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Abstract

In this paper, we introduce some types of separation axioms via
ω-open sets, namely ω-regular, completely ω-regular and ω-normal space
and investigate their fundamental properties, relationships and
characterizations. The well-known Urysohn’s Lemma and Tietze
Extension Theorem are generalized to ω-normal spaces. We improve
some known results. Also, some other concepts are generalized and
studied via ω-open sets.
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1. Introduction

Throughout this work, a space will always mean a topological space, (X,=)
and (Y, σ) will denote spaces on which no separation axioms are assumed unless
explicitly stated. The notations Tdis, Tind denote the discrete and indiscrete
topologies and ℘ denotes the usual topology for the set of all real numbers
R. For a subset A of a space (X,=), the closure and the interior of A will
be denoted by ClXA and IntXA (or simply ClA and IntA), respectively. A
point x ∈ X is called a condensation point of A [13, pp. 90] if for each G ∈ =
with x ∈ G, the set G∩A is uncountable. A is called ω-closed [8] if it contains
all its condensation points. The complement of an ω-closed set is called
ω-open. It is well known that a subset U of a space (X,=) is ω-open if and
only if for each x ∈ U , there exists G ∈ = such that x ∈ G and G − U
is countable. The family of all ω-open subsets of a space (X,=) is denoted
by =ω, forms a topology on X finer than =. The ω-closure and ω-interior,
which are defined in the same way as ClA and IntA, and they are denoted
by ωClA and ωIntA, respectively. Several characterizations of ω-closed
subsets were provided in [3, 4, and 5]. A subset A of a space X is called
ω-dense [2] if ωClA = X. Authors in General topology used the notation of
ω-open sets to define some other types of sets, mappings and spaces, till
Al-Hawary [1] and Rao and et al [6] used the nation of ω-open sets in fuzzy
and bitopological spaces, respectively. So we recall the following results and
notions:

Theorem 1.1. [4] If U is ω-open subset of X, then U −C is ω-open for every
countable subset C of X.

Theorem 1.2. [4 and 5] For any space (X,=) and any subset A of X,

1. =ωω = (=ω)ω = =ω.

2. (=A)ω = (=ω)A.

Definition 1.3. [5] A space (X,=) is said to be locally-countable if each point
of X has a countable open neighborhood.
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It is easy to see that

Theorem 1.4. Let (X,=) be a space. Then =ω = Tdis if and only if the space
(X,=) is locally countable.

Definition 1.5. [5] A space X is said to be anti-locally countable if each
non-empty open subset of X is uncountable.

Note that a space (X,=) is anti-locally-countable if and only if (X,=ω) is
so.

Lemma 1.6. [5] If a space (X,=) is anti-locally-countable, then

1. ωClA = ClA, for every ω-open subset A of X.

2. ωIntA = IntA, for every ω-closed subset A of X.

Al-Zoubi in [4] has improved part (1) of the above result, by proving the
following lemma:

Lemma 1.7. [4] If (A,=A) is an anti-locally countable subspace of a space
(X,=), then ωClA = ClA.

Definition 1.8. [2] A space X is said to be an ω-space if every ω-open set is
open.

Definition 1.9. A function : (X,=)→ (Y, ρ) is called

1. ω-continuous [8] if f−1(U) is ω-open in X, for each open subset U of Y ,

2. ω-irresolute [2] if f−1(U) is ω-open in X, for each ω-open subset U of Y ,

3. almost ω-continuous [10] if for each x ∈ X, and each open subset V of Y
containing f(x), there exists an ω-open subset U of X that containing x
such that f(U) ⊆ IntYClY V ,

4. almost ω-continuous [2] if for each x ∈ X, and each open subset V of Y
containing f(x), there exists an ω-open subset U of X containing x such
that f(U) ⊆ ωIntYClY V ,

5. almost weakly-ω-continuous [2] if for each x ∈ X, and each open subset
V of Y containing f(x), there exists an ω-open subset U of X that
containing x such that f(U) ⊆ ClY V ,
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6. pre-ω-open [2] if image of every ω-open set is ω-open.

We use the almost ω-continuous mapping in the sense of Nour for a
mapping that satisfies part (3) and almost-ω-continuous in the sense of Omari
and Noorani for mappings that satisfy part (4) of Definition 1.9. Simply, they
are same if Y is an anti-locally countable space and it is clear from the fact
that IntA ⊆ ωIntA, the almost ω-continuity in sense of Nour implies the
almost-ω-continuity in the sense of Omari and Noorani. But the converse
is not true in general. For example, the mapping f : (R,℘ω) → (Y, ρ)
defined by f(x) = 1 if x ∈ Q and f(x) = 3 if x ∈ Irr is almost-ω-continuity
in the sense of Omari and Noorani, but not in the sense of Nour, where ρ
= {φ, {1}, {2}, {1, 2}, X} and Q and Irr denote the set of all rational and
irrational numbers.

Theorem 1.10. [4] Let f : (X,=)→ (Y, ρ) be a mapping from an anti-locally
countable space (X,=) onto a regular space (Y, ρ). Then the following are
equivalent:

1. f is continuous,

2. f is ω-continuous,

3. f is almost ω-continuous mapping in the sense of Nour,

4. f is almost-ω-continuous in the sense of Omari and Noorani,

5. f is almost weakly ω-continuous.

Theorem 1.11. [9] Let A ⊆ X and f : (X,=) → (Y, ρ) be an ω-continuous
mapping. Then fA : (A,=A)→ (Y, ρ) is ω-continuous.

Lemma 1.12. [4] The open image of an ω-open set is ω-open.

2. More Properties of ω-open Sets and Some

Other Results

It is easy to see that:

Theorem 2.1. Let (A,=A) be any subspace of a space (X,=). Then for any
B ⊆ A, we have:
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1. ωClAB = (ωClXB) ∩ A,

2. ωIntXB = ωIntAB ∩ ωIntXA,

3. ωbA(B) ⊆ (ωbX(B)) ∩ A,

4. ωbA(B) = ωClXB ∩ ωClX(A−B) ∩ A.

