Some Types of Separation Axioms in Topological Spaces *

Alias Barakat Khalaf[†]

Department of Mathematics, College of Science, Sulaimani University, Duhok, Kurdistan Region, Iraq

Halgwrd Mohammed Darwesh[‡]

Department of Mathematics, Kinki University, Sulaimani, Kurdistan Region, Iraq

and

K. Kannan[§]

Department of Mathematics, Srinivasa Ramanujan Centre, SASTRA University, Kumbakonam - 612001 Tamil Nadu, India

Received February 23, 2011, Accepted March 13, 2012.

Abstract

In this paper, we introduce some types of separation axioms via ω -open sets, namely ω -regular, completely ω -regular and ω -normal space and investigate their fundamental properties, relationships and characterizations. The well-known Urysohn's Lemma and Tietze Extension Theorem are generalized to ω -normal spaces. We improve some known results. Also, some other concepts are generalized and studied via ω -open sets.

*2000 Mathematics Subject Classification. Primary 54D10, 54D15.

[†]E-mail: khalaf59@yahoo.com

[‡]E-mail: darweshyMath@yahoo.com

[§]Corresponding author. E-mail: anbukkannan@rediffmail.com

Keywords and Phrases: ω -open set, ω -regular, Completely ω -regular, ω -normal.

1. Introduction

Throughout this work, a space will always mean a topological space, (X,\mathfrak{F}) and (Y, σ) will denote spaces on which no separation axioms are assumed unless explicitly stated. The notations T_{dis} , T_{ind} denote the discrete and indiscrete topologies and \wp denotes the usual topology for the set of all real numbers R. For a subset A of a space (X, \mathfrak{F}) , the closure and the interior of A will be denoted by Cl_XA and Int_XA (or simply ClA and IntA), respectively. A point $x \in X$ is called a condensation point of A [13, pp. 90] if for each $G \in \mathfrak{T}$ with $x \in G$, the set $G \cap A$ is uncountable. A is called ω -closed [8] if it contains all its condensation points. The complement of an ω -closed set is called ω -open. It is well known that a subset U of a space (X,\mathfrak{F}) is ω -open if and only if for each $x \in U$, there exists $G \in \mathfrak{S}$ such that $x \in G$ and G - Uis countable. The family of all ω -open subsets of a space (X,\mathfrak{F}) is denoted by \mathfrak{S}^{ω} , forms a topology on X finer than \mathfrak{S} . The ω -closure and ω -interior, which are defined in the same way as ClA and IntA, and they are denoted by ωClA and $\omega IntA$, respectively. Several characterizations of ω -closed subsets were provided in [3, 4, and 5]. A subset A of a space X is called ω -dense [2] if $\omega ClA = X$. Authors in General topology used the notation of ω -open sets to define some other types of sets, mappings and spaces, till Al-Hawary [1] and Rao and et al [6] used the nation of ω -open sets in fuzzy and bitopological spaces, respectively. So we recall the following results and notions:

Theorem 1.1. [4] If U is ω -open subset of X, then U - C is ω -open for every countable subset C of X.

Theorem 1.2. [4 and 5] For any space (X, \mathfrak{F}) and any subset A of X,

- 1. $\mathfrak{S}^{\omega\omega} = (\mathfrak{S}^{\omega})^{\omega} = \mathfrak{S}^{\omega}.$
- 2. $(\mathfrak{F}_A)^\omega = (\mathfrak{F}^\omega)_A$.

Definition 1.3. [5] A space (X, \mathfrak{F}) is said to be locally-countable if each point of X has a countable open neighborhood.

It is easy to see that

Theorem 1.4. Let (X, \mathfrak{F}) be a space. Then $\mathfrak{F}^{\omega} = T_{dis}$ if and only if the space (X, \mathfrak{F}) is locally countable.

Definition 1.5. [5] A space X is said to be anti-locally countable if each non-empty open subset of X is uncountable.

Note that a space (X, \mathfrak{F}) is anti-locally-countable if and only if $(X, \mathfrak{F}^{\omega})$ is so.

Lemma 1.6. [5] If a space (X, \mathfrak{F}) is anti-locally-countable, then

1. $\omega ClA = ClA$, for every ω -open subset A of X.

2. $\omega IntA = IntA$, for every ω -closed subset A of X.

Al-Zoubi in [4] has improved part (1) of the above result, by proving the following lemma:

Lemma 1.7. [4] If (A, \mathfrak{F}_A) is an anti-locally countable subspace of a space (X, \mathfrak{F}) , then $\omega ClA = ClA$.

Definition 1.8. [2] A space X is said to be an ω -space if every ω -open set is open.

Definition 1.9. A function : $(X, \mathfrak{F}) \to (Y, \rho)$ is called

- 1. ω -continuous [8] if $f^{-1}(U)$ is ω -open in X, for each open subset U of Y,
- 2. ω -irresolute [2] if $f^{-1}(U)$ is ω -open in X, for each ω -open subset U of Y,
- 3. almost ω -continuous [10] if for each $x \in X$, and each open subset V of Y containing f(x), there exists an ω -open subset U of X that containing x such that $f(U) \subseteq Int_Y Cl_Y V$,
- 4. almost ω -continuous [2] if for each $x \in X$, and each open subset V of Y containing f(x), there exists an ω -open subset U of X containing x such that $f(U) \subseteq \omega Int_Y Cl_Y V$,
- 5. almost weakly- ω -continuous [2] if for each $x \in X$, and each open subset V of Y containing f(x), there exists an ω -open subset U of X that containing x such that $f(U) \subseteq Cl_Y V$,

6. pre- ω -open [2] if image of every ω -open set is ω -open.

We use the almost ω -continuous mapping in the sense of Nour for a mapping that satisfies part (3) and almost- ω -continuous in the sense of Omari and Noorani for mappings that satisfy part (4) of Definition 1.9. Simply, they are same if Y is an anti-locally countable space and it is clear from the fact that $IntA \subseteq \omega IntA$, the almost ω -continuity in sense of Nour implies the almost- ω -continuity in the sense of Omari and Noorani. But the converse is not true in general. For example, the mapping $f : (R, \varphi^{\omega}) \to (Y, \rho)$ defined by f(x) = 1 if $x \in Q$ and f(x) = 3 if $x \in Irr$ is almost- ω -continuity in the sense of Omari and Noorani a

Theorem 1.10. [4] Let $f : (X, \mathfrak{F}) \to (Y, \rho)$ be a mapping from an anti-locally countable space (X, \mathfrak{F}) onto a regular space (Y, ρ) . Then the following are equivalent:

- 1. f is continuous,
- 2. f is ω -continuous,
- 3. f is almost ω -continuous mapping in the sense of Nour,
- 4. f is almost- ω -continuous in the sense of Omari and Noorani,
- 5. f is almost weakly ω -continuous.

Theorem 1.11. [9] Let $A \subseteq X$ and $f : (X, \mathfrak{F}) \to (Y, \rho)$ be an ω -continuous mapping. Then $f_A : (A, \mathfrak{F}_A) \to (Y, \rho)$ is ω -continuous.

Lemma 1.12. [4] The open image of an ω -open set is ω -open.

2. More Properties of ω -open Sets and Some Other Results

It is easy to see that:

Theorem 2.1. Let (A, \mathfrak{F}_A) be any subspace of a space (X, \mathfrak{F}) . Then for any $B \subseteq A$, we have:

1.
$$\omega Cl_A B = (\omega Cl_X B) \cap A$$
,

2. $\omega Int_X B = \omega Int_A B \cap \omega Int_X A$,

3.
$$\omega b_A(B) \subseteq (\omega b_X(B)) \cap A$$
,

4. $\omega b_A(B) = \omega C l_X B \cap \omega C l_X (A - B) \cap A.$

Note that the following example shows that the particular case of part (iii) of [8, Theorem 3.1] is not true. It also shows that the general case of [8, Corollary 3.2] is not true:

Example 2.2. Let X be an uncountable set equipped with the topology $\Im = \{\phi, A, B, X\}$, where A and B are uncountable disjoint subsets of X such that $X = A \cup B$. Then X is a hereditary lindelöf space and it is easy to see that a subset G of X is ω -open if and only if G = X - C, G = A - C or G = B - C, for some countable subset C of X. Hence a subset F of X is ω -closed if and only if G = C, $G = A \cup C$ or $G = B \cup C$, for some countable subset C of X. Hence a subset F of X is ω -closed if and only if G = C, $G = A \cup C$ or $G = B \cup C$, for some countable subset C of X. But there is no ω -open subset of X which is a G_{δ} -set, except for the open sets ϕ, A, B and X. Al-Zoubi [4] proved that the conditions that X is anti-locally-countable and Y is regular are essential in Theorem 1.2.16. But we can improve his result by dropping the condition that f is surjection. For this, we need to prove the following lemma:

Lemma 2.3. Let (X, \mathfrak{F}) be an anti-locally countable space and let A be a subset of X. If for a point $x \in A$, there exists an open subset G of X which contains x and G - A countable, then $ClG \subseteq ClA$.

