On a Class of Analytic Functions Defined by Generalized Al-Oboudi Differential Operator *

Serap BULUT ${ }^{\dagger}$
Kocaeli University, Civil Aviation College, Arslanbey Campus, 41285 İzmit-Kocaeli, Turkey and
Adriana CĂTAŞ ${ }^{\ddagger}$
Department of Mathematics, University of Oradea, str. Universitatii nr. 1, 410087, Oradea, Romania

Received February 16, 2011, Accepted July 31, 2012.

Abstract

In this paper, we introduce a new class of analytic functions by using generalized Al-Oboudi differential operator, and obtain some subordination results.

Keywords and Phrases: Analytic functions, Differential operator, Differential subordination.

1. Introduction

Let \mathcal{H} be the class of analytic functions in the open unit disk

$$
\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}
$$

[^0]and for $a \in \mathbb{C}$ and $n \in \mathbb{N}, \mathcal{H}[a, n]$ be the subclass of \mathcal{H} consisting of the functions of the form
$$
f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots
$$

Let \mathcal{A}_{n} be the class of all functions of the form

$$
\begin{equation*}
f(z)=z+a_{n+1} z^{n+1}+\cdots \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk \mathbb{U} with

$$
\mathcal{A}_{1}=\mathcal{A} .
$$

Also let \mathcal{S} denote the subclass of \mathcal{A} consisting of functions f which are univalent in \mathbb{U}.

A function f analytic in \mathbb{U} is said to be convex if it is univalent and $f(\mathbb{U})$ is convex.

Let

$$
\mathcal{K}=\left\{f \in \mathcal{A}: \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, z \in \mathbb{U}\right\}
$$

denote the class of normalized convex functions in \mathbb{U}.
If f and g are analytic in \mathbb{U}, then we say that f is subordinate to g, written symbolically as

$$
f \prec g \quad \text { or } \quad f(z) \prec g(z) \quad(z \in \mathbb{U})
$$

if there exists a Schwarz function w which is analytic in \mathbb{U} with $w(0)=0$ and $|w(z)|<1$ such that $f(z)=g(w(z)), z \in \mathbb{U}$. If g is univalent, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(\mathbb{U}) \subseteq g(\mathbb{U})$.

Let $\psi: \mathbb{C}^{3} \times \mathbb{U} \rightarrow \mathbb{C}$ be a function and let h be univalent in \mathbb{U}. If p is analytic in \mathbb{U} and satisfies the (second-order) differential subordination

$$
\begin{equation*}
\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \prec h(z) \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

then p is called a solution of the differential subordination.
The univalent function q is called a dominant of the solution of the differential subordination, or more simply a dominant, if $p \prec q$ for all p satisfying (1.2).

A dominant \tilde{q}, which satisfies $\tilde{q} \prec q$ for all dominants q of (1.2) is said to be the best dominant of (1.2).

2. Definitions

The following definition of fractional derivative by Owa [5] (also by Srivastava and Owa [8]) will be required in our investigation.

The fractional derivative of order α is defined, for a function f, by

$$
\begin{equation*}
D_{z}^{\alpha} f(z)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d z} \int_{0}^{z} \frac{f(t)}{(z-t)^{\alpha}} d t \quad(0 \leq \alpha<1) \tag{2.1}
\end{equation*}
$$

where the function f is analytic in a simply connected region of the complex z-plane containing the origin, and the multiplicity of $(z-t)^{-\alpha}$ is removed by requiring $\log (z-t)$ to be real when $z-t>0$.

It readily follows from (2.1) that

$$
D_{z}^{\alpha} z^{k}=\frac{\Gamma(k+1)}{\Gamma(k+1-\alpha)} z^{k-\alpha} \quad(0 \leq \alpha<1, k \in \mathbb{N}=\{1,2, \ldots\})
$$

Using $D_{z}^{\alpha} f$, Owa and Srivastava [6] introduced the operator $\Omega^{\alpha}: \mathcal{A} \rightarrow \mathcal{A}$, which is known as an extension of fractional derivative and fractional integral, as follows:

$$
\begin{equation*}
\Omega^{\alpha} f(z)=\Gamma(2-\alpha) z^{\alpha} D_{z}^{\alpha} f(z)=z+\sum_{k=2}^{\infty} \frac{\Gamma(k+1) \Gamma(2-\alpha)}{\Gamma(k+1-\alpha)} a_{k} z^{k} \tag{2.2}
\end{equation*}
$$