Note that the following example shows that the particular case of part
(iii) of [8, Theorem 3.1] is not true. It also shows that the general case of [8,
Corollary 3.2] is not true:

Example 2.2. Let X be an uncountable set equipped with the topology
= = {φ,A,B,X}, where A and B are uncountable disjoint subsets of X such
that X = A ∪ B. Then X is a hereditary lindelöf space and it is easy to see
that a subset G of X is ω-open if and only if G = X −C, G = A−C or G =
B −C, for some countable subset C of X. Hence a subset F of X is ω-closed
if and only if G = C, G = A ∪ C or G = B ∪ C, for some countable subset
C of X. But there is no ω-open subset of X which is a Gδ-set, except for the
open sets φ,A,B and X. Al-Zoubi [4] proved that the conditions that X is
anti-locally-countable and Y is regular are essential in Theorem 1.2.16. But
we can improve his result by dropping the condition that f is surjection. For
this, we need to prove the following lemma:

Lemma 2.3. Let (X,=) be an anti-locally countable space and let A be a
subset of X. If for a point x ∈ A, there exists an open subset G of X which
contains x and G− A countable, then ClG ⊆ ClA.

Proof. Let x ∈ A and G be an open set in X such that x ∈ G and G − A
is countable. Suppose that y ∈ ClG − ClA, then there exists an open set V
containing y such that V ∩ A =φ. Since y ∈ ClG, φ 6= V ∩G ⊆ G− A. This
is a contradiction.

Remark 2.4. The converse inclusion of Lemma 2.3 is not true in general. As
a simple example in the usual space (R,℘ω), taking A = Irr, since

√
2 ∈ A,√

2 ∈ (1, 2) ∈ ℘ and (1, 2)−A is countable. But R = ClA * [1, 2] = Cl(1, 2).

As an immediate consequence of Lemma 2.3, we have the following
corollary:
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Corollary 2.5. Let (X,=) be an anti-locally countable space and A be an
ω-open subset of X. Then for each point x ∈ A, there exists an open subset G
of X containing x such that ClG ⊆ ClA.

The following theorem is an improvement version of Theorem 1.10.

Theorem 2.6. Let f be a mapping from an anti-locally countable space (X,=)
into a regular space (Y, ρ). Then the following statements are equivalent:

1. f is continuous,

2. f is ω-continuous,

3. f is almost ω-continuous in the sense of Nour,

4. f is almost ω-continuous in the sense of Omari and Noorani,

5. f is almost weakly ω-continuous.

Proof. In general the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) follows
from their definitions and the facts that = ⊆ =ω and ρ ⊆ ρω, see [4]. To show
the implication (5) ⇒ (1), let x ∈ X and V be any open subset of Y with
f(x) ∈ V . By regularity of Y , we can choose two open sets V1 and V2 in
Y such that f(x) ∈ V1 ⊆ ClV1 ⊆ V2 ⊆ ClV2 ⊆ V . Since f is almost
weakly ω-continuous, there exists an ω-open subset U in X containing x such
that f(U) ⊆ ClY V1. Consequently, U ⊆ f−1(ClY V1). Since x ∈ U ∈ =ω,
there exists an open set G in X with x ∈ G and G − U is countable. So
by Lemma 1.6 and Lemma 2.3, we have ClXG ⊆ ClXU = ωClXU . Hence
G ⊆ ωClXU ⊆ ωClX(f−1(ClY V1)) ⊆ (ωClXf

−1(V2)). Now, we have to
show that ωClXf

−1(V2) ⊆ f−1(ClY V2). Let u ∈ ωClXf−1(V2). Suppose that
u /∈ f−1(ClY V2). Then f(u) /∈ ClY V2. This implies that there exists an open
set W in Y containing f(u) such that W ∩ V2= φ. Hence (ClYW ) ∩ V2 =
φ. Since f(u) ∈ W ∈ ρ, by hypothesis there exists an ω-open subset H in X
containing u such that f(H) ⊆ ClYW . Since u ∈ ωClXf−1(V2), H∩f−1(V2) 6=
φ, and hence f(H) ∩ V2 6= φ. This implies that ClYW ∩ V2 6= φ which is
impossible. Thus, ωClXf

−1(V2) ⊆ f−1(ClY V2). Hence G ⊆ f−1(ClY V2).
Therefore, f(G) ⊆ ClY V2. Hence f is continuous.

In a similar way as continuity, it is easy to prove the following results:
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Theorem 2.7. Every constant mapping from (X,=) into (R,℘) is ω-continuous.
Moreover, if f and g from (X,=) into (R,℘) are ω-continuous mappings, then
the following statements are true:

1. f ± g, fg, | f |, min{f, g} and max{f, g} are ω-continuous mappings,

2. If g(x) 6= 0 for all x ∈ X, then f
g

is ω-continuous.

Theorem 2.8. Let fn : (X,=) → (R,℘) be ω-continuous mappings for all

n ∈ N . If f : (X,=) → (R,℘) is a mapping such that the series
∞∑
n=0

fn(x) is

uniformly convergent to f(x), then f is an ω-continuous mapping.

Definition 2.9. A subset A of a space (X,=) is said to be an ω-zero-set of
X if there exists an ω-continuous mapping f : (X,=) → (R,℘) such that
A = {x ∈ X; f(x) = 0} and a subset is called coω-zero-set if it is the
complement of an ω-zero-set. Furthermore, if f : (X,=) → (R,℘) is an
ω-continuous mapping, then the set ωZ(f) = {x ∈ X; f(x) = 0} is called the
ω-zero-set of f .

Remark 2.10. 1. Every ω-zero-set of a space is ω-closed and hence every
coω-zero-set is an ω-open set,

2. Every zero-set of any space is an ω-zero-set.

The following examples show that the converse of neither parts of Remark
2.10 is true:

Example 2.11. Consider an ω-closed subset Q of the space (R,℘). We have
to show the set Q is not ω-zero-set. Suppose that Q is an ω-zero-set. Then
there exists an ω-continuous mapping f : R→ R such that {x ∈ R; f(x) = 0}
= Q . Therefore, f(x) = 0 if and only if x ∈ Q. Since f is ω-continuous, f is a
continuous mapping {by Theorem 2.6}. Hence Q is a zero-set. Consequently,
Q is a closed subset of R, which is a contradiction.

Example 2.12. Let f : (X,=) → (R,℘) be a mapping defined by f(a) = 0
and f(b) = 1 = f(c), where the X = {a, b, c} and = = {φ,X, {a}}. Then f is
ω-continuous, but not a continuous function. Hence the set {a} is an ω-zero-set
which is not zero-set.

Lemma 2.13. If A is an ω-zero-set of a space X, then there exists an
ω-continuous mapping f : X → R such that f ≥ 0 and A = ωZ(f).
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Proof. Since A = ωZ(g) for some ω-continuous mapping g : X → R, by
Theorem 2.7, the mapping f = | g |≥ 0 is ω-continuous and A = ωZ(f).

Lemma 2.14. The intersection and union of any finite number of ω-zero-sets
is also an ω-zero-set. If ωZ(f) and ωZ(g) are ω-zero-sets of f and g, then
ωZ(f) ∪ ωZ(g) = ωZ(fg), ωZ(f) ∩ ωZ(g) = ωZ(h), where h = f + g.