Proof. Let $x \in A$ and G be an open set in X such that $x \in G$ and G - A is countable. Suppose that $y \in ClG - ClA$, then there exists an open set V containing y such that $V \cap A = \phi$. Since $y \in ClG$, $\phi \neq V \cap G \subseteq G - A$. This is a contradiction.

Remark 2.4. The converse inclusion of Lemma 2.3 is not true in general. As a simple example in the usual space (R, \wp^{ω}) , taking A = Irr, since $\sqrt{2} \in A$, $\sqrt{2} \in (1,2) \in \wp$ and (1,2) - A is countable. But $R = ClA \nsubseteq [1,2] = Cl(1,2)$.

As an immediate consequence of Lemma 2.3, we have the following corollary:

Corollary 2.5. Let (X, \mathfrak{F}) be an anti-locally countable space and A be an ω -open subset of X. Then for each point $x \in A$, there exists an open subset G of X containing x such that $ClG \subseteq ClA$.

The following theorem is an improvement version of Theorem 1.10.

Theorem 2.6. Let f be a mapping from an anti-locally countable space (X, \mathfrak{F}) into a regular space (Y, ρ) . Then the following statements are equivalent:

- 1. f is continuous,
- 2. f is ω -continuous,
- 3. f is almost ω -continuous in the sense of Nour,
- 4. f is almost ω -continuous in the sense of Omari and Noorani,
- 5. f is almost weakly ω -continuous.

Proof. In general the implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ follows from their definitions and the facts that $\Im \subset \Im^{\omega}$ and $\rho \subset \rho^{\omega}$, see [4]. To show the implication (5) \Rightarrow (1), let $x \in X$ and V be any open subset of Y with $f(x) \in V$. By regularity of Y, we can choose two open sets V_1 and V_2 in Y such that $f(x) \in V_1 \subseteq ClV_1 \subseteq V_2 \subseteq ClV_2 \subseteq V$. Since f is almost weakly ω -continuous, there exists an ω -open subset U in X containing x such that $f(U) \subseteq Cl_Y V_1$. Consequently, $U \subseteq f^{-1}(Cl_Y V_1)$. Since $x \in U \in \mathfrak{T}^{\omega}$, there exists an open set G in X with $x \in G$ and G - U is countable. So by Lemma 1.6 and Lemma 2.3, we have $Cl_XG \subseteq Cl_XU = \omega Cl_XU$. Hence $G \subseteq \omega Cl_X U \subseteq \omega Cl_X (f^{-1}(Cl_Y V_1)) \subseteq (\omega Cl_X f^{-1}(V_2)).$ Now, we have to show that $\omega Cl_X f^{-1}(V_2) \subseteq f^{-1}(Cl_Y V_2)$. Let $u \in \omega Cl_X f^{-1}(V_2)$. Suppose that $u \notin f^{-1}(Cl_Y V_2)$. Then $f(u) \notin Cl_Y V_2$. This implies that there exists an open set W in Y containing f(u) such that $W \cap V_2 = \phi$. Hence $(Cl_Y W) \cap V_2 =$ ϕ . Since $f(u) \in W \in \rho$, by hypothesis there exists an ω -open subset H in X containing u such that $f(H) \subseteq Cl_Y W$. Since $u \in \omega Cl_X f^{-1}(V_2), H \cap f^{-1}(V_2) \neq 0$ ϕ , and hence $f(H) \cap V_2 \neq \phi$. This implies that $Cl_Y W \cap V_2 \neq \phi$ which is impossible. Thus, $\omega Cl_X f^{-1}(V_2) \subseteq f^{-1}(Cl_Y V_2)$. Hence $G \subseteq f^{-1}(Cl_Y V_2)$. Therefore, $f(G) \subseteq Cl_V V_2$. Hence f is continuous.

In a similar way as continuity, it is easy to prove the following results:

Theorem 2.7. Every constant mapping from (X, \mathfrak{F}) into (R, \wp) is ω -continuous. Moreover, if f and g from (X, \mathfrak{F}) into (R, \wp) are ω -continuous mappings, then the following statements are true:

- 1. $f \pm g$, fg, |f|, $min\{f,g\}$ and $max\{f,g\}$ are ω -continuous mappings,
- 2. If $g(x) \neq 0$ for all $x \in X$, then $\frac{f}{a}$ is ω -continuous.

Theorem 2.8. Let $f_n : (X, \mathfrak{F}) \to (R, \wp)$ be ω -continuous mappings for all $n \in N$. If $f : (X, \mathfrak{F}) \to (R, \wp)$ is a mapping such that the series $\sum_{n=0}^{\infty} f_n(x)$ is uniformly convergent to f(x), then f is an ω -continuous mapping.

Definition 2.9. A subset A of a space (X, \mathfrak{F}) is said to be an ω -zero-set of X if there exists an ω -continuous mapping $f : (X, \mathfrak{F}) \to (R, \wp)$ such that $A = \{x \in X; f(x) = 0\}$ and a subset is called co ω -zero-set if it is the complement of an ω -zero-set. Furthermore, if $f : (X, \mathfrak{F}) \to (R, \wp)$ is an ω -continuous mapping, then the set $\omega Z(f) = \{x \in X; f(x) = 0\}$ is called the ω -zero-set of f.

Remark 2.10. 1. Every ω -zero-set of a space is ω -closed and hence every co ω -zero-set is an ω -open set,

2. Every zero-set of any space is an ω -zero-set.

The following examples show that the converse of neither parts of Remark 2.10 is true:

Example 2.11. Consider an ω -closed subset Q of the space (R, \wp) . We have to show the set Q is not ω -zero-set. Suppose that Q is an ω -zero-set. Then there exists an ω -continuous mapping $f : R \to R$ such that $\{x \in R; f(x) = 0\} = Q$. Therefore, f(x) = 0 if and only if $x \in Q$. Since f is ω -continuous, f is a continuous mapping $\{$ by Theorem 2.6 $\}$. Hence Q is a zero-set. Consequently, Q is a closed subset of R, which is a contradiction.

Example 2.12. Let $f : (X, \mathfrak{F}) \to (R, \wp)$ be a mapping defined by f(a) = 0and f(b) = 1 = f(c), where the $X = \{a, b, c\}$ and $\mathfrak{F} = \{\phi, X, \{a\}\}$. Then f is ω -continuous, but not a continuous function. Hence the set $\{a\}$ is an ω -zero-set which is not zero-set.

Lemma 2.13. If A is an ω -zero-set of a space X, then there exists an ω -continuous mapping $f: X \to R$ such that $f \ge 0$ and $A = \omega Z(f)$.

Proof. Since $A = \omega Z(g)$ for some ω -continuous mapping $g : X \to R$, by Theorem 2.7, the mapping $f = |g| \ge 0$ is ω -continuous and $A = \omega Z(f)$.

Lemma 2.14. The intersection and union of any finite number of ω -zero-sets is also an ω -zero-set. If $\omega Z(f)$ and $\omega Z(g)$ are ω -zero-sets of f and g, then $\omega Z(f) \cup \omega Z(g) = \omega Z(fg), \, \omega Z(f) \cap \omega Z(g) = \omega Z(h), \text{ where } h = f + g.$

Proof. By Theorem 2.7, it follows that both fg and h = f + g are ω -continuous. Therefore, $\omega Z(f) \cup \omega Z(g) = \omega Z(fg), \, \omega Z(f) \cap \omega Z(g) = \omega Z(h)$ are ω -zero-sets.

