r, z, ζ, η)]

= 1/(2πi)2

∫
Γ(η)

∫
Γ(ζ)

∫
Γ(z)

H(r, z, ζ, η)[C(σ; τ1, τ2, η)]∗dz
dζ

ζ

dη

η
,

where

[C(σ, τ1, τ2, η) = C((z1, z2/r
2)∗; τ1(z, z∗3ζ), τ2(z, z∗3ζ), (z2/z1)∗].

The symbol * designates the complex conjugate operator. The contour
deformation method [6] produces global reprentations of H and h through
reciprocal transform linking the associated harmonic and analytic function el-
ements. These facts are summarized in

Theorem A. For each function H that is harmonic at origin in sphere S(r0) :
|X| < r0 there is a unique W associated function h of three complex variables
analytic in the disc Dε,ro and conversely.

Using various techniques, the characterizations of order and type in terms
of the coefficients akmn were obtained by Fryant and Shankar [5], Srivastava [20],
Temliakow and others. More direct derivations of order and type for harmonic
functions in R3 were given by Fryant [2,3,4] and Kapoor and Nautiyal [10,11].
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The growth of entire harmonic functions in Rn was considered by Veselovskaya
[22] where order and type were obtained for harmonic functions in terms of
spherical harmonic coefficients. Recently, Kumar[12] studied the growth of
entire harmonic functions in Rn, n > 2 and obtained various characterizations
interms of spherical coefficients and approximation error’s by harmonic poly-
nomials. However, none of them have considered this method and approach
for studying the growth of it in R4. Although, the order and type of entire
harmonic functions was studied in [3] by using Bergmann integral operator as
a principal tool. In this paper we obtain the coefficients characterizations of
order and type of harmonic function H in R4. Our results are different from
all those authors mentioned above.

2. Auxiliary Results

In this section we shall prove some auxiliary results which have been used in
the sequel.

The maximum modulus of associate h ∈ C3 is defined in complex function
theory

M(r1, r2, r3, h) = max(|zi|=ri,i=1,2,3)h(z1, z2, z3), r1 <
r2

0

2
, r2 <

r2
0

2
, 1− ε < r3 < 1 + ε.

The growth of a function h, analytic in Dε,r0 as determined by its maximum
modulus function M(r1, r2, r3, h) can be studied in several different ways. To
measure the growth of h with respect to all the variables simultaneously, the
concept of Dε,r0 order and Dε,r0 type introduced by Juneja and Kapoor[9] have
been used.
Set

MDε,r0
(t, h) = max(r1,r2,r3)∈tDε,r0M(r1, r2, r3, h), 0 < t < 1.

We define the Dε,r0 - order ρDε,r0 (h) of h as

ρDε,r0 (h) = lim sup
t→1

log+ log+MDε,r0
(t, h)

− log(1− t)
(2.1)
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if 0 < ρDε,r0 (h) <∞, the Dε,r0 - type TDε,r0 of h is defined as

TDε,r0 (h) = lim sup
t→1

log+ MDε,r0
(t, h)

(1− t)−ρDε,r0 (h)
. (2.2)

We now prove

Theorem 2.1. Let h(z1, z2, z3) =
∑∞

k=0

∑m=k
m=−k

∑n=k
n=−k a

k
mnh

k
mn(z) be analytic

in the polydisc Dε,r0 and have Dε,r0 order ρDε,r0 (h), 0 ≤ ρDε,r0 (h) ≤ ∞. Then

ρDε,r0 (h)

ρDε,r0 (h) + 1
= lim sup

k1+k2+k3→∞
{log+ log+ akmnr

k1
1 r

k2
2 r

k3
3 / log(k1 + k2 + k3)} (2.3)

where k1 = k − n, k2 = k + n, k3 = m, and left hand side is interpreted as 1 if
ρDε,r0 (h) =∞.

Proof. Let us consider the function β(z1, z2, z3, w) of four complex variables
z1, z2, z3, w defined by

β(z1, z2, z3, w) = h(w(z1, z2, z3)) =
∞∑
k=0

m=k∑
m=−k

n=k∑
n=−k

akmnw
2k+mhkmn(z1, z2, z3)

where |w| < r0. Set

Pλ(z1, z2, z3) =
∞∑
k=0

m=k∑
m=−k

n=k∑
n=−k

akmnh
k
mn(z1, z2, z3),m+ 2k = λ.