Proof. By Theorem 2.7, it follows that both fg and h = f + g are
ω-continuous. Therefore, ωZ(f)∪ ωZ(g) = ωZ(fg), ωZ(f)∩ ωZ(g) = ωZ(h)
are ω-zero-sets.

Lemma 2.15. If α ∈ R and f : X → R is an ω-continuous mapping, then
the set A = {x ∈ X; f(x) ≥ α} as well as B = {x ∈ X; f(x) ≤ α} are
ω-zero-sets, and hence the sets {x ∈ X; f(x) < α} and {x ∈ X; f(x) > α} are
coω-zero-sets.

Proof. By using Theorem 2.7, it is easy to see that A = ωZ(min{f(x)−α, 0})
and B = ωZ(max{f(x)− α, 0}) are ω-zero-sets.

Lemma 2.16. If A and B are disjoint ω-zero-sets the space X, then there
exist disjoint coω-zero-sets U and V containing A and B, respectively.

Proof. Let A = ωZ(f) and B = ωZ(g). Then the mapping h : X → R

given by h(x) = f(x)
f(x)+g(x)

is well-defined and in view of Theorem 2.7 it is

ω-continuous, h(A) = {0} and h(B) = {1}. Then by Lemma 2.15, the sets
{x ∈ X;h(x) > 1

2
} and {x ∈ X;h(x) < 1

4
} are the required coω-zero (hence

ω-open) sets.

Corollary 2.17. If X is anti-locally countable, then every ω-zero-set of X is
a zero-set.

Proof. It follows from Theorem 2.6.

Now, we recall the following known definition.

Definition 2.18. [8] A space (X,=) is said to be ω-T1 (resp. ω-T2) if for
each pair of distinct points x and y of X, there exist ω-open sets U and V
containing x and y, respectively such that y /∈ U and x /∈ V (resp. U ∩ V =
φ ).
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Since each countable subset of any space is ω-closed, it is easy to see
that each space is an ω-T1 space. Therefore, the results ( Theorem 3.12 and
Corollary 3.13 of [2]) are trivial and they do not need to Y satisfy any
separating axiom. Note that every T2-space is an ω-T2-space but not
conversely.

Theorem 2.19. Let X be an anti-locally countable space. Then X is an ω-T2
space if and only if X is a T2-space.

Proof. Let X be an anti-locally countable space. It is enough to prove that
X is a T2-space if X is an ω-T2-space. For this, let x 6= y in an ω-T2-space X.
Then it is easy to see that, there is an ω-open set U containing x such that
y /∈ ωClU . Since U is an ω-open set, there exists an open set G containing x
such that G − U is countable. In virtue of Lemma 1.6 and Corollary 2.5, we
have ωClU = ClU and ClG ⊆ ClU . Thus G, X −ClG are disjoint open sets
in X containing x and y, respectively. Hence X is a T2-space.

3. ω-Regular and Completely ω-Regular Space

Definition 3.1. A space (X,=) is called an ω-regular space, if for each
ω-closed subset H of X and a point x in X such that x /∈ H, there exist
disjoint ω-open sets U and V containing x and H, respectively.

That is, a space (X,=) is ω-regular if and only if the space (X,=ω) is
regular. Now, we have the following results:

Theorem 3.2. A space X is ω-regular if and only if for each point x in X
and each ω-open set G containing x, there exists an ω-open set U such that
x ∈ U ⊆ ωClU ⊆ G.

Proposition 3.3. Every locally-countable space is an ω-regular space.

The following example shows that the converse of Proposition 3.3 is not
true in general.

Example 3.4. Consider the closed ordinal space X = [0,Ω], where Ω is the
first uncountable ordinal and the subspace [0,Ω) of X (see [12, Example 43,
p. 68]). Since X is an ω-space and regular space, it is ω-regular. Since any
ω-open set which contains Ω is uncountable, X is not locally-countable.
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Theorem 3.5. If each point of a space (X,=) contained in some ω-open subset
G such that ωClG is an ω-regular subspace of X, then (X,=) is ω-regular.

Proof. Let x ∈ G ∈ =ω. Then by hypothesis, there exists an ω-open set V
containing x such that (H,=H) is an ω-regular subspace of X, where H =
ωClV . Since x ∈ G ∩ H ∈ =ωH , by ω-regularity of (H,=H), there exists an
ω-open subset U of H such that x ∈ U ⊆ ωClHU ⊆ G ∩ H ⊆ G. Since H
is ω-closed and x ∈ V ⊆ H, x ∈ ωIntXH. Thus by Theorem 2.1, we have
x ∈ ωIntXU ⊆ ωClX(U) = ωClX(U) ∩ H = ωClHU ⊆ G. Hence X is an
ω-regular space.

Theorem 3.6. If a space X is an anti-locally countable ω-regular space, then
X is a regular and ω-space.

Proof. Let G be any open set in X and let x be a point in X such that
x ∈ G. Then by Theorem 3.2, there exists an ω-open set U in X such that
x ∈ U ⊆ ωClU ⊆ G. Since x ∈ U , there exists an open set V such that x ∈ V
and V −U is countable. Hence by Lemma 1.6 and Corollary 2.5, we have ClU
= ωClU and ClV ⊆ ClU . Thus, x ∈ V ⊆ ClV ⊆ G. Therefore, X is regular.

If G is an arbitrary ω-open set in X and x is any point of G, then by the
above argument, we can prove that G is an open set. This implies that X is
an ω-space.

The following result gives the relationship between ω-regular and an
ω-T2-space:

Proposition 3.7. Every ω-regular space is an ω-T2 space.

Proof. Obvious.

The following examples show that the converse of Proposition 3.7 is not true
in general.

Example 3.8. Consider the Smirnov’s Deleted Sequence Topology [12,
Example 64, pp. 88] η on the set of all real number R, which is defined as: if
A = { 1

n
;n ∈ N} , then η = {U ⊆ R;U = G − B,G ∈ ℘ and B ⊆ A}. Since

this topology is finer than the usual topology ℘, (R, η) is a T2-space. Hence,
(R, η) is an ω-T2 space. Since (R, η) is a non regular anti locally-countable
space, (R, η) is not ω-regular {by Theorem 3.6}.
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The following proposition gives a partial converse of Proposition 3.7 and
another relationship between regularity and ω-regularity:

Proposition 3.9. 1. Every ω-compact ω-T2 space is an ω-regular space,

2. Every ω-compact T2 space is both regular and ω-regular space.

Proof. Straightforward.