Lemma 2.15. If $\alpha \in R$ and $f : X \to R$ is an ω -continuous mapping, then the set $A = \{x \in X; f(x) \geq \alpha\}$ as well as $B = \{x \in X; f(x) \leq \alpha\}$ are ω -zero-sets, and hence the sets $\{x \in X; f(x) < \alpha\}$ and $\{x \in X; f(x) > \alpha\}$ are co ω -zero-sets.

Proof. By using Theorem 2.7, it is easy to see that $A = \omega Z(\min\{f(x) - \alpha, 0\})$ and $B = \omega Z(\max\{f(x) - \alpha, 0\})$ are ω -zero-sets.

Lemma 2.16. If A and B are disjoint ω -zero-sets the space X, then there exist disjoint $co\omega$ -zero-sets U and V containing A and B, respectively.

Proof. Let $A = \omega Z(f)$ and $B = \omega Z(g)$. Then the mapping $h : X \to R$ given by $h(x) = \frac{f(x)}{f(x)+g(x)}$ is well-defined and in view of Theorem 2.7 it is ω -continuous, $h(A) = \{0\}$ and $h(B) = \{1\}$. Then by Lemma 2.15, the sets $\{x \in X; h(x) > \frac{1}{2}\}$ and $\{x \in X; h(x) < \frac{1}{4}\}$ are the required $co\omega$ -zero (hence ω -open) sets.

Corollary 2.17. If X is anti-locally countable, then every ω -zero-set of X is a zero-set.

Proof. It follows from Theorem 2.6.

Now, we recall the following known definition.

Definition 2.18. [8] A space (X, \mathfrak{F}) is said to be ω - T_1 (resp. ω - T_2) if for each pair of distinct points x and y of X, there exist ω -open sets U and V containing x and y, respectively such that $y \notin U$ and $x \notin V$ (resp. $U \cap V = \phi$).

Since each countable subset of any space is ω -closed, it is easy to see that each space is an ω - T_1 space. Therefore, the results (Theorem 3.12 and Corollary 3.13 of [2]) are trivial and they do not need to Y satisfy any separating axiom. Note that every T_2 -space is an ω - T_2 -space but not conversely.

Theorem 2.19. Let X be an anti-locally countable space. Then X is an ω -T₂ space if and only if X is a T₂-space.

Proof. Let X be an anti-locally countable space. It is enough to prove that X is a T_2 -space if X is an ω - T_2 -space. For this, let $x \neq y$ in an ω - T_2 -space X. Then it is easy to see that, there is an ω -open set U containing x such that $y \notin \omega ClU$. Since U is an ω -open set, there exists an open set G containing x such that G - U is countable. In virtue of Lemma 1.6 and Corollary 2.5, we have $\omega ClU = ClU$ and $ClG \subseteq ClU$. Thus G, X - ClG are disjoint open sets in X containing x and y, respectively. Hence X is a T_2 -space.

3. ω -Regular and Completely ω -Regular Space

Definition 3.1. A space (X, \mathfrak{F}) is called an ω -regular space, if for each ω -closed subset H of X and a point x in X such that $x \notin H$, there exist disjoint ω -open sets U and V containing x and H, respectively.

That is, a space (X, \mathfrak{F}) is ω -regular if and only if the space $(X, \mathfrak{F}^{\omega})$ is regular. Now, we have the following results:

Theorem 3.2. A space X is ω -regular if and only if for each point x in X and each ω -open set G containing x, there exists an ω -open set U such that $x \in U \subseteq \omega ClU \subseteq G$.

Proposition 3.3. Every locally-countable space is an ω -regular space.

The following example shows that the converse of Proposition 3.3 is not true in general.

Example 3.4. Consider the closed ordinal space $X = [0, \Omega]$, where Ω is the first uncountable ordinal and the subspace $[0, \Omega)$ of X (see [12, Example 43, p. 68]). Since X is an ω -space and regular space, it is ω -regular. Since any ω -open set which contains Ω is uncountable, X is not locally-countable.

Theorem 3.5. If each point of a space (X, \mathfrak{F}) contained in some ω -open subset G such that ωClG is an ω -regular subspace of X, then (X, \mathfrak{F}) is ω -regular.

Proof. Let $x \in G \in \mathfrak{S}^{\omega}$. Then by hypothesis, there exists an ω -open set V containing x such that (H, \mathfrak{S}_H) is an ω -regular subspace of X, where $H = \omega ClV$. Since $x \in G \cap H \in \mathfrak{S}_H^{\omega}$, by ω -regularity of (H, \mathfrak{S}_H) , there exists an ω -open subset U of H such that $x \in U \subseteq \omega Cl_H U \subseteq G \cap H \subseteq G$. Since H is ω -closed and $x \in V \subseteq H$, $x \in \omega Int_X H$. Thus by Theorem 2.1, we have $x \in \omega Int_X U \subseteq \omega Cl_X(U) = \omega Cl_X(U) \cap H = \omega Cl_H U \subseteq G$. Hence X is an ω -regular space.

Theorem 3.6. If a space X is an anti-locally countable ω -regular space, then X is a regular and ω -space.

Proof. Let G be any open set in X and let x be a point in X such that $x \in G$. Then by Theorem 3.2, there exists an ω -open set U in X such that $x \in U \subseteq \omega ClU \subseteq G$. Since $x \in U$, there exists an open set V such that $x \in V$ and V - U is countable. Hence by Lemma 1.6 and Corollary 2.5, we have $ClU = \omega ClU$ and $ClV \subseteq ClU$. Thus, $x \in V \subseteq ClV \subseteq G$. Therefore, X is regular.

If G is an arbitrary ω -open set in X and x is any point of G, then by the above argument, we can prove that G is an open set. This implies that X is an ω -space.

The following result gives the relationship between ω -regular and an ω - T_2 -space:

Proposition 3.7. Every ω -regular space is an ω - T_2 space.

Proof. Obvious.

The following examples show that the converse of Proposition 3.7 is not true in general.

Example 3.8. Consider the Smirnov's Deleted Sequence Topology [12, Example 64, pp. 88] η on the set of all real number R, which is defined as: if $A = \{\frac{1}{n}; n \in N\}$, then $\eta = \{U \subseteq R; U = G - B, G \in \wp$ and $B \subseteq A\}$. Since this topology is finer than the usual topology \wp , (R, η) is a T_2 -space. Hence, (R, η) is an ω - T_2 space. Since (R, η) is a non regular anti locally-countable space, (R, η) is not ω -regular {by Theorem 3.6}.

The following proposition gives a partial converse of Proposition 3.7 and another relationship between regularity and ω -regularity:

Proposition 3.9. 1. Every ω -compact ω - T_2 space is an ω -regular space, 2. Every ω -compact T_2 space is both regular and ω -regular space.

Proof. Straightforward.

The following theorem shows that the property of ω -regularity is a hereditary property:

Theorem 3.10. Every subspace of an ω -regular space is also ω -regular. **Proof.** Obvious.

Definition 3.11. A space (X, \mathfrak{F}) is said to be a completely ω -regular space if for every ω -closed subset F of X and every point $x \in X - F$, there exists an ω -continuous mapping $f : (X, \mathfrak{F}) \to (I, \wp_I)$ (simply, $f : X \to I$), such that $f(x) = \{0\}$ and $f(F) = \{1\}$.

That is, a space (X, \mathfrak{F}) is completely ω -regular if and only if $(X, \mathfrak{F}^{\omega})$ is completely regular.

Now, it is easy to show the following results:

Theorem 3.12. A space (X, \mathfrak{F}) is a completely ω -regular space if and only if for every ω -open subset G of X and every point $x \in G$, there exists an ω -continuous mapping $f : X \to I$ such that f(x) = 0 and f(y) = 1 for all $y \notin G$.

Proof. Obvious.

Proposition 3.13. Every completely ω -regular space is an ω -regular space. **Proof.** Obvious.