Note that

$$
\Omega^{0} f(z)=f(z)
$$

In [2], Al-Oboudi and Al-Amoudi defined the linear multiplier fractional differential operator $D_{\lambda}^{n, \alpha}$ as follows:

$$
\begin{align*}
D^{0} f(z)= & f(z) \\
D_{\lambda}^{1, \alpha} f(z)= & (1-\lambda) \Omega^{\alpha} f(z)+\lambda z\left(\Omega^{\alpha} f(z)\right)^{\prime} \\
= & D_{\lambda}^{\alpha}(f(z)), \quad \lambda \geq 0,0 \leq \alpha<1 \tag{2.3}\\
D_{\lambda}^{2, \alpha} f(z)= & D_{\lambda}^{\alpha}\left(D_{\lambda}^{1, \alpha} f(z)\right) \\
& \vdots \\
D_{\lambda}^{m, \alpha} f(z)= & D_{\lambda}^{\alpha}\left(D_{\lambda}^{m-1, \alpha} f(z)\right), \quad m \in \mathbb{N} . \tag{2.4}
\end{align*}
$$

If f is given by (1.1), then by $(2.2),(2.3)$ and (2.4), we see that

$$
\begin{equation*}
D_{\lambda}^{m, \alpha} f(z)=z+\sum_{k=2}^{\infty} \Psi_{k, m}(\alpha, \lambda) a_{k} z^{k}, \quad m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{k, m}(\alpha, \lambda)=\left[\frac{\Gamma(k+1) \Gamma(2-\alpha)}{\Gamma(k+1-\alpha)}(1+(k-1) \lambda)\right]^{m} \tag{2.6}
\end{equation*}
$$

Remark 1. (i) When $\alpha=0$, we get Al-Oboudi differential operator [1].
(ii) When $\alpha=0$ and $\lambda=1$, we get Sălăgean differential operator [7].
(iii) When $m=1$ and $\lambda=0$, we get Owa-Srivastava fractional differential operator [6].

Definition 1. Let $\mathcal{S}_{\alpha, \lambda}^{m}(\beta)$ be the class of functions $f \in \mathcal{A}$ satisfying

$$
\operatorname{Re}\left\{\left(D_{\lambda}^{m, \alpha} f(z)\right)^{\prime}\right\}>\beta
$$

where $z \in \mathbb{U}, 0 \leq \beta<1$ and $D_{\lambda}^{m, \alpha}$ is the generalized Al-Oboudi differential operator.

Remark 2. In Definition 2, if we set
(i) $\alpha=0$, then we get $\mathcal{S}_{0, \lambda}^{m}(\beta) \equiv \mathcal{R}^{m}(\lambda, \beta)$ defined by Al-Oboudi [1].
(ii) $\alpha=0$ and $\lambda=1$, then we get $\mathcal{S}_{0,1}^{m}(\beta) \equiv \mathcal{S}_{m}(\beta)$ defined by Taut et al. [9].

3. Preliminary Lemmas

In order to prove our main results, we will make use of the following lemmas.
Lemma 3.1. [3] Let h be a convex function with $h(0)=a$ and let $\gamma \in \mathbb{C}^{*}:=$ $\mathbb{C}-\{0\}$ be a complex number with $\operatorname{Re} \gamma \geq 0$. If $p \in \mathcal{H}[a, n]$ and

$$
p(z)+\frac{1}{\gamma} z p^{\prime}(z) \prec h(z) \quad(z \in \mathbb{U})
$$

then

$$
p(z) \prec q(z) \prec h(z) \quad(z \in \mathbb{U})
$$

where

$$
q(z)=\frac{\gamma}{n z^{\frac{\gamma}{n}}} \int_{0}^{z} t^{\frac{\gamma}{n}-1} h(t) d t \quad(z \in \mathbb{U})
$$

The function q is convex and is the best dominant.
Lemma 3.2. [4] Let $\operatorname{Re} r>0, n \in \mathbb{N}$ and let

$$
w=\frac{n^{2}+|r|^{2}-\left|n^{2}-r^{2}\right|}{4 n \operatorname{Re} r}
$$

Let h be an analytic function in \mathbb{U} with $h(0)=1$ and suppose that

$$
\operatorname{Re}\left\{1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right\}>-w
$$