The following theorem shows that the property of ω-regularity is a
hereditary property:

Theorem 3.10. Every subspace of an ω-regular space is also ω-regular.

Proof. Obvious.

Definition 3.11. A space (X,=) is said to be a completely ω-regular space if
for every ω-closed subset F of X and every point x ∈ X − F , there exists an
ω-continuous mapping f : (X,=) → (I, ℘I) (simply, f : X → I), such that
f(x) = {0} and f(F ) = {1}.

That is, a space (X,=) is completely ω-regular if and only if (X,=ω) is
completely regular.

Now, it is easy to show the following results:

Theorem 3.12. A space (X,=) is a completely ω-regular space if and only
if for every ω-open subset G of X and every point x ∈ G, there exists an
ω-continuous mapping f : X → I such that f(x) = 0 and f(y) = 1 for all
y /∈ G.

Proof. Obvious.

Proposition 3.13. Every completely ω-regular space is an ω-regular space.

Proof. Obvious.

Proposition 3.14. Every locally-countable space is completely ω-regular.

Proof. Obvious.

The converse of the Proposition 3.14 is not true; see Example 3.4.
Question: Is the converse of Proposition 3.13 true?

Theorem 3.15. A space (X,=) is completely ω-regular if and only if the
collection of all coω-zero-sets of X form a base for =ω.
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Proof. Let V be any ω-open set in a completely ω-regular space X and let
v ∈ V . Then by Theorem 3.12, there exists an ω-continuous mapping g : X →
I such that g(v) = 1 and g(X − V ) = {0}. Set U = {x ∈ X; g(x) ≥ 2

3
} and

G = {x ∈ X; g(x) > 2
3
}. By Lemma 2.15, U is an ω-zero set and G is a

coω-zero set such that x ∈ G ⊆ U ⊆ V .
Conversely, suppose that the condition of theorem holds. Let a ∈ X and H

be an ω-closed set in X such that a /∈ H. Then by hypothesis, there exists an
ω-zero set, say ωZ(h) such that a ∈ X −ωZ(h) ⊆ X −H, where h : X → I is
an ω-continuous mapping. Hence we have h(a) = t > 0. We define f : X → I

by putting f(x) = min {1, |h(x)|
t
}. Then by Theorem 2.7, f is an ω-continuous

mapping. Consequently, we have f(a) = 1 and x ∈ ωZ(h) for each x ∈ H.
Therefore, f(x) = 0 for each x ∈ H. Hence X is completely ω-regular.

The following examples show that completely regularity and completely
ω-regularity are independent topological concepts:

Example 3.16. Let X = {a, b, c} and = = {φ,X, {a}}. Then by Proposition
3.14, (X,=) is a completely ω-regular, but not completely regular because it
is not regular.

Example 3.17. The usual space (R,℘) is completely regular but not a
completely ω-regular space because it is not ω-regular.

The following theorem shows that the property of ω-regularity is a
hereditary property:

Theorem 3.18. Every subspace of a completely ω-regular space is also a
completely ω-regular space.

Proof. Let (X,=) be a completely ω-regular space and let (Y,=Y ) be a
subspace of (X,=). Suppose that A is any ω-closed set in Y and y is a point
of Y such that y /∈ A. Since A is an ω-closed subset of Y , by Theorem 1.2,
there exists an ω-closed subset H of X such that A = H ∩Y . Since y ∈ Y and
y /∈ A, y /∈ H. By completely ω-regularity of X, there exists an ω-continuous
mapping f : X → I such that f(y) = {0} and f(A) = {1}. Hence by Theorem
1.11, the restriction mapping fY : Y → I is an ω-continuous mapping and
fY (y) = 0 = f(y). Since A ⊆ H and A ⊆ Y , fY (A) ⊆ f(H) = {1}. Thus
fY (A) = {1}.
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The following theorem gives a relationship between completely ω-regularity
and completely regularity:

Theorem 3.19. If X is an anti-locally countable and completely ω-regular
space, then X is completely regular and X is an ω-space.

Proof. Let X be an anti-locally-countable completely ω-regular space. Let H
be a closed set in X and suppose that x is an arbitrary point in X such that x /∈
H. Since every closed set is ω-closed and by completely ω-regularity of a space
X, there exists an ω-continuous mapping f : X → I such that f(y) = {0} and
f(H) = {1}. Since X is anti locally-countable and I is a regular space, by
Theorem 2.6, f : X → I is a continuous mapping. Hence X is completely
regular. Since X is completely ω-regular, by Theorem 2.6, it is ω-regular and
then by Theorem 3.6, it is ω-space.

4. ω-Normal Space

Definition 4.1. A space X is called an ω-normal space if for each pair of
disjoint ω-closed sets A and B in X, there exist disjoint ω-open sets U and V
such that A ⊆ U and B ⊆ V .

That is, a space (X,=) is an ω-normal space if and only if (X,=ω) is a
normal space

It is not difficult to prove the following characterizations of an ω-normal
space:

Theorem 4.2. A space X is an ω-normal space if for each pair of ω-open sets
U and V in X such that X = U ∪ V , there exist ω-closed sets A and B which
are contained in U and V , respectively and X = A ∪B.

Theorem 4.3. If X is any space, then the following statements are equivalent:

1. The space X is ω-normal,

2. For each ω-closed set A in X and each ω-open set G in X containing A,
there is an ω-open set U such that A ⊆ U ⊆ ωClU ⊆ G.

3. For each ω-closed set A and each ω-open set G containing A, there exist
ω-open sets {Un, n ∈ N} such that A ⊆ ∪{Un;n ∈ N} and ωClUn ⊆ G
for each n ∈ N .



316 Alias Barakat Khalaf, Halgwrd Mohammed Darwesh, and K. Kannan

Now, we can establish the following Urysohn’s type lemma of ω-normality
which is an important characterization of the ω-normal space:

Theorem 4.4. Let X be any space. Then the following statements are
equivalent:

1. X is an ω-normal space,

2. For each ω-closed subset A and ω-open subset B of X such that A ⊆ B,
there exists an ω-continuous mapping f : X → I such that f(A) = {0}
and f(X −B) = {1},

3. For each pair of disjoint ω-closed subsets F and H of X, there exists an
ω-continuous mapping f : X → I such that f(F ) = {0} and f(H) =
{1}.