Proposition 3.14. Every locally-countable space is completely ω -regular. **Proof.** Obvious.

The converse of the Proposition 3.14 is not true; see Example 3.4. **Question:** Is the converse of Proposition 3.13 true?

Theorem 3.15. A space (X, \mathfrak{F}) is completely ω -regular if and only if the collection of all $co\omega$ -zero-sets of X form a base for \mathfrak{F}^{ω} .

Proof. Let V be any ω -open set in a completely ω -regular space X and let $v \in V$. Then by Theorem 3.12, there exists an ω -continuous mapping $g: X \to I$ such that g(v) = 1 and $g(X - V) = \{0\}$. Set $U = \{x \in X; g(x) \ge \frac{2}{3}\}$ and $G = \{x \in X; g(x) > \frac{2}{3}\}$. By Lemma 2.15, U is an ω -zero set and G is a co ω -zero set such that $x \in G \subseteq U \subseteq V$.

Conversely, suppose that the condition of theorem holds. Let $a \in X$ and H be an ω -closed set in X such that $a \notin H$. Then by hypothesis, there exists an ω -zero set, say $\omega Z(h)$ such that $a \in X - \omega Z(h) \subseteq X - H$, where $h : X \to I$ is an ω -continuous mapping. Hence we have h(a) = t > 0. We define $f : X \to I$ by putting $f(x) = \min\{1, \frac{|h(x)|}{t}\}$. Then by Theorem 2.7, f is an ω -continuous mapping. Consequently, we have f(a) = 1 and $x \in \omega Z(h)$ for each $x \in H$. Therefore, f(x) = 0 for each $x \in H$. Hence X is completely ω -regular.

The following examples show that completely regularity and completely ω -regularity are independent topological concepts:

Example 3.16. Let $X = \{a, b, c\}$ and $\Im = \{\phi, X, \{a\}\}$. Then by Proposition 3.14, (X, \Im) is a completely ω -regular, but not completely regular because it is not regular.

Example 3.17. The usual space (R, \wp) is completely regular but not a completely ω -regular space because it is not ω -regular.

The following theorem shows that the property of ω -regularity is a hereditary property:

Theorem 3.18. Every subspace of a completely ω -regular space is also a completely ω -regular space.

Proof. Let (X, \mathfrak{F}) be a completely ω -regular space and let (Y, \mathfrak{F}_Y) be a subspace of (X, \mathfrak{F}) . Suppose that A is any ω -closed set in Y and y is a point of Y such that $y \notin A$. Since A is an ω -closed subset of Y, by Theorem 1.2, there exists an ω -closed subset H of X such that $A = H \cap Y$. Since $y \in Y$ and $y \notin A, y \notin H$. By completely ω -regularity of X, there exists an ω -continuous mapping $f: X \to I$ such that $f(y) = \{0\}$ and $f(A) = \{1\}$. Hence by Theorem 1.11, the restriction mapping $f_Y: Y \to I$ is an ω -continuous mapping and $f_Y(y) = 0 = f(y)$. Since $A \subseteq H$ and $A \subseteq Y$, $f_Y(A) \subseteq f(H) = \{1\}$. Thus $f_Y(A) = \{1\}$.

The following theorem gives a relationship between completely ω -regularity and completely regularity:

Theorem 3.19. If X is an anti-locally countable and completely ω -regular space, then X is completely regular and X is an ω -space.

Proof. Let X be an anti-locally-countable completely ω -regular space. Let H be a closed set in X and suppose that x is an arbitrary point in X such that $x \notin H$. Since every closed set is ω -closed and by completely ω -regularity of a space X, there exists an ω -continuous mapping $f : X \to I$ such that $f(y) = \{0\}$ and $f(H) = \{1\}$. Since X is anti locally-countable and I is a regular space, by Theorem 2.6, $f : X \to I$ is a continuous mapping. Hence X is completely regular. Since X is completely ω -regular, by Theorem 2.6, it is ω -regular and then by Theorem 3.6, it is ω -space.

4. ω -Normal Space

Definition 4.1. A space X is called an ω -normal space if for each pair of disjoint ω -closed sets A and B in X, there exist disjoint ω -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

That is, a space (X, \mathfrak{F}) is an ω -normal space if and only if $(X, \mathfrak{F}^{\omega})$ is a normal space

It is not difficult to prove the following characterizations of an ω -normal space:

Theorem 4.2. A space X is an ω -normal space if for each pair of ω -open sets U and V in X such that $X = U \cup V$, there exist ω -closed sets A and B which are contained in U and V, respectively and $X = A \cup B$.

Theorem 4.3. If X is any space, then the following statements are equivalent:

- 1. The space X is ω -normal,
- 2. For each ω -closed set A in X and each ω -open set G in X containing A, there is an ω -open set U such that $A \subseteq U \subseteq \omega ClU \subseteq G$.
- 3. For each ω -closed set A and each ω -open set G containing A, there exist ω -open sets $\{U_n, n \in N\}$ such that $A \subseteq \cup \{U_n; n \in N\}$ and $\omega ClU_n \subseteq G$ for each $n \in N$.

316 Alias Barakat Khalaf, Halgwrd Mohammed Darwesh, and K. Kannan

Now, we can establish the following Urysohn's type lemma of ω -normality which is an important characterization of the ω -normal space:

Theorem 4.4. Let X be any space. Then the following statements are equivalent:

- 1. X is an ω -normal space,
- 2. For each ω -closed subset A and ω -open subset B of X such that $A \subseteq B$, there exists an ω -continuous mapping $f : X \to I$ such that $f(A) = \{0\}$ and $f(X - B) = \{1\}$,
- 3. For each pair of disjoint ω -closed subsets F and H of X, there exists an ω -continuous mapping $f : X \to I$ such that $f(F) = \{0\}$ and $f(H) = \{1\}$.

Proof. (1) \Rightarrow (2) : Suppose that *B* is an ω -open subset of an ω -normal space *X* containing an ω -closed subset *A* of *X*. Then by Theorem 4.3, there exists an ω -open set which we denote by $U_{\frac{1}{2}}$ such that $A \subseteq U_{\frac{1}{2}} \subseteq \omega ClU_{\frac{1}{2}} \subseteq B$. Then $U_{\frac{1}{2}}$ and *B* are ω -open subsets of *X* containing the ω -closed sets *A* and $\omega ClU_{\frac{1}{2}}$, respectively. In the same way, there exist ω -open sets, say $U_{\frac{1}{4}}$ and $U_{\frac{3}{4}}$ such that $A \subseteq U_{\frac{1}{4}} \subseteq \omega ClU_{\frac{1}{4}} \subseteq U_{\frac{1}{2}}$ and $\omega ClU_{\frac{1}{2}} \subseteq U_{\frac{3}{4}} \subseteq \omega ClU_{\frac{3}{4}} \subseteq B$. Continuing in this process, for each rational number in the open interval (0, 1) of the form $t = \frac{m}{2^n}$, where n = 1, 2, ... and $m = 1, 2, ..., 2^{n-1}$, we obtain ω -open sets of the form U_t such that for each s < t then $A \subseteq U_s \subseteq \omega ClU_s \subseteq U_t \subseteq \omega ClU_t$. We denote the set of all such rational numbers by Ψ , and define $f : X \to I$ as follows:

$$f(x) = \begin{cases} 1 \text{ if } x \in X - B\\ \inf \{t; t \in \Psi \text{ and } x \in U_t \} \end{cases}$$