Then

β(z1, z2, z3, w) =
∞∑
λ=0

Pλ(z1, z2, z3)wλ

is an analytic function of w in finite disc of radius r0.In view of Cauchy inequal-
ity for the coefficients of a power series of one variable, we get, for 0 < t < 1
and (z1, z2, z3) ∈ Dε,r0 ,



Growth of Harmonic Functions in R4 117

|Pλ(z1, z2, z3)| ≤ max
|w|=tr0

|β(z1, z2, z3, w)|/tλrk11 r
k2
2 r

k3
3 , k1 + k2 + k3 = λ. (2.4)

Now

max
|w|=tr0

|β(z1, z2, z3, w)| ≤ max
|w|=tr0

max
|zi|=ri

|h(w(z1, z2, z3))|

= max
|vi|=tri

|h(v1, v2, v3)|

≤ max
(r∗1 ,r

∗
2 ,r
∗
3)εtDε,r0

M(r∗1, r
∗
2, r
∗
3, h) = MDε,r0

(t, h).

Therefore we have

|Pλ(z1, z2, z3)| ≤
MDε,r0

(t, h)

tλrk11 r
k2
2 r

k3
3

. (2.5)

Since (2.5) holds for every z1, z2, z3 ∈ Dε,r0 , we get

MDε,r0
(r0, Pλ) = max

(r1,r2,r3)εtDε,r0

M(r1, r2, r3, Pλ)

= max
(r1,r2,r3)εtDε,r0

max
|zi|=trii=1,2,3

|Pλ(z1, z2, z3)|

=
MDε,r0

(t, h)

tλrk11 r
k2
2 r

k3
3

.

Thus,for all t, 0 < t < 1, and every positive integer λ,

MDε,r0(r0, Pλ) ≤
MDε,r0(t, h)

tλrk11 r
k2
2 r

k3
3

. (2.6)

Now first letρ(h) ≡ ρDε,r0(h) <∞ by the definition of ρ(h), it follows that
for any ε > 0 and for all 0 < t < 1,

log+MDε,r0(t, h) < (1− t)−ρ(h)−ε

or

MDε,r0(t, h) < exp{(1− t)−ρ(h)−ε}
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using (2.6), we get

MDε,r0(r0, Pλ) < exp{(1− t)−ρ(h)−ε}t−λr−k11 r−k22 r−k33 (2.7)

we now find an upper bound on the coefficients of the polynomial Pλ(z1, z2, z3)
for k1 + k2 + k3 = λ and (r1, r2, r3) ∈ tDε,r0

akmn ≤
M(r1, r2, r3, Pλ)

rk11 , r
k2
2 , r

k3
3

.

Minimizing the right hand side of this inequality for all (r1, r2, r3) ∈ Dε,r0 ,
it follows that, for any m,n,k with k1 + k2 + k3

akmn ≤MDε,r0(r0, Pλ)

combining this inequality with(2.7), we get

akmnr
k1
1 r

k2
2 r

k3
3 ≤ exp{(1− t)−ρ(h)−ε}t−λ. (2.8)

Minimizing the right hand side of(2.8), we have

akmnr
k1
1 r

k2
2 r

k3
3 < exp{(1 + ρ(h) + ε)(

k1 + k2 + k3

ρ(h) + ε
)(ρ(h)+ε)/(ρ(h)+1+ε)}

or

log+ log+(akmnr
k1
1 r

k2
2 r

k3
3 )

log(k1 + k2 + k3)
≤ ρ(h) + ε

ρ(h) + 1 + ε
+ o(1).

Proceeding to limits in above inequality, we obtain

lim sup
k1+k2+k3→∞

{ log+ log+(akmnr
k1
1 r

k2
2 r

k3
3 )

log(k1 + k2 + k3)
} ≤ ρ(h)

ρ(h) + 1
. (2.9)

If ρ(h) =∞, we produced with an arbitrary large number in place of ρ(h) + ε
and get 1 on the right hand side of(2.9).