Proof. (1)⇒ (2) : Suppose that B is an ω-open subset of an ω-normal space
X containing an ω-closed subset A of X. Then by Theorem 4.3, there exists
an ω-open set which we denote by U 1

2
such that A ⊆ U 1

2
⊆ ωClU 1

2
⊆ B. Then

U 1
2

and B are ω-open subsets of X containing the ω-closed sets A and ωClU 1
2
,

respectively. In the same way, there exist ω-open sets, say U 1
4

and U 3
4

such
that A ⊆ U 1

4
⊆ ωClU 1

4
⊆ U 1

2
and ωClU 1

2
⊆ U 3

4
⊆ ωClU 3

4
⊆ B. Continuing in

this process, for each rational number in the open interval (0, 1) of the form t
= m

2n
, where n = 1, 2, ... and m = 1, 2, ... , 2n−1, we obtain ω-open sets of

the form Ut such that for each s < t then A ⊆ Us ⊆ ωClUs ⊆ Ut ⊆ ωClUt.
We denote the set of all such rational numbers by Ψ, and define f : X → I as
follows:

f(x) =

{
1 if x ∈ X −B
inf {t; t ∈ Ψ and x ∈ Ut }

f(X − B) = {1} and if x ∈ A, then x ∈ Ut for all t ∈ Ψ. Therefore, by the
definition of f , we have f(x) = infΨ = 0. Hence f(B) = {0} and f(x) ∈ I for
all x ∈ X. It remains only to show that f is an ω-continuous mapping since the
intervals of the form [0,a) and (b,1], where a, b ∈ (0, 1) form an open subbase
of the space I. If x ∈ Ut for some t < a, then f(x) = inf {s; s ∈ ψ and x ∈ Us}
= r ≤ t < a. Thus 0 ≤ f(x) < a. If f(x) = 0, then x ∈ Ut for all t ∈ Ψ.
Hence x ∈ Ut for some t < a. If 0 < f(x) < a, by definition of f , we have
f(x) = {s; s ∈ Ψ and x ∈ Us} < a {Since a < 1}. Thus f(x) = t for some t < a,
and hence x ∈ Ut for some t < a. Therefore, we conclude that 0 ≤ f(x) < a if
and only if x ∈ Ut for some t < a. Hence f−1([0, a)) = ∪{Ut; t ∈ Ψ and x ∈ Ut}
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which is an ω-open subset of X. Also it is easy to assert that: 0 ≤ f(x) ≤ b
if and only if x ∈ Ut for all t > b. Let x ∈ X such that 0 ≤ f(x) ≤ b. It is
evident that f(x) < t for all t > b which implies that x ∈ Ut for all t > b.
For the converse, let x ∈ Ut for all t > b. Then f(x) ≤ t for all t > b. Thus
f(x) ≤ b and it is clear from the definition of f , that f(x) ≥ 0. This proves
our assertion. Since for all t > b, there is r ∈ Ψ such that t > r > b. Then
ωClUr ⊆ Ut. Consequently we have ∩{Ut; t ∈ Ψ and t > b}= ∩{ωClUr; r ∈ Ψ
and r > b}. Therefore, f−1([0, b]) = {x; 0 ≤ f(x) ≤ b} = ∩{Ut; t ∈ Ψ and
t > b} = ∩{ωClUr; r ∈ Ψ and r > b}. Since f−1((0, 1]) = f−1(I − [0, b]) =
X − f−1([0, b]) = ∪{X −ωClUr; r ∈ Psi and r > b} which is ω-open, and this
completes the proof of this part.

(2)⇒ (3) : Obvious.
(3) ⇒ (1) : Let A and B be two disjoint ω-closed subsets of X. Then

by hypothesis, there exists an ω-continuous mapping f : X → I such that
f(A) = {0} and f(B) = {1}. Then the disjoint open sets [0, 1

2
) and (1

2
, 1] in I

containing f(A) and f(B), respectively. The ω-continuity of f gives thatf−1([0, 1
2
))

and f−1((1
2
, 1]) are disjoint ω-open sets in X containing A and B, respectively.

It completes the proof.

Corollary 4.5. Every ω-normal space is completely ω-regular and hence it is
ω-regular.

Question: Is the converse of corollary 4.5 true?
Recalling that the space (X,=ω) is lindelöf if and only if (X,=) is lindelöf

[9].

Theorem 4.6. Every ω-regular lindelöf space X is ω-normal.

Proof. Let F be any ω-closed and U be any ω-open subset of an ω-regular
lindelöf space X such that F ⊆ U . Then by Theorem 3.2, for each x ∈ F , there
exists an ω-open set Vx such that x ∈ Vx ⊆ ωClVx ⊆ U . Since F is ω-closed,
by part (i) of [8, Theorem 3.3], F is also a lindelöf subspace. Therefore,
the cover {Vx;x ∈ F} of F has a countable subcover, say {Vn;n ∈ N}. Thus
F ⊆ {Vn;n ∈ N} and ωClVn ⊆ U for each n ∈ N . Hence by Theorem 4.3, X
is ω-normal.

In virtue of Theorem 2.8, Theorem 4.4 and the fact that every bounded closed
intervals of R are homeomorphic, we can generalize the Tietze Extension
Theorem to ω-normality which is also an important characterization of
ω-normal space.
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Theorem 4.7. A space X is ω-normal if and only if every ω-continuous
mapping g on an ω-closed subset of X into any closed interval [a, b] has an
ω-continuous extension f over X into [a, b].

The following result contains the relationship between ω-normal and an
ω-zero-set:

Proposition 4.8. Let X be a space. Then

1. An ω-zero-set of X is ω-closed and it is the intersection of many
countable ω-open sets,

2. Let H be an ω-closed subset of X which is the intersection of many
countable ω-open sets. If X is ω-normal, then H is an ω-zero-set.

Proof. (1) Let F be an ω-zero-set of a space X. Then by Remark 2.10, F is
an ω-closed subset of X. Then by Lemma 2.13, there exists an ω-continuous
mapping f : X → R such that f ≥ 0 and F = ωZ(f). Hence F = ∩{Un;n ∈
Z+}, where Un = {x ∈ X; f(x) < 1

n
}.

(2) Let H be an ω-closed subset of an ω-normal space X such that
H = ∩{Un;n ∈ Z+}, where Un is an ω-open set for each n ∈ Z+. Since
H ⊆ Un for each n ∈ Z+ and X is an ω-normal space, for each n ∈ Z+,
there exists an ω-continuous mapping fn : X →

[
0, 1

3n

]
such that fn(H) =

{0} and fn(X − Un) =
{

1
3n

}
{by Theorem 4.4}. Since

∞∑
n=0

fn(x) ≤
∞∑
n=0

1
3n

and

the series
∞∑
n=0

1
3n

is absolutely convergent, the mapping f : X → R given by

f(x) =
∞∑
n=0

fn(x) for each x ∈ X is an ω-continuous mapping and H = ωZ(f)

{by Theorem 2.8}.

