
On a Class of Analytic Functions Defined by

Generalized Al-Oboudi Differential Operator ∗

Serap BULUT†

Kocaeli University, Civil Aviation College, Arslanbey Campus,
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Abstract

In this paper, we introduce a new class of analytic functions by using
generalized Al-Oboudi differential operator, and obtain some subordi-
nation results.
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1. Introduction

Let H be the class of analytic functions in the open unit disk

U = {z ∈ C : |z| < 1}
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and for a ∈ C and n ∈ N, H [a, n] be the subclass of H consisting of the
functions of the form

f(z) = a+ anz
n + an+1z

n+1 + · · · .

Let An be the class of all functions of the form

f(z) = z + an+1z
n+1 + · · · (1.1)

which are analytic in the open unit disk U with

A1 = A.

Also let S denote the subclass ofA consisting of functions f which are univalent
in U.

A function f analytic in U is said to be convex if it is univalent and f(U)
is convex.

Let

K =

{
f ∈ A : Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0, z ∈ U

}
denote the class of normalized convex functions in U.

If f and g are analytic in U, then we say that f is subordinate to g, written
symbolically as

f ≺ g or f(z) ≺ g(z) (z ∈ U)

if there exists a Schwarz function w which is analytic in U with w (0) = 0 and
|w(z)| < 1 such that f(z) = g(w(z)), z ∈ U. If g is univalent, then f ≺ g if
and only if f(0) = g(0) and f(U) ⊆ g(U).

Let ψ : C3 × U→ C be a function and let h be univalent in U. If p is
analytic in U and satisfies the (second-order) differential subordination

ψ
(
p(z), zp′(z), z2p′′(z); z

)
≺ h(z) (z ∈ U), (1.2)

then p is called a solution of the differential subordination.
The univalent function q is called a dominant of the solution of the differ-

ential subordination, or more simply a dominant, if p ≺ q for all p satisfying
(1.2).

A dominant q̃, which satisfies q̃ ≺ q for all dominants q of (1.2) is said to
be the best dominant of (1.2).
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2. Definitions

The following definition of fractional derivative by Owa [5] (also by Srivastava
and Owa [8]) will be required in our investigation.

The fractional derivative of order α is defined, for a function f , by

Dα
z f(z) =

1

Γ(1− α)

d

dz

∫ z

0

f(t)

(z − t)α
dt (0 ≤ α < 1), (2.1)

where the function f is analytic in a simply connected region of the complex
z-plane containing the origin, and the multiplicity of (z − t)−α is removed by
requiring log(z − t) to be real when z − t > 0.

It readily follows from (2.1) that

Dα
z z

k =
Γ(k + 1)

Γ(k + 1− α)
zk−α (0 ≤ α < 1, k ∈ N = {1, 2, . . .}).

Using Dα
z f , Owa and Srivastava [6] introduced the operator Ωα : A → A,

which is known as an extension of fractional derivative and fractional integral,
as follows:

Ωαf(z) = Γ (2− α) zαDα
z f(z) = z +

∞∑
k=2

Γ(k + 1)Γ (2− α)

Γ(k + 1− α)
akz

k. (2.2)

Note that
Ω0f(z) = f(z).

In [2], Al-Oboudi and Al-Amoudi defined the linear multiplier fractional
differential operator Dn,α

λ as follows:

D0f(z) = f(z),

D1,α
λ f(z) = (1− λ) Ωαf(z) + λz (Ωαf(z))′

= Dα
λ (f(z)) , λ ≥ 0, 0 ≤ α < 1, (2.3)

D2,α
λ f(z) = Dα

λ

(
D1,α
λ f(z)

)
,

...

Dm,α
λ f(z) = Dα

λ

(
Dm−1,α
λ f(z)

)
, m ∈ N. (2.4)
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If f is given by (1.1), then by (2.2), (2.3) and (2.4), we see that

Dm,α
λ f(z) = z +

∞∑
k=2

Ψk,m (α, λ) akz
k, m ∈ N0 = N∪{0} , (2.5)

where

Ψk,m (α, λ) =

[
Γ(k + 1)Γ (2− α)

Γ(k + 1− α)
(1 + (k − 1)λ)

]m
. (2.6)

Remark 1. (i) When α = 0, we get Al-Oboudi differential operator [1].
(ii) When α = 0 and λ = 1, we get Sălăgean differential operator [7].
(iii) When m = 1 and λ = 0, we get Owa-Srivastava fractional differential

operator [6].

Definition 1. Let Smα,λ (β) be the class of functions f ∈ A satisfying

Re
{

(Dm,α
λ f(z))′

}
> β,

where z ∈ U, 0 ≤ β < 1 and Dm,α
λ is the generalized Al-Oboudi differential

operator.

Remark 2. In Definition 2, if we set
(i) α = 0, then we get Sm0,λ (β) ≡ Rm (λ, β) defined by Al-Oboudi [1].
(ii) α = 0 and λ = 1, then we get Sm0,1 (β) ≡ Sm (β) defined by Taut et al.

[9].

3. Preliminary Lemmas

In order to prove our main results, we will make use of the following lemmas.

Lemma 3.1. [3] Let h be a convex function with h(0) = a and let γ ∈ C∗ :=
C−{0} be a complex number with Re γ ≥ 0. If p ∈ H [a, n] and

p(z) +
1

γ
zp′(z) ≺ h(z) (z ∈ U),

then

p(z) ≺ q(z) ≺ h(z) (z ∈ U),
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where

q(z) =
γ

nz
γ
n

∫ z

0

t
γ
n
−1h(t)dt (z ∈ U).

The function q is convex and is the best dominant.