To prove the reverse inequality, we let
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lim sup
k1+k2+k3→∞

{ log+ log+(akmnr
k1
1 r

k2
2 r

k3
3 )

log(k1 + k2 + k3)
} = α.

For any ε > 0, there exists a nonnegative integer λ(ε) such that, for k1 + k2 +
k3 ≥ λ(ε),

akmnr
k1
1 r

k2
2 r

k3
3 < exp{(k1 + k2 + k3)α+ε}.

This inequality implies for 0 < t < 1,

MDε,r0(t, h) ≤ max(r1,r2,r3)∈Dε,r0

∞∑
k1+k2+k3=0

akmnr
k1
1 r

k2
2 r

k3
3 t

(k1+k2+k3) (2.10)

≤
∑

k1+k2+k3≤λ(ε)

akmnr
k1
1 r

k2
2 r

k3
3 t

(k1+k2+k3)

+
∑

k1+k2+k3>λ(ε)

t(k1+k2+k3) exp(k1 + k2 + k3)α+ε

< c1t
λ(ε) + c2 +

∞∑
λ=0

tλ(1 + λ)3 exp(λ)(α+ε)

where c1 and c2 are constants. Now it can be shown that

F (z1, z2, z3, t)

=
∞∑

k1+k2+k3=0

(1 + k1 + k2 + k3)3 exp(k1 + k2 + k3)α+εzk11 z
k2
2 z

k3
3 t

(k1+k2+k3)

is analytic in finite disc Dε,r0 . The order of F is (α+ε)/(1−α−ε). Therefore, by
the definition of order in three complex variables any ε

′
> 0 and t sufficiently

close to 1,

MDε,r0(t, F ) < exp{(1− t)−((α+ε)/(1−α−ε))+ε′}.

By (2.10), we have

MDε,r0(t, h) < c1t
λ(ε) + c2 +MDε,r0(t, F )
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so that we have t sufficiently close to 1,

MDε,r0(t, h) < c1t
λ(ε) + c2 + exp{(1− t)−(α+ε/(1−α−ε))+ε′}.

Since ε and ε
′

are arbitrary, the above inequality gives that

ρ(h) ≤ α

1− α
or

ρ(h)

ρ(h) + 1
≤ α. (2.11)

Combining (2.9) and (2.11), the proof is completed.

Theorem 2.2. Let h(z1, z2, z3) =
∑∞

k=0

∑k
m=−k

∑k
n=−k a

k
mnh

k
mn(z1, z2, z3) by

analytic in the polydisc Dε,r0, have order ρ(h)(0 < ρ(h) < ∞) and type
TDε,r0 (h)(0 ≤ TDε,r0 (h) ≤ ∞), then

(ρ(h) + 1)ρ(h)+1

ρ(h)ρ(h)
TDε,r0 (h) = lim sup

k1+k2+k3−→∞
{(log+ akmnr

k1
1 r

k2
2 r

k3
3 )ρ(h)+1

(k1 + k2 + k3)ρ(h)
}. (2.12)

Proof. Following the techniques employed in the proof of the Theorem 2.1,
we get

akmnr
k1
1 r

k2
2 r

k3
3 ≤ exp{(T (h) + ε)(1− t)−ρ(h)}t−λ, T (h) ≡ TDε,r0 (h).

Minimizing the right hand side of above inequality, we get

akmnr
k1
1 r

k2
2 r

k3
3 < exp{(T (h) + ε

ρ(h)
)1/(ρ(h)+ε)}(ρ(h) + 1)(k1 + k2 + k3)ρ(h)/(ρ(h)+1)

which gives

(ρ(h) + 1)ρ(h)+1

(ρ(h))ρ(h)
T (h) ≥ lim sup

k1+k2+k3→∞
{(log+(akmnr

k1
1 r

k2
2 r

k3
3 ))ρ(h)+1

(k1 + k2 + k3)ρ(h)
}. (2.13)
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To prove the reverse inequality, let

lim sup
k1+k2+k3→∞

{(log+(akmnr
k1
1 r

k2
2 r

k3
3 ))ρ(h)+1

(k1 + k2 + k3)ρ(h)
} = θ.