Corollary 4.9. Every locally-countable space is ω-normal.

The converse of Corollary 4.9 is not true; see Example 3.4 and [12, Example
43, p. 68]. Now, since the usual topological space (R,℘) is not ω-regular and
by Corollary 4.5, (R,℘) is not ω-normal. However, it is a normal space. This
means that the ω-normality is not implied by normality. The following example
shows that the ω-normality does not imply normality and hence this means
that the ω-normality and normality are independent topological concepts.
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Example 4.10. Let X = {a, b, c} and = = {φ, {a}, {a, b}, {a, c}, X}. Then by
Corollary 4.9, the space (X,=) is ω-normal, but not a normal space because
there are no disjoint open sets containing the disjoint closed sets {b} and {c},
respectively.

The following theorem shows a relationship between ω-normality and
normality:

Theorem 4.11. Let X be an anti-locally countable ω-normal space. Then X
is a normal space and it is an ω-space.

Proof. Let F and H be two disjoint closed subsets of an anti-locally countable
ω-normal space X. Then there exist ω-open sets U and V such that F ⊆ U ,
H ⊆ V and U ∩ V = φ. This implies that ωClU ∩ V = φ and U ∩ ωClV = φ.
Since X is anti-locally-countable, we get ClU ∩ V = φ and U ∩ ClV = φ {by
Lemma 1.6}. Since IntClU ⊆ ClU and IntClV ⊆ ClV , IntClU ∩ V = φ,
U ∩ IntClV = φ. This implies that IntClU ∩ClV = φ and ClU ∩ IntClV =
φ. Thus IntClU ∩ IntClV = φ. Hence IntClU and IntClV are disjoint open
sets in X containing F and H, respectively. This implies that X is a normal
space. By Corollary 4.5 and Theorem 3.6, it follows that X is an ω-space.

Recalling that a space X is said to be a separable space [7, Definition 8.7.1,
p. 175], if it contains a countable dense subset. Then it is easy to obtain the
following results:

Proposition 4.12. There is no anti-locally countable separable space which is
ω-regular (and hence ω-normal).

Proof. Obvious.

Note that Proposition 4.12, gives another way to proving that (R,℘) is neither
ω-regular nor ω-normal. However, the space (R,℘) is an anti-locally-countable
regular separable space.

Proposition 4.13. There is no uncountable space (X,=) for which (X,=ω)
is separable.

Proof. Obvious.

Theorem 4.14. Every ω-closed subspace of an ω-normal space is also an
ω-normal space.
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Proof. Obvious.

We recall that a topological space is said to be completely normal [11,
Definition 1.4.1, p. 27] if every subspace of the space is normal. The
following example shows that the property that being an ω-normal of a space
is not hereditary.

Example 4.15. Consider the Tychonoff Plank space X = [0,Ω]× [0,Ω0] [12,
Example 86, p. 106] and [7, Example 3.4, p. 145], where Ω and Ω0 denoted
the first uncountable and first infinite countable ordinals. Since both ordinal
spaces [0,Ω] and [0,Ω0], are ω-spaces, X = [0,Ω]× [0,Ω0] is also an ω-space.
Since this space is normal, it is ω-normal. Since this space is not a completely
normal space, it is not hereditary normal. Hence it is not hereditary ω-normal.

5. Some Covering and Characterizations of

ω-Normal Space

We begin this section with the following definition:

Definition 5.1. The family {Aλ;λ ∈ Λ} of subsets of a space (X,=) is called:

1. ω-locally-finite if for each x ∈ X, there exists an ω-open set G containing
x such that the set {λ ∈ Λ;G ∩ Aλ 6= φ} is finite,

2. ω-discrete if for each point x ∈ X, there is an ω-open set G containing
x such that the set {λ ∈ Λ;G ∩ Aλ 6= φ} has at most one member.

Proposition 5.2. Every locally-finite family of subsets of any space (X,=) is
ω-locally-finite.

Proof. It follows from the fact that = ⊆ =ω.

The following example shows that the converse implication of Proposition 5.2
is not true in general.

Example 5.3. Consider the set X = N equipped with the indiscrete topology
Tind. Then the family {{n};n ∈ X} is an ω-discrete (and hence
ω-locally-finite) but not locally-finite (and hence not discrete).
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The following example shows that the arbitrary union of ω-closed sets need
not be ω-closed. That is, the union of ω-closure of sets does not equal to the
ω-closure of their union as well as it show that the unions of closed sets need
not be closed.

Example 5.4. Consider the usual topological space (R,℘). Then {{x};x ∈
(0, 1)} is a family of ω-closed subsets of R. Thus ∪{ωCl{x};x ∈ (0, 1)} =
∪{{x};x ∈ (0, 1)} = (0,1) which is not ω-closed. But ωCl(0, 1) = [0,1].

Proposition 5.5. If {Aλ;λ ∈ Λ} is an ω-locally-finite family of subsets of a
space X, then {ωClAλ;λ ∈ Λ} is also ω-locally-finite and ωCl(∪{Aλ;λ ∈ Λ})
= ∪{ωClAλ;λ ∈ Λ}.

Proof. Let x ∈ X. Since {Aλ;λ ∈ Λ} is ω-locally-finite, there exists an
ω-open set G containing x such that the set {λ ∈ Λ;G ∩ Aλ 6= φ} is finite.
Since G ∩ Aλ = φ if and only if G ∩ ωClAλ = φ, {λ ∈ Λ;G ∩ ωClAλ 6=
φ} is finite. {ωClAλ;λ ∈ Λ} is also ω-locally-finite. Since ∪{ωClAλ;λ ∈
Λ} ⊆ ωCl(∪{Aλ;λ ∈ Λ}), we have only to prove that ωCl(∪{Aλ;λ ∈ Λ}) ⊆
∪{ωClAλ;λ ∈ Λ}. Let x /∈ ∪{ωClAλ;λ ∈ Λ}. Since {ωClAλ;λ ∈ Λ} is
ω-locally-finite, there exists an ω-open set U containing x such that Λ0 =
{λ ∈ Λ;U ∩ ωClAλ 6= φ} is finite. Set V = U ∩ (∪{X − ωClAλ;λ ∈ Λ0}
is an ω-open subsets of X containing x such that V ∩ (∪{Aλ;λ ∈ Λ}) =
∪{V ∩ Aλ;λ ∈ Λ} = φ. Thus x /∈ ωCl(∪{Aλ;λ ∈ Λ}). This completes the
proof.