Lemma 3.2. [4] Let Re r > 0, n ∈ N and let

w =
n2 + |r|2 − |n2 − r2|

4nRe r
.

Let h be an analytic function in U with h(0) = 1 and suppose that

Re

{
1 +

zh′′(z)

h′(z)

}
> −w.

If

p(z) = 1 + pnz
n + pn+1z

n+1 + · · ·

is analytic in U and

p(z) +
1

r
zp′(z) ≺ h(z),

then

p(z) ≺ q(z),

where q is a solution of the differential equation

q(z) +
n

r
zq′(z) = h(z), q(0) = 1,

given by

q(z) =
r

nz
r
n

∫ z

0

t
r
n
−1h(t)dt.

Moreover q is the best dominant.

4. Main Results

Theorem 4.1. The set Smα,λ (β) is convex.
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Proof. Let

fj(z) = z +
∞∑
k=2

ak,jz
k (z ∈ U; j = 1, 2, . . . , l) (4.1)

be in the class Smα,λ (β). Then, by Definition 1, we have

Re
{

(Dm,α
λ fj(z))′

}
= Re

{
1 +

∞∑
k=2

kΨk,m (α, λ) ak,jz
k−1

}
> β. (4.2)

For any nonnegative numbers µ1, µ2, . . . , µl such that µ1+µ2+ . . .+µl = 1,
we must show that the function

h(z) =
l∑

j=1

µjfj(z) (4.3)

is in Smα,λ (β), that is

Re
{

(Dm,α
λ h(z))′

}
> β.

By (4.1) and (4.3), we have

h(z) = z +
∞∑
k=2

(
l∑

j=1

µjak,j

)
zk.

Therefore we get

Dm,α
λ h(z) = z +

∞∑
k=2

Ψk,m (α, λ)

(
l∑

j=1

µjak,j

)
zk, (4.4)

where Ψk,m (α, λ) defined as in (2.6). Differentiating (4.4) with respect to z,
we obtain

(Dm,α
λ h(z))′ = 1 +

∞∑
k=2

kΨk,m (α, λ)

(
l∑

j=1

µjak,j

)
zk−1.

So we get

Re
{

(Dm,α
λ h(z))′

}
= 1 +

l∑
j=1

µj Re

{
∞∑
k=2

kΨk,m (α, λ) ak,jz
k−1

}

> 1 +
l∑

j=1

µj (β − 1) (by (4.2))

= β
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since µ1 + µ2 + . . .+ µl = 1. Therefore we get desired result.

Theorem 4.2. Let q be convex function in U with q(0) = 1 and let

h(z) = q(z) +
1

c+ 2
zq′(z) (z ∈ U),

where c is a complex number with Re c > −2.
If f ∈ Smα,λ (β) and F = Iαc f , where

F (z) = Iαc f(z) =
c+ 2

zc+1

∫ z

0

tcΩαf(t)dt (0 ≤ α < 1), (4.5)

then
(Dm,α

λ (Ωαf(z)))′ ≺ h(z) (4.6)

implies
(Dm,α

λ F (z))′ ≺ q(z),

and this result is sharp.

Proof. From the equality (4.5), we get

zc+1F (z) = (c+ 2)

∫ z

0

tcΩαf(t)dt. (4.7)

Differentiating (4.7) with respect to z, we have

(c+ 1)F (z) + zF ′(z) = (c+ 2) Ωαf(z)

and

(c+ 1)Dm,α
λ F (z) + z (Dm,α

λ F (z))′ = (c+ 2)Dm,α
λ (Ωαf(z)) . (4.8)

Differentiating (4.8) with respect to z, we obtain

(Dm,α
λ F (z))′ +

1

c+ 2
z (Dm,α

λ F (z))′′ = (Dm,α
λ (Ωαf(z)))′ . (4.9)

Using (4.9), the differential subordination (4.6) becomes

(Dm,α
λ F (z))′ +

1

c+ 2
z (Dm,α

λ F (z))′′ ≺ h(z). (4.10)
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Let us define
p(z) = (Dm,α

λ F (z))′ . (4.11)

Then a simple computation yields

p(z) =

[
z +

∞∑
k=2

Ψk,m (α, λ)
Γ(k + 1)Γ (2− α)

Γ(k + 1− α)

c+ 2

k + c+ 1
akz

k

]′
= 1 + p1z + p2z

2 + . . . , p ∈ H [1, 1] .

Using (4.11) in the subordination (4.10), we have

p(z) +
1

c+ 2
zp′(z) ≺ h(z) = q(z) +

1

c+ 2
zq′(z) (z ∈ U).

Using Lemma 3.1, we obtain

p(z) ≺ q(z)

which is desired result. Moreover q is the best dominant.

Theorem 4.3. Let Re c > −2 and let

w =
1 + |c+ 2|2 − |c2 + 4c+ 3|

4 Re (c+ 2)
.

Let h be an analytic function in U with h(0) = 1 and suppose that

Re

{
1 +

zh′′(z)

h′(z)

}
> −w.

If f ∈ Smα,λ (β) and F = Iαc f , where F is defined by (4.5), then

(Dm,α
λ (Ωαf(z)))′ ≺ h(z)

implies
(Dm,α

λ F (z))′ ≺ q(z),

where q is the solution of the differential equation

h(z) = q(z) +
1

c+ 2
zq′(z), q(0) = 1,

given by

q(z) =
c+ 2

zc+2

∫ z

0

tc+1h(t)dt.

Moreover q is the best dominant.
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Proof. We consider n = 1 and r = c + 2 in Lemma 3.2. Then the proof is
easily seen by means of the proof of Theorem 4.2.
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