 $f(X - B) = \{1\}$ and if $x \in A$, then $x \in U_t$ for all $t \in \Psi$. Therefore, by the definition of f, we have $f(x) = inf\Psi = 0$. Hence $f(B) = \{0\}$ and $f(x) \in I$ for all $x \in X$. It remains only to show that f is an ω -continuous mapping since the intervals of the form [0,a) and (b,1], where $a, b \in (0,1)$ form an open subbase of the space I. If $x \in U_t$ for some t < a, then $f(x) = \inf\{s; s \in \psi \text{ and } x \in U_s\}$ $= r \leq t < a$. Thus $0 \leq f(x) < a$. If f(x) = 0, then $x \in U_t$ for all $t \in \Psi$. Hence $x \in U_t$ for some t < a. If 0 < f(x) < a, by definition of f, we have $f(x) = \{s; s \in \Psi \text{ and } x \in U_s\} < a$ {Since a < 1}. Thus f(x) = t for some t < a, and hence $x \in U_t$ for some t < a. Therefore, we conclude that $0 \leq f(x) < a$ if and only if $x \in U_t$ for some t < a. Hence $f^{-1}([0, a)) = \cup \{U_t; t \in \Psi \text{ and } x \in U_t\}$ which is an ω -open subset of X. Also it is easy to assert that: $0 \leq f(x) \leq b$ if and only if $x \in U_t$ for all t > b. Let $x \in X$ such that $0 \leq f(x) \leq b$. It is evident that f(x) < t for all t > b which implies that $x \in U_t$ for all t > b. For the converse, let $x \in U_t$ for all t > b. Then $f(x) \leq t$ for all t > b. Thus $f(x) \leq b$ and it is clear from the definition of f, that $f(x) \geq 0$. This proves our assertion. Since for all t > b, there is $r \in \Psi$ such that t > r > b. Then $\omega ClU_r \subseteq U_t$. Consequently we have $\cap \{U_t; t \in \Psi \text{ and } t > b\} = \cap \{\omega ClU_r; r \in \Psi$ and $r > b\}$. Therefore, $f^{-1}([0,b]) = \{x; 0 \leq f(x) \leq b\} = \cap \{U_t; t \in \Psi \text{ and}$ $t > b\} = \cap \{\omega ClU_r; r \in \Psi \text{ and } r > b\}$. Since $f^{-1}((0,1]) = f^{-1}(I - [0,b]) =$ $X - f^{-1}([0,b]) = \cup \{X - \omega ClU_r; r \in Psi \text{ and } r > b\}$ which is ω -open, and this completes the proof of this part.

 $(2) \Rightarrow (3)$: Obvious.

 $(3) \Rightarrow (1)$: Let A and B be two disjoint ω -closed subsets of X. Then by hypothesis, there exists an ω -continuous mapping $f : X \to I$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$. Then the disjoint open sets $[0, \frac{1}{2})$ and $(\frac{1}{2}, 1]$ in Icontaining f(A) and f(B), respectively. The ω -continuity of f gives that $f^{-1}([0, \frac{1}{2}))$ and $f^{-1}((\frac{1}{2}, 1])$ are disjoint ω -open sets in X containing A and B, respectively. It completes the proof.

Corollary 4.5. Every ω -normal space is completely ω -regular and hence it is ω -regular.

Question: Is the converse of corollary 4.5 true?

Recalling that the space $(X, \mathfrak{T}^{\omega})$ is lindelöf if and only if (X, \mathfrak{T}) is lindelöf [9].

Theorem 4.6. Every ω -regular lindelöf space X is ω -normal.

Proof. Let F be any ω -closed and U be any ω -open subset of an ω -regular lindelöf space X such that $F \subseteq U$. Then by Theorem 3.2, for each $x \in F$, there exists an ω -open set V_x such that $x \in V_x \subseteq \omega ClV_x \subseteq U$. Since F is ω -closed, by part (i) of [8, Theorem 3.3], F is also a lindelöf subspace. Therefore, the cover $\{V_x; x \in F\}$ of F has a countable subcover, say $\{V_n; n \in N\}$. Thus $F \subseteq \{V_n; n \in N\}$ and $\omega ClV_n \subseteq U$ for each $n \in N$. Hence by Theorem 4.3, X is ω -normal.

In virtue of Theorem 2.8, Theorem 4.4 and the fact that every bounded closed intervals of R are homeomorphic, we can generalize the Tietze Extension Theorem to ω -normality which is also an important characterization of ω -normal space.

318 Alias Barakat Khalaf, Halgwrd Mohammed Darwesh, and K. Kannan

Theorem 4.7. A space X is ω -normal if and only if every ω -continuous mapping g on an ω -closed subset of X into any closed interval [a,b] has an ω -continuous extension f over X into [a,b].

The following result contains the relationship between ω -normal and an ω -zero-set:

Proposition 4.8. Let X be a space. Then

- 1. An ω -zero-set of X is ω -closed and it is the intersection of many countable ω -open sets,
- 2. Let H be an ω -closed subset of X which is the intersection of many countable ω -open sets. If X is ω -normal, then H is an ω -zero-set.

Proof. (1) Let F be an ω -zero-set of a space X. Then by Remark 2.10, F is an ω -closed subset of X. Then by Lemma 2.13, there exists an ω -continuous mapping $f: X \to R$ such that $f \ge 0$ and $F = \omega Z(f)$. Hence $F = \bigcap \{U_n; n \in Z^+\}$, where $U_n = \{x \in X; f(x) < \frac{1}{n}\}$.

(2) Let H be an ω -closed subset of an ω -normal space X such that $H = \bigcap \{U_n; n \in Z^+\}$, where U_n is an ω -open set for each $n \in Z^+$. Since $H \subseteq U_n$ for each $n \in Z^+$ and X is an ω -normal space, for each $n \in Z^+$, there exists an ω -continuous mapping $f_n : X \to [0, \frac{1}{3^n}]$ such that $f_n(H) = \{0\}$ and $f_n(X - U_n) = \{\frac{1}{3^n}\}$ {by Theorem 4.4}. Since $\sum_{n=0}^{\infty} f_n(x) \leq \sum_{n=0}^{\infty} \frac{1}{3^n}$ and the series $\sum_{n=0}^{\infty} \frac{1}{3^n}$ is absolutely convergent, the mapping $f : X \to R$ given by $f(x) = \sum_{n=0}^{\infty} f_n(x)$ for each $x \in X$ is an ω -continuous mapping and $H = \omega Z(f)$ {by Theorem 2.8}.

Corollary 4.9. Every locally-countable space is ω -normal.

The converse of Corollary 4.9 is not true; see Example 3.4 and [12, Example 43, p. 68]. Now, since the usual topological space (R, \wp) is not ω -regular and by Corollary 4.5, (R, \wp) is not ω -normal. However, it is a normal space. This means that the ω -normality is not implied by normality. The following example shows that the ω -normality does not imply normality and hence this means that the ω -normality and normality are independent topological concepts.

Example 4.10. Let $X = \{a, b, c\}$ and $\mathfrak{F} = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then by Corollary 4.9, the space (X, \mathfrak{F}) is ω -normal, but not a normal space because there are no disjoint open sets containing the disjoint closed sets $\{b\}$ and $\{c\}$, respectively.

The following theorem shows a relationship between ω -normality and normality:

Theorem 4.11. Let X be an anti-locally countable ω -normal space. Then X is a normal space and it is an ω -space.

Proof. Let F and H be two disjoint closed subsets of an anti-locally countable ω -normal space X. Then there exist ω -open sets U and V such that $F \subseteq U$, $H \subseteq V$ and $U \cap V = \phi$. This implies that $\omega ClU \cap V = \phi$ and $U \cap \omega ClV = \phi$. Since X is anti-locally-countable, we get $ClU \cap V = \phi$ and $U \cap ClV = \phi$ {by Lemma 1.6}. Since $IntClU \subseteq ClU$ and $IntClV \subseteq ClV$, $IntClU \cap V = \phi$, $U \cap IntClV = \phi$. This implies that $IntClU \cap ClV = \phi$ and $ClU \cap IntClV = \phi$. Thus $IntClU \cap IntClV = \phi$. Hence IntClU and IntClV are disjoint open sets in X containing F and H, respectively. This implies that X is a normal space. By Corollary 4.5 and Theorem 3.6, it follows that X is an ω -space.

Recalling that a space X is said to be a separable space [7, Definition 8.7.1, p. 175], if it contains a countable dense subset. Then it is easy to obtain the following results:

Proposition 4.12. There is no anti-locally countable separable space which is ω -regular (and hence ω -normal).

Proof. Obvious.

Note that Proposition 4.12, gives another way to proving that (R, \wp) is neither ω -regular nor ω -normal. However, the space (R, \wp) is an anti-locally-countable regular separable space.

Proposition 4.13. There is no uncountable space (X, \mathfrak{F}) for which $(X, \mathfrak{F}^{\omega})$ is separable.