Corollary 5.6. If {Aλ;λ ∈ Λ} is a locally-finite family of subsets of a space
X, then {ωClAλ;λ ∈ Λ} is also locally-finite and ωCl(∪{Aλ;λ ∈ Λ}) =
∪{ωClAλ;λ ∈ Λ}.

Proof. It follows from Proposition 5.2 and Proposition 5.5.

It is easy to see that for any subset A and any ω-open subset G of any space
X, G ∩ A = φ if and only if G ∩ ωClA = φ. But the following example
shows that with this fact, the ω-locally-finiteness of the ω-closure of a family
does not imply the ω-locally-finiteness of the family. Also, it shows that the
locally-finiteness of the closure of a family does not imply the locally-finiteness
of the family.

Example 5.7. Consider the set X = R equipped with the topology ρ =
{φ,X, Irr}. Then the family {(p, p+ 1); p ∈ Z} is neither ω-locally-finite nor
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locally-finite. It is easy to see that each non-empty ω-open set U of X contains
a set of the form X−C or Irr−C, where C is a countable subset of X. Hence
U ∩ (p, p+ 1) 6= φ, for each p ∈ Z. Thus {ωCl(p, p+ 1); p ∈ Z} = {X} which
is locally-finite (and hence ω- locally-finite).

Proposition 5.8. Let {Aλ;λ ∈ Λ} be a family of subsets of a space X and
{Bγ; γ ∈ Γ} be an ω-locally-finite ω-closed cover of X such that for each γ ∈ Γ,
the set {λ ∈ Λ;Bγ ∩ Aλ 6= φ} is finite. Then there exists an ω-locally-finite
family {Gλ;λ ∈ Λ} of ω-open sets of X such that Aλ ⊆ Gλ for each λ ∈ Λ.

Proof. For each λ, let Gλ = X − (∪{Bγ;Bγ ∩Aλ = φ }). So it is easy to see
that Aλ ⊆ Gλ and by Proposition 5.6, Gλ is ω-open for each λ. Let x ∈ X.
Since {Bγ; γ ∈ Γ} is ω-locally-finite, there is an ω-open set U containing x
such that the set Γ0 = {γ ∈ Γ;U ∩Bγ 6= φ} is finite. Thus U ∩Bγ = φ for each
γ /∈ Γ0. Therefore, U ⊆ ∪{Bγ; γ ∈ Γ0}. Also, since for each γ ∈ Γ0, Gλ ∩ Bγ

= φ if and only if Aλ ∩Bγ = φ, the finiteness of {λ ∈ Λ;Bγ ∩Aλ 6= φ} implies
the finiteness of {λ ∈ Λ;U ∩Gλ 6= φ} and this completes the proof.

Definition 5.9. An ω-open covering {Uλ;λ ∈ Λ} of a space X is said to be
ω-shrinkable if there exists an ω-open covering {Vλ;λ ∈ Λ} of X such that
ωClVλ ⊆ Uλ for each λ ∈ Λ.

Theorem 5.10. Let X be a space. Then the following statements are
equivalent:

1. X is ω-normal,

2. Each point-finite ω-open covering of X is ω-shrinkable,

3. Each finite ω-open covering of X has a locally-finite ω-closed refinement,

4. Each finite ω-open covering of X has an ω-locally-finite ω-closed
refinement.

Proof. (1) ⇒ (2) : Let {Uλ;λ ∈ Λ} be a point-finite ω-open covering of an
ω-normal space X. Assume that Λ is well-ordered. We shall construct the
ω-shrinking to {Uλ;λ ∈ Λ} by the transfinite induction. For this; let µ be an
element of Λ and suppose that for each λ < µ, we have an ω-open set Vλ such
that ωClVλ ⊆ Uλ and for each υ < µ, [∪{Vλ;λ < υ}] ∪ [∪{Uλ;λ ≥ υ} = X.
Let x ∈ X. Since {Uλ;λ ∈ Λ} is point-finite, there is the largest element, say
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ξ ∈ Λ such that x ∈ Uξ. If ξ ≥ µ, then x ∈ ∪{Uλ;λ ≥ µ}. However, if ξ < µ,
then x ∈ [∪{Vλ;λ < µ}]. Hence [∪{Vλ;λ < µ}] ∪ [∪{Uλ;λ ≥ µ}] = X. Thus
Uµ contains the complement of an ω-open set [∪{Vλ;λ < µ}]∪ [∪{Uλ;λ > µ}].
Since X is an ω-normal space, there exits an ω-open set, say Vµ such that
(X− [∪{Vλ;λ < µ}]∪ [∪{Uλ;λ > µ}]) ⊆ Vµ ⊆ ωClVµ ⊆ Uµ {by Theorem 4.3}.
Hence [∪{Vλ;λ ≤ µ}] ∪ [∪{Uλ;λ ≥ µ}] = X. Hence the construction of the
ω-shrinking of {Uλ;λ ∈ Λ} is completed by transfinite induction.

(2)⇒ (3) : Obvious.
(3)⇒ (4) : Follows from Proposition 5.2.
(4) ⇒ (1) : Let X be a space which satisfies condition (4) and let U and

V be two ω-open subsets of X such that U ∪ V = X. Then {U, V } is a finite
ω-open covering of X. Then by hypothesis, this covering has an ω-locally-finite
ω-closed refinement, say Ψ. Let F and H be the union of these members of Ψ
which is contained in U and V , respectively. Then by Proposition 5.5, F and
H are ω-closed subsets of X. Since Ψ is a cover of X, in view of Theorem 4.2,
X is ω-normal.

Theorem 5.11. Let {Uλ;λ ∈ Λ} be an ω-locally-finite family of an ω-open
set of an ω-normal space X, and let {Eλ;λ ∈ Λ} be a family of ω-closed sets
such that Eλ ⊆ Gλ for each λ ∈ Λ. Then there exists a family {Vλ;λ ∈ Λ} of
ω-open sets such that Eλ ⊆ Vλ ⊆ ωClVλ ⊆ Gλ for each λ ∈ Λ and the families
{Eλ;λ ∈ Λ} and {ωClVλ;λ ∈ Λ} are similar.

Proof. Assume that Λ is well-ordered. We shall construct a family {Vλ;λ ∈ Λ}
of ω-open sets such that Eλ ⊆ Vλ ⊆ ωClVλ ⊆ Gλ for each λ ∈ Λ by using the
transfinite induction. First, we define the family {Aυλ;λ ∈ Λ} by

Aυλ =

{
ωClVλ if λ ≤ µ
Eλ if λ > µ

Suppose that µ ∈ Λ and Vλ are defined for each υ < µ such that the family
{Aυλ;λ ∈ Λ} is similar to {Eλ;λ ∈ Λ}. Let {Bλ;λ ∈ Λ} be the family given by

Bλ =

{
ωClVλ if λ ≤ µ
Eλ if λ > µ

.