If

$$
p(z)=1+p_{n} z^{n}+p_{n+1} z^{n+1}+\cdots
$$

is analytic in \mathbb{U} and

$$
p(z)+\frac{1}{r} z p^{\prime}(z) \prec h(z),
$$

then

$$
p(z) \prec q(z),
$$

where q is a solution of the differential equation

$$
q(z)+\frac{n}{r} z q^{\prime}(z)=h(z), \quad q(0)=1
$$

given by

$$
q(z)=\frac{r}{n z^{\frac{r}{n}}} \int_{0}^{z} t^{\frac{r}{n}-1} h(t) d t .
$$

Moreover q is the best dominant.

4. Main Results

Theorem 4.1. The set $\mathcal{S}_{\alpha, \lambda}^{m}(\beta)$ is convex.

Proof. Let

$$
\begin{equation*}
f_{j}(z)=z+\sum_{k=2}^{\infty} a_{k, j} z^{k} \quad(z \in \mathbb{U} ; j=1,2, \ldots, l) \tag{4.1}
\end{equation*}
$$

be in the class $\mathcal{S}_{\alpha, \lambda}^{m}(\beta)$. Then, by Definition 1, we have

$$
\begin{equation*}
\operatorname{Re}\left\{\left(D_{\lambda}^{m, \alpha} f_{j}(z)\right)^{\prime}\right\}=\operatorname{Re}\left\{1+\sum_{k=2}^{\infty} k \Psi_{k, m}(\alpha, \lambda) a_{k, j} z^{k-1}\right\}>\beta \tag{4.2}
\end{equation*}
$$

For any nonnegative numbers $\mu_{1}, \mu_{2}, \ldots, \mu_{l}$ such that $\mu_{1}+\mu_{2}+\ldots+\mu_{l}=1$, we must show that the function

$$
\begin{equation*}
h(z)=\sum_{j=1}^{l} \mu_{j} f_{j}(z) \tag{4.3}
\end{equation*}
$$

is in $\mathcal{S}_{\alpha, \lambda}^{m}(\beta)$, that is

$$
\operatorname{Re}\left\{\left(D_{\lambda}^{m, \alpha} h(z)\right)^{\prime}\right\}>\beta
$$

By (4.1) and (4.3), we have

$$
h(z)=z+\sum_{k=2}^{\infty}\left(\sum_{j=1}^{l} \mu_{j} a_{k, j}\right) z^{k} .
$$

Therefore we get

$$
\begin{equation*}
D_{\lambda}^{m, \alpha} h(z)=z+\sum_{k=2}^{\infty} \Psi_{k, m}(\alpha, \lambda)\left(\sum_{j=1}^{l} \mu_{j} a_{k, j}\right) z^{k} \tag{4.4}
\end{equation*}
$$

where $\Psi_{k, m}(\alpha, \lambda)$ defined as in (2.6). Differentiating (4.4) with respect to z, we obtain

$$
\left(D_{\lambda}^{m, \alpha} h(z)\right)^{\prime}=1+\sum_{k=2}^{\infty} k \Psi_{k, m}(\alpha, \lambda)\left(\sum_{j=1}^{l} \mu_{j} a_{k, j}\right) z^{k-1} .
$$

So we get

$$
\begin{aligned}
\operatorname{Re}\left\{\left(D_{\lambda}^{m, \alpha} h(z)\right)^{\prime}\right\} & =1+\sum_{j=1}^{l} \mu_{j} \operatorname{Re}\left\{\sum_{k=2}^{\infty} k \Psi_{k, m}(\alpha, \lambda) a_{k, j} z^{k-1}\right\} \\
& >1+\sum_{j=1}^{l} \mu_{j}(\beta-1) \quad(\text { by }(4.2)) \\
& =\beta
\end{aligned}
$$

since $\mu_{1}+\mu_{2}+\ldots+\mu_{l}=1$. Therefore we get desired result.
Theorem 4.2. Let q be convex function in \mathbb{U} with $q(0)=1$ and let

$$
h(z)=q(z)+\frac{1}{c+2} z q^{\prime}(z) \quad(z \in \mathbb{U})
$$

where c is a complex number with $\operatorname{Re} c>-2$.
If $f \in \mathcal{S}_{\alpha, \lambda}^{m}(\beta)$ and $F=I_{c}^{\alpha} f$, where