Proof. Obvious.

Theorem 4.14. Every ω -closed subspace of an ω -normal space is also an ω -normal space.

320 Alias Barakat Khalaf, Halgwrd Mohammed Darwesh, and K. Kannan

Proof. Obvious.

We recall that a topological space is said to be completely normal [11, Definition 1.4.1, p. 27] if every subspace of the space is normal. The following example shows that the property that being an ω -normal of a space is not hereditary.

Example 4.15. Consider the Tychonoff Plank space $X = [0, \Omega] \times [0, \Omega_0]$ [12, Example 86, p. 106] and [7, Example 3.4, p. 145], where Ω and Ω_0 denoted the first uncountable and first infinite countable ordinals. Since both ordinal spaces $[0, \Omega]$ and $[0, \Omega_0]$, are ω -spaces, $X = [0, \Omega] \times [0, \Omega_0]$ is also an ω -space. Since this space is normal, it is ω -normal. Since this space is not a completely normal space, it is not hereditary normal. Hence it is not hereditary ω -normal.

5. Some Covering and Characterizations of ω -Normal Space

We begin this section with the following definition:

Definition 5.1. The family $\{A_{\lambda}; \lambda \in \Lambda\}$ of subsets of a space (X, \mathfrak{F}) is called:

- 1. ω -locally-finite if for each $x \in X$, there exists an ω -open set G containing x such that the set $\{\lambda \in \Lambda; G \cap A_{\lambda} \neq \phi\}$ is finite,
- 2. ω -discrete if for each point $x \in X$, there is an ω -open set G containing x such that the set $\{\lambda \in \Lambda; G \cap A_{\lambda} \neq \phi\}$ has at most one member.

Proposition 5.2. Every locally-finite family of subsets of any space (X, \mathfrak{F}) is ω -locally-finite.

Proof. It follows from the fact that $\Im \subseteq \Im^{\omega}$.

The following example shows that the converse implication of Proposition 5.2 is not true in general.

Example 5.3. Consider the set X = N equipped with the indiscrete topology T_ind . Then the family $\{\{n\}; n \in X\}$ is an ω -discrete (and hence ω -locally-finite) but not locally-finite (and hence not discrete).

The following example shows that the arbitrary union of ω -closed sets need not be ω -closed. That is, the union of ω -closure of sets does not equal to the ω -closure of their union as well as it show that the unions of closed sets need not be closed.

Example 5.4. Consider the usual topological space (R, \wp) . Then $\{\{x\}; x \in (0,1)\}$ is a family of ω -closed subsets of R. Thus $\cup \{\omega Cl\{x\}; x \in (0,1)\} = \cup \{\{x\}; x \in (0,1)\} = (0,1)$ which is not ω -closed. But $\omega Cl(0,1) = [0,1]$.

Proposition 5.5. If $\{A_{\lambda}; \lambda \in \Lambda\}$ is an ω -locally-finite family of subsets of a space X, then $\{\omega ClA_{\lambda}; \lambda \in \Lambda\}$ is also ω -locally-finite and $\omega Cl(\cup \{A_{\lambda}; \lambda \in \Lambda\}) = \cup \{\omega ClA_{\lambda}; \lambda \in \Lambda\}.$

Proof. Let $x \in X$. Since $\{A_{\lambda}; \lambda \in \Lambda\}$ is ω -locally-finite, there exists an ω -open set G containing x such that the set $\{\lambda \in \Lambda; G \cap A_{\lambda} \neq \phi\}$ is finite. Since $G \cap A_{\lambda} = \phi$ if and only if $G \cap \omega ClA_{\lambda} = \phi$, $\{\lambda \in \Lambda; G \cap \omega ClA_{\lambda} \neq \phi\}$ is finite. $\{\omega ClA_{\lambda}; \lambda \in \Lambda\}$ is also ω -locally-finite. Since $\cup \{\omega ClA_{\lambda}; \lambda \in \Lambda\}$ is $\Delta \subseteq \omega Cl(\cup \{A_{\lambda}; \lambda \in \Lambda\})$, we have only to prove that $\omega Cl(\cup \{A_{\lambda}; \lambda \in \Lambda\}) \subseteq \cup \{\omega ClA_{\lambda}; \lambda \in \Lambda\}$. Let $x \notin \cup \{\omega ClA_{\lambda}; \lambda \in \Lambda\}$. Since $\{\omega ClA_{\lambda}; \lambda \in \Lambda\}$ is ω -locally-finite, there exists an ω -open set U containing x such that $\Lambda_0 = \{\lambda \in \Lambda; U \cap \omega ClA_{\lambda} \neq \phi\}$ is finite. Set $V = U \cap (\cup \{X - \omega ClA_{\lambda}; \lambda \in \Lambda\}) = \cup \{V \cap A_{\lambda}; \lambda \in \Lambda\} = \phi$. Thus $x \notin \omega Cl(\cup \{A_{\lambda}; \lambda \in \Lambda\})$. This completes the proof.

Corollary 5.6. If $\{A_{\lambda}; \lambda \in \Lambda\}$ is a locally-finite family of subsets of a space X, then $\{\omega ClA_{\lambda}; \lambda \in \Lambda\}$ is also locally-finite and $\omega Cl(\cup \{A_{\lambda}; \lambda \in \Lambda\}) = \cup \{\omega ClA_{\lambda}; \lambda \in \Lambda\}$.

Proof. It follows from Proposition 5.2 and Proposition 5.5.

It is easy to see that for any subset A and any ω -open subset G of any space $X, G \cap A = \phi$ if and only if $G \cap \omega ClA = \phi$. But the following example shows that with this fact, the ω -locally-finiteness of the ω -closure of a family does not imply the ω -locally-finiteness of the family. Also, it shows that the locally-finiteness of the closure of a family does not imply the locally-finiteness of the family.

Example 5.7. Consider the set X = R equipped with the topology $\rho = \{\phi, X, Irr\}$. Then the family $\{(p, p+1); p \in Z\}$ is neither ω -locally-finite nor

locally-finite. It is easy to see that each non-empty ω -open set U of X contains a set of the form X - C or Irr - C, where C is a countable subset of X. Hence $U \cap (p, p+1) \neq \phi$, for each $p \in Z$. Thus $\{\omega Cl(p, p+1); p \in Z\} = \{X\}$ which is locally-finite (and hence ω - locally-finite).

Proposition 5.8. Let $\{A_{\lambda}; \lambda \in \Lambda\}$ be a family of subsets of a space X and $\{B_{\gamma}; \gamma \in \Gamma\}$ be an ω -locally-finite ω -closed cover of X such that for each $\gamma \in \Gamma$, the set $\{\lambda \in \Lambda; B_{\gamma} \cap A_{\lambda} \neq \phi\}$ is finite. Then there exists an ω -locally-finite family $\{G_{\lambda}; \lambda \in \Lambda\}$ of ω -open sets of X such that $A_{\lambda} \subseteq G_{\lambda}$ for each $\lambda \in \Lambda$.

Proof. For each λ , let $G_{\lambda} = X - (\bigcup \{B_{\gamma}; B_{\gamma} \cap A_{\lambda} = \phi\})$. So it is easy to see that $A_{\lambda} \subseteq G_{\lambda}$ and by Proposition 5.6, G_{λ} is ω -open for each λ . Let $x \in X$. Since $\{B_{\gamma}; \gamma \in \Gamma\}$ is ω -locally-finite, there is an ω -open set U containing xsuch that the set $\Gamma_0 = \{\gamma \in \Gamma; U \cap B_{\gamma} \neq \phi\}$ is finite. Thus $U \cap B_{\gamma} = \phi$ for each $\gamma \notin \Gamma_0$. Therefore, $U \subseteq \bigcup \{B_{\gamma}; \gamma \in \Gamma_0\}$. Also, since for each $\gamma \in \Gamma_0, G_{\lambda} \cap B_{\gamma} = \phi$ if and only if $A_{\lambda} \cap B_{\gamma} = \phi$, the finiteness of $\{\lambda \in \Lambda; B_{\gamma} \cap A_{\lambda} \neq \phi\}$ implies the finiteness of $\{\lambda \in \Lambda; U \cap G_{\lambda} \neq \phi\}$ and this completes the proof.