To show {Bλ;λ ∈ Λ} is similar to {Eλ;λ ∈ Λ}. Suppose that λ1, λ2, λ3, ...,
λk ∈ Λ such that λ1 < λ2 < ... < λj < µ < λj+1 < ... < λk. Since λj < λµ,

{Aλjλ ;λ ∈ Λ} and {Eλ;λ ∈ Λ} are similar. Since ∩{Bλi ; i = 1, 2, 3, ..., k} =
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∩{Aλjλi ; i = 1, 2, 3, ..., k}, ∩{Bλi ; i = 1, 2, 3, ..., k} = φ if and only if
∩{Eλi ; i = 1, 2, 3, ..., k} = φ. Thus the families {Bλ;λ ∈ Λ} and {Eλ;λ ∈ Λ}
are similar. Also, since Bλ ⊆ Gλ for each λ ∈ Λ, the family {Bλ;λ ∈ Λ} is
ω-locally-finite. Thus, if Γ is the family of finite subsets of Λ and for each
γ ∈ Γ, we set Fγ = ∩{Bλ;λ ∈ γ}. Then the family {Fγ; γ ∈ Γ} is an
ω-locally-finite family of ω-closed sets. Hence by Proposition 5.5, we obtain
that F = ∪{Fγ;Fγ ∩Eµ} is ω-closed and it is disjoint from Eµ. Therefore, by
Theorem 4.3, there exists an ω-open set Vµ such that Eµ ⊆ Vµ ⊆ ωClVµ ⊆
Gµ and ωClVµ ∩ F = φ. Hence the ω-open sets Vλ are defined for each
λ ≤ µ. It remains only to show that the family {Aµλ;λ ∈ Λ} is similar to
{Eλ;λ ∈ Λ}. For this, it is sufficient to show that it is similar to {Bλ;λ ∈ Λ}.
Suppose that λ1, λ2, λ3, ..., λt ∈ Λ and ∩{Bλi ; i = 1, 2, 3, ..., t} = φ, we have
to show ∩{Aµλi ; i = 1, 2, 3, ..., t} = φ. Consider λ1 < λ2 < ... < λj ≤
µ < λj+1 < ... < λt. If λj 6= µ, then the proof is completed. If λj
= µ, then ∩{Bλi ; i = 1, 2, 3, ..., t} ∩ Eµ = φ. Hence by our construction
∩{Bλi ; i = 1, 2, 3, ..., t} ∩ ωClVµ = φ. Thus ∩{Aµλi ; i = 1, 2, 3, ..., t} = φ. This
completes the proof.

Corollary 5.12. Let X be a topological space. Then the followings statements
are equivalent:

1. X is ω-normal,

2. For each finite family {Ei; i = 1, 2, 3, ..., k} of ω-closed sets of X, there
is a family {Vi; i = 1, 2, 3, ..., k} of ω-open sets such that Ei ⊆ Vi for each
i = 1, 2, ..., k, and the families {Ei; i = 1, 2, 3, ..., k} and
{ωClVi; i = 1, 2, 3, ..., k} are similar,

3. For each pair E1 and E2 of disjoint ω-closed sets of X, there is a pair
V1 and V2 of ω-open sets of X such that ωClV1 and ωClV2 are disjoint.

Proof. (1) ⇒ (2) : It follows by putting Gi = X, for each i = 1, 2, ..., k in
Theorem 5.11.

(2)⇒ (3) and (3)⇒ (1) are obvious.

Corollary 5.13. Let (X,=) be a space and B ⊆ A ⊆ X. Then the following
statements are true:

1. Let A ∈ =ω. Then B ∈ =ωA if and only if B ∈ =ω,
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2. Let A be ω-closed. Then B is ω-closed in A if and only if it is ω-closed
in X.

Proof. It follows from Theorem 1.2.

Theorem 5.14. Let E be an ω-closed subset of an ω-normal X and let
{Gλ;λ ∈ Λ} be an ω-locally-finite family of an ω-open set of X such that
E ⊆ ∪{Gλ;λ ∈ Λ}. Then there exists a family {Vλ;λ ∈ Λ} of ω-open sets of X
such that ωClVλ ⊆ Gλ for each λ ∈ Λ, E ⊆ ∪{Gλ;λ ∈ Λ} and {ωClVλ;λ ∈ Λ}
are similar to {E ∩Gλ;λ ∈ Λ}.

Proof. Let Γ be the family of finite subsets of Λ such that E ∩ (∩{Gλ;λ ∈
γ} 6= φ for each γ ∈ Γ. The family {E ∩ (∩{Gλ;λ ∈ γ}); γ ∈ Γ} of non-empty
ω-open subsets of E is ω-locally-finite and from Theorem 4.14, E is ω-normal.
Hence by Corollary 4.5, E is ω-regular. Therefore, for each γ ∈ Γ, there exists
a non-empty ω-closed set Dγ of E such that Dγ ⊆ E ∩ (∩{Gλ;λ ∈ γ}). Since
{Gλ;λ ∈ Λ} is ω-locally-finite and E is an ω-closed subset of X, the family
{Dγ; γ ∈ Γ} consists of ω-closed subsets of X and it is ω-locally-finite in X
{by Corollary 5.13}. Since E is ω-normal and each ω-locally-finite family is
point-finite, it follows that there is an ω-locally-finite ω-closed covering {Hλ;λ ∈
Λ} of E such that Hλ ⊆ E ∩ Gλ for each λ {by Theorem 5.10}. Let Fλ =
Eλ ∪{Dγ; γ ∈ Γ} for each λ. Then by Proposition 5.5, Fλ = Eλ ∪{Dγ; γ ∈ Γ}
is ω-closed in both E and X and Fλ = Eλ ∩Gλ for each λ. Also {Fλ;λ ∈ Λ}
is an ω-closed covering of E. Furthermore, the families {Fλ;λ ∈ Λ} and
{E ∩ Gλ;λ ∈ Λ} are similar. For if γ ∈ Γ, then Dγ ⊆ ∩{Fλ;λ ∈ γ}. Hence
∩{Fλ;λ ∈ Λ} = φ. Since X is an ω-normal space, there exists a family
∪{Vλ;λ ∈ Λ} of ω-open subsets of X such that Fλ ⊆ Vλ ⊆ ωClVλ ⊆ Gλ for
each λ {by Theorem 5.11}. Therefore, {ωClVλ;λ ∈ Λ} and {E ∩ Gλ;λ ∈ Λ}
are similar. This completes the proof.
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