By Considering

F
′
(z1, z2, z3, t)

=
∞∑

k1+k2+k3=0

exp{(θ + ε)1/(ρ(h)+1)(k1 + k2 + k3)ρ(h)/(ρ(h)+1)}zk11 z
k2
2 z

k3
3 t

(k1+k2+k3)

in place of F (z1, z2, z3, t)in Theorem 2.1. Now using [9, Lemma 2.2] with
D = ρ(h)/1 + ρ(h) and c = (θ+ ε)1/(ρ(h)+1), we have for all t sufficient close to
1,

logMDε,r0
(t, F

′
) <

(ρ(h)ρ(h))

(ρ(h) + 1)ρ(h)+1
(θ + ε) + 0(1)(1− t)−ρ(h).

Thus, we have

MDε,r0
(t, h) < c1t

λ(ε) + c2 + exp{( (ρ(h))ρ(h)

(ρ(h) + 1)ρ(h)+1
(θ + ε) + 0(1))(1− t)−ρ(h)}

or

T (h) = lim sup
t→1

log+ MDε,r0
(t, h)

(1− t)ρ(h)
≤ (ρ(h))ρ(h)

(ρ(h) + 1)ρ(h)+1
(θ + ε).

Since ε is arbitrary, it follows that

θ ≥ (ρ(h) + 1)ρ(h)+1

(ρ(h))ρ(h)
= T (h). (2.14)

On combining (2.13) and (2.14) we get the required result i.e.,(2.12).

Now if T(h) = 0, then h(z1, z2, z3) is of order at most ρ(h) its growth
(ρ(h), 0). Similarly if T(h) = ∞, its growth (ρ(h),∞) This completes the
proof of the theorem.
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3. Main Results

Theorem 3.1. Let H is harmonic function in R4 with W associate h(z1, z2, z3).
Then orders and types of H and h respectively are equal.

Proof. The nonnegativity and normalization of the measure lead directly
from relation (1.4) to the bound

M(r,H) ≤M(r1, r2, r3, h) (3.1)

where

M(r,H) = max
θ,φ,ϕ

H(r, θ, φ, ϕ), r = |X|, 0 ≤ θ ≤ π, 0 ≤ φ < 2π,−2π < ϕ < 2π.

The inverse relation

h(z1, z2, z3) = W−1[H(r, z, ζ, η)]

leads to the bound

|h(z1, z2, z3)| ≤M(r,H)N(σ), σ = (
(z1, z2)

r

2

)∗

and

N(σ) = max{C(σ; τ1, τ2, η) : |στ 2
1 /η| < 1, |στ 2

2 η| < 1}.

It gives

M(r1, r2, r3, h) =≤M(r,H)N(σ).

For

z1 = εreiε, z2 = εreiε,

we have
M(r1, r2, r3, h) ≤M(ε−1r,H)N(ε2). (3.2)

From the inequalities (3.1) and (3.2) with the definition of order and type
of analytic function h of three complex variables we get the requisite conclu-
sions to complete the proof of the Theorem 3.1.
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Theorem 3.2. Suppose

H(r, z, ζ, η) =
∞∑
k=0

k∑
m=−k

k∑
n=−k

wkmna
k
mnH

k
mn(r, z, ζ, η)

where

lim sup
k1+k2+k3→∞

[wkmna
k
mn]

1
k1+k2+k3 =

1

r0

.

Then the order ρ(H) of H in the sphere S(r0) : |X| < r0 is given

ρ(H)

ρ(H) + 1
= lim sup

k1+k2+k3→∞
{ log+ log+(wkmna

k
mnr

k1+k2+k3
0 )

log(k1 + k2 + k3)
}

and the type T(H) of H in the sphere S(r0) is given by

T (H) =
ρ(H)ρ(H)

(ρ(H) + 1)ρ(H)+1
lim sup

k1+k2+k3→∞
{ log+(wkmna

k
mnr

k1+k2+k3
0 )

(k1 + k2 + k3)ρ(H)

ρ(H)

}ρ(H).

Here k1, k2, k3 are defined as earlier.

Proof. By Theorem A, the harmonic function H in R4 is analytic if the as-
sociate h ∈ C3 is analytic. Now applying Theorem 3.1 with Theorem 2.1 and
2.2 the proof of the theorem is completed.

Acknowledgement. The author is extremely thankful to the learned ref-
eree for giving valuable comments to improve the paper.
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