Definition 5.9. An ω -open covering $\{U_{\lambda}; \lambda \in \Lambda\}$ of a space X is said to be ω -shrinkable if there exists an ω -open covering $\{V_{\lambda}; \lambda \in \Lambda\}$ of X such that $\omega ClV_{\lambda} \subseteq U_{\lambda}$ for each $\lambda \in \Lambda$.

Theorem 5.10. Let X be a space. Then the following statements are equivalent:

- 1. X is ω -normal,
- 2. Each point-finite ω -open covering of X is ω -shrinkable,
- 3. Each finite ω -open covering of X has a locally-finite ω -closed refinement,
- 4. Each finite ω -open covering of X has an ω -locally-finite ω -closed refinement.

Proof. (1) \Rightarrow (2) : Let $\{U_{\lambda}; \lambda \in \Lambda\}$ be a point-finite ω -open covering of an ω -normal space X. Assume that Λ is well-ordered. We shall construct the ω -shrinking to $\{U_{\lambda}; \lambda \in \Lambda\}$ by the transfinite induction. For this; let μ be an element of Λ and suppose that for each $\lambda < \mu$, we have an ω -open set V_{λ} such that $\omega ClV_{\lambda} \subseteq U_{\lambda}$ and for each $v < \mu$, $[\cup\{V_{\lambda}; \lambda < v\}] \cup [\cup\{U_{\lambda}; \lambda \geq v\} = X$. Let $x \in X$. Since $\{U_{\lambda}; \lambda \in \Lambda\}$ is point-finite, there is the largest element, say

 $\xi \in \Lambda$ such that $x \in U_{\xi}$. If $\xi \ge \mu$, then $x \in \bigcup\{U_{\lambda}; \lambda \ge \mu\}$. However, if $\xi < \mu$, then $x \in [\bigcup\{V_{\lambda}; \lambda < \mu\}]$. Hence $[\bigcup\{V_{\lambda}; \lambda < \mu\}] \cup [\bigcup\{U_{\lambda}; \lambda \ge \mu\}] = X$. Thus U_{μ} contains the complement of an ω -open set $[\bigcup\{V_{\lambda}; \lambda < \mu\}] \cup [\bigcup\{U_{\lambda}; \lambda > \mu\}]$. Since X is an ω -normal space, there exits an ω -open set, say V_{μ} such that $(X - [\bigcup\{V_{\lambda}; \lambda < \mu\}] \cup [\bigcup\{U_{\lambda}; \lambda > \mu\}]) \subseteq V_{\mu} \subseteq \omega ClV_{\mu} \subseteq U_{\mu}$ {by Theorem 4.3}. Hence $[\bigcup\{V_{\lambda}; \lambda \le \mu\}] \cup [\bigcup\{U_{\lambda}; \lambda \ge \mu\}] = X$. Hence the construction of the ω -shrinking of $\{U_{\lambda}; \lambda \in \Lambda\}$ is completed by transfinite induction.

 $(2) \Rightarrow (3)$: Obvious.

 $(3) \Rightarrow (4)$: Follows from Proposition 5.2.

 $(4) \Rightarrow (1)$: Let X be a space which satisfies condition (4) and let U and V be two ω -open subsets of X such that $U \cup V = X$. Then $\{U, V\}$ is a finite ω -open covering of X. Then by hypothesis, this covering has an ω -locally-finite ω -closed refinement, say Ψ . Let F and H be the union of these members of Ψ which is contained in U and V, respectively. Then by Proposition 5.5, F and H are ω -closed subsets of X. Since Ψ is a cover of X, in view of Theorem 4.2, X is ω -normal.

Theorem 5.11. Let $\{U_{\lambda}; \lambda \in \Lambda\}$ be an ω -locally-finite family of an ω -open set of an ω -normal space X, and let $\{E_{\lambda}; \lambda \in \Lambda\}$ be a family of ω -closed sets such that $E_{\lambda} \subseteq G_{\lambda}$ for each $\lambda \in \Lambda$. Then there exists a family $\{V_{\lambda}; \lambda \in \Lambda\}$ of ω -open sets such that $E_{\lambda} \subseteq V_{\lambda} \subseteq \omega ClV_{\lambda} \subseteq G_{\lambda}$ for each $\lambda \in \Lambda$ and the families $\{E_{\lambda}; \lambda \in \Lambda\}$ and $\{\omega ClV_{\lambda}; \lambda \in \Lambda\}$ are similar.

Proof. Assume that Λ is well-ordered. We shall construct a family $\{V_{\lambda}; \lambda \in \Lambda\}$ of ω -open sets such that $E_{\lambda} \subseteq V_{\lambda} \subseteq \omega ClV_{\lambda} \subseteq G_{\lambda}$ for each $\lambda \in \Lambda$ by using the transfinite induction. First, we define the family $\{A_{\lambda}^{v}; \lambda \in \Lambda\}$ by

$$A_{\lambda}^{\upsilon} = \begin{cases} \omega C l V_{\lambda} \text{ if } \lambda \leq \mu \\ E_{\lambda} \text{ if } \lambda > \mu \end{cases}$$

Suppose that $\mu \in \Lambda$ and V_{λ} are defined for each $v < \mu$ such that the family $\{A_{\lambda}^{v}; \lambda \in \Lambda\}$ is similar to $\{E_{\lambda}; \lambda \in \Lambda\}$. Let $\{B_{\lambda}; \lambda \in \Lambda\}$ be the family given by

$$B_{\lambda} = \begin{cases} \omega C l V_{\lambda} \text{ if } \lambda \leq \mu \\ E_{\lambda} \text{ if } \lambda > \mu \end{cases}$$

To show $\{B_{\lambda}; \lambda \in \Lambda\}$ is similar to $\{E_{\lambda}; \lambda \in \Lambda\}$. Suppose that $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_k \in \Lambda$ such that $\lambda_1 < \lambda_2 < ... < \lambda_j < \mu < \lambda_{j+1} < ... < \lambda_k$. Since $\lambda_j < \lambda_{\mu}$, $\{A_{\lambda}^{\lambda_j}; \lambda \in \Lambda\}$ and $\{E_{\lambda}; \lambda \in \Lambda\}$ are similar. Since $\cap\{B_{\lambda_i}; i = 1, 2, 3, ..., k\} =$

 $\cap \{A_{\lambda_i}^{\lambda_j}; i = 1, 2, 3, ..., k\}, \cap \{B_{\lambda_i}; i = 1, 2, 3, ..., k\} = \phi$ if and only if $\cap \{E_{\lambda_i}; i = 1, 2, 3, ..., k\} = \phi$. Thus the families $\{B_{\lambda_i}; \lambda \in \Lambda\}$ and $\{E_{\lambda_i}; \lambda \in \Lambda\}$ are similar. Also, since $B_{\lambda} \subseteq G_{\lambda}$ for each $\lambda \in \Lambda$, the family $\{B_{\lambda}; \lambda \in \Lambda\}$ is ω -locally-finite. Thus, if Γ is the family of finite subsets of Λ and for each $\gamma \in \Gamma$, we set $F_{\gamma} = \cap \{B_{\lambda}; \lambda \in \gamma\}$. Then the family $\{F_{\gamma}; \gamma \in \Gamma\}$ is an ω -locally-finite family of ω -closed sets. Hence by Proposition 5.5, we obtain that $F = \bigcup \{F_{\gamma}; F_{\gamma} \cap E_{\mu}\}$ is ω -closed and it is disjoint from E_{μ} . Therefore, by Theorem 4.3, there exists an ω -open set V_{μ} such that $E_{\mu} \subseteq V_{\mu} \subseteq \omega ClV_{\mu} \subseteq$ G_{μ} and $\omega ClV_{\mu} \cap F = \phi$. Hence the ω -open sets V_{λ} are defined for each $\lambda \leq \mu$. It remains only to show that the family $\{A^{\mu}_{\lambda}; \lambda \in \Lambda\}$ is similar to $\{E_{\lambda}; \lambda \in \Lambda\}$. For this, it is sufficient to show that it is similar to $\{B_{\lambda}; \lambda \in \Lambda\}$. Suppose that $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_t \in \Lambda$ and $\cap \{B_{\lambda_i}; i = 1, 2, 3, ..., t\} = \phi$, we have to show $\cap \{A^{\mu}_{\lambda_i}; i = 1, 2, 3, ..., t\} = \phi$. Consider $\lambda_1 < \lambda_2 < ... < \lambda_j \leq$ $\mu < \lambda_{j+1} < \dots < \lambda_t$. If $\lambda_j \neq \mu$, then the proof is completed. If λ_j $= \mu$, then $\cap \{B_{\lambda_i}; i = 1, 2, 3, ..., t\} \cap E_{\mu} = \phi$. Hence by our construction $\cap \{B_{\lambda_i}; i = 1, 2, 3, ..., t\} \cap \omega ClV_{\mu} = \phi$. Thus $\cap \{A_{\lambda_i}^{\mu}; i = 1, 2, 3, ..., t\} = \phi$. This completes the proof.

Corollary 5.12. Let X be a topological space. Then the followings statements are equivalent:

- 1. X is ω -normal,
- 2. For each finite family $\{E_i; i = 1, 2, 3, ..., k\}$ of ω -closed sets of X, there is a family $\{V_i; i = 1, 2, 3, ..., k\}$ of ω -open sets such that $E_i \subseteq V_i$ for each i = 1, 2, ..., k, and the families $\{E_i; i = 1, 2, 3, ..., k\}$ and $\{\omega ClV_i; i = 1, 2, 3, ..., k\}$ are similar,
- 3. For each pair E_1 and E_2 of disjoint ω -closed sets of X, there is a pair V_1 and V_2 of ω -open sets of X such that ωClV_1 and ωClV_2 are disjoint.

Proof. (1) \Rightarrow (2) : It follows by putting $G_i = X$, for each i = 1, 2, ..., k in Theorem 5.11.

 $(2) \Rightarrow (3)$ and $(3) \Rightarrow (1)$ are obvious.

Corollary 5.13. Let (X, \mathfrak{F}) be a space and $B \subseteq A \subseteq X$. Then the following statements are true:

1. Let $A \in \mathbb{S}^{\omega}$. Then $B \in \mathbb{S}^{\omega}_A$ if and only if $B \in \mathbb{S}^{\omega}$,

2. Let A be ω -closed. Then B is ω -closed in A if and only if it is ω -closed in X.

Proof. It follows from Theorem 1.2.

Theorem 5.14. Let E be an ω -closed subset of an ω -normal X and let $\{G_{\lambda}; \lambda \in \Lambda\}$ be an ω -locally-finite family of an ω -open set of X such that $E \subseteq \bigcup \{G_{\lambda}; \lambda \in \Lambda\}$. Then there exists a family $\{V_{\lambda}; \lambda \in \Lambda\}$ of ω -open sets of X such that $\omega ClV_{\lambda} \subseteq G_{\lambda}$ for each $\lambda \in \Lambda$, $E \subseteq \bigcup \{G_{\lambda}; \lambda \in \Lambda\}$ and $\{\omega ClV_{\lambda}; \lambda \in \Lambda\}$ are similar to $\{E \cap G_{\lambda}; \lambda \in \Lambda\}$.

Proof. Let Γ be the family of finite subsets of Λ such that $E \cap (\cap \{G_{\lambda}; \lambda \in$ $\gamma \neq \phi$ for each $\gamma \in \Gamma$. The family $\{E \cap (\cap \{G_{\lambda}; \lambda \in \gamma\}); \gamma \in \Gamma\}$ of non-empty ω -open subsets of E is ω -locally-finite and from Theorem 4.14, E is ω -normal. Hence by Corollary 4.5, E is ω -regular. Therefore, for each $\gamma \in \Gamma$, there exists a non-empty ω -closed set D_{γ} of E such that $D_{\gamma} \subseteq E \cap (\cap \{G_{\lambda}; \lambda \in \gamma\})$. Since $\{G_{\lambda}; \lambda \in \Lambda\}$ is ω -locally-finite and E is an ω -closed subset of X, the family $\{D_{\gamma}; \gamma \in \Gamma\}$ consists of ω -closed subsets of X and it is ω -locally-finite in X {by Corollary 5.13}. Since E is ω -normal and each ω -locally-finite family is point-finite, it follows that there is an ω -locally-finite ω -closed covering $\{H_{\lambda}; \lambda \in \mathcal{H}_{\lambda}\}$ Λ of E such that $H_{\lambda} \subseteq E \cap G_{\lambda}$ for each λ {by Theorem 5.10}. Let $F_{\lambda} =$ $E_{\lambda} \cup \{D_{\gamma}; \gamma \in \Gamma\}$ for each λ . Then by Proposition 5.5, $F_{\lambda} = E_{\lambda} \cup \{D_{\gamma}; \gamma \in \Gamma\}$ is ω -closed in both E and X and $F_{\lambda} = E_{\lambda} \cap G_{\lambda}$ for each λ . Also $\{F_{\lambda}; \lambda \in \Lambda\}$ is an ω -closed covering of E. Furthermore, the families $\{F_{\lambda}; \lambda \in \Lambda\}$ and $\{E \cap G_{\lambda}; \lambda \in \Lambda\}$ are similar. For if $\gamma \in \Gamma$, then $D_{\gamma} \subseteq \cap \{F_{\lambda}; \lambda \in \gamma\}$. Hence $\cap \{F_{\lambda}; \lambda \in \Lambda\} = \phi$. Since X is an ω -normal space, there exists a family $\cup \{V_{\lambda}; \lambda \in \Lambda\}$ of ω -open subsets of X such that $F_{\lambda} \subseteq V_{\lambda} \subseteq \omega ClV_{\lambda} \subseteq G_{\lambda}$ for each λ {by Theorem 5.11}. Therefore, { ωClV_{λ} ; $\lambda \in \Lambda$ } and { $E \cap G_{\lambda}$; $\lambda \in \Lambda$ } are similar. This completes the proof.

326 Alias Barakat Khalaf, Halgwrd Mohammed Darwesh, and K. Kannan

References

- T. A. Al-Hawary, Fuzzy ω^o-Open Sets, Bull. Korean Math. Soc., Vol. 45 (2009), 749-755.
- [2] A. Al-Omari and M. S. Noorani, Contra-ω-continuous and Almost Contra ω-continuous, Int. J. of Math. and Math. Sci., Vol. 2007 Article ID 40469 (2007), 13 pages.
- [3] A. Al-Omari and M. S. Noorani, Regular Generalized ω-closed sets, Int. J. of Math. and Math. Sci., Vol. 2007 Article ID16292 (2007), 11 pages.
- [4] K. Y. Al-Zoubi, On Generalized ω-closed sets, Int. J. of Math. and Math. Sci., Vol. 2005 no. 13 (2005), 2011-2021.
- [5] K. Y. Al-Zoubi and B. Al-Nashief, The Topology of ω-open subsets, Al-Manarah, Vol 9(2) (2003), 169-179.
- [6] K. Chandrasekhara Rao and D. Narasimhan, Semi Star Generalized ω-Closed Sets in Bitopological Spaces, Int. J. Contemp. Math. Sci., Vol. 4 (12) (2009), 587-595.
- [7] J. Dugundji, Topology, Allyn and Bacon Inc. Boston, 1966.
- [8] H. Z. Hdeib, ω-closed maping, Revista colombiana de mathematics, Vol. 16 (1982), 65-78.
- [9] H. Z. Hdeib, ω-continuous Functions, Dirasat J., Vol. 16(2) (1989), 136-153.
- [10] T. M. Nour, Almost ω-Continuous Functions, Eur. J. of Sci. Res., Vol. 18(1) (2005), 43-47.
- [11] A. R. Pears, *Dimension Theory of General Spaces*, Cambridge University press, Cambridge, 1975.
- [12] I. L. Steen and J. A. Jr. Seebanch, Counterexamples in Topology, Springer-Verlag, New York, 1978.
- [13] S. Willard, *General Topology*, Addision Weasly, London, 1970.