$$
\begin{equation*}
F(z)=I_{c}^{\alpha} f(z)=\frac{c+2}{z^{c+1}} \int_{0}^{z} t^{c} \Omega^{\alpha} f(t) d t \quad(0 \leq \alpha<1) \tag{4.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(D_{\lambda}^{m, \alpha}\left(\Omega^{\alpha} f(z)\right)\right)^{\prime} \prec h(z) \tag{4.6}
\end{equation*}
$$

implies

$$
\left(D_{\lambda}^{m, \alpha} F(z)\right)^{\prime} \prec q(z),
$$

and this result is sharp.
Proof. From the equality (4.5), we get

$$
\begin{equation*}
z^{c+1} F(z)=(c+2) \int_{0}^{z} t^{c} \Omega^{\alpha} f(t) d t \tag{4.7}
\end{equation*}
$$

Differentiating (4.7) with respect to z, we have

$$
(c+1) F(z)+z F^{\prime}(z)=(c+2) \Omega^{\alpha} f(z)
$$

and

$$
\begin{equation*}
(c+1) D_{\lambda}^{m, \alpha} F(z)+z\left(D_{\lambda}^{m, \alpha} F(z)\right)^{\prime}=(c+2) D_{\lambda}^{m, \alpha}\left(\Omega^{\alpha} f(z)\right) . \tag{4.8}
\end{equation*}
$$

Differentiating (4.8) with respect to z, we obtain

$$
\begin{equation*}
\left(D_{\lambda}^{m, \alpha} F(z)\right)^{\prime}+\frac{1}{c+2} z\left(D_{\lambda}^{m, \alpha} F(z)\right)^{\prime \prime}=\left(D_{\lambda}^{m, \alpha}\left(\Omega^{\alpha} f(z)\right)\right)^{\prime} . \tag{4.9}
\end{equation*}
$$

Using (4.9), the differential subordination (4.6) becomes

$$
\begin{equation*}
\left(D_{\lambda}^{m, \alpha} F(z)\right)^{\prime}+\frac{1}{c+2} z\left(D_{\lambda}^{m, \alpha} F(z)\right)^{\prime \prime} \prec h(z) . \tag{4.10}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
p(z)=\left(D_{\lambda}^{m, \alpha} F(z)\right)^{\prime} \tag{4.11}
\end{equation*}
$$

Then a simple computation yields

$$
\begin{aligned}
p(z) & =\left[z+\sum_{k=2}^{\infty} \Psi_{k, m}(\alpha, \lambda) \frac{\Gamma(k+1) \Gamma(2-\alpha)}{\Gamma(k+1-\alpha)} \frac{c+2}{k+c+1} a_{k} z^{k}\right]^{\prime} \\
& =1+p_{1} z+p_{2} z^{2}+\ldots, \quad p \in \mathcal{H}[1,1] .
\end{aligned}
$$

Using (4.11) in the subordination (4.10), we have

$$
p(z)+\frac{1}{c+2} z p^{\prime}(z) \prec h(z)=q(z)+\frac{1}{c+2} z q^{\prime}(z) \quad(z \in \mathbb{U}) .
$$

Using Lemma 3.1, we obtain

$$
p(z) \prec q(z)
$$

which is desired result. Moreover q is the best dominant.
Theorem 4.3. Let $\operatorname{Re} c>-2$ and let

$$
w=\frac{1+|c+2|^{2}-\left|c^{2}+4 c+3\right|}{4 \operatorname{Re}(c+2)}
$$

Let h be an analytic function in \mathbb{U} with $h(0)=1$ and suppose that

$$
\operatorname{Re}\left\{1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right\}>-w
$$

If $f \in \mathcal{S}_{\alpha, \lambda}^{m}(\beta)$ and $F=I_{c}^{\alpha} f$, where F is defined by (4.5), then

$$
\left(D_{\lambda}^{m, \alpha}\left(\Omega^{\alpha} f(z)\right)\right)^{\prime} \prec h(z)
$$

implies

$$
\left(D_{\lambda}^{m, \alpha} F(z)\right)^{\prime} \prec q(z),
$$

where q is the solution of the differential equation

$$
h(z)=q(z)+\frac{1}{c+2} z q^{\prime}(z), \quad q(0)=1
$$

given by

$$
q(z)=\frac{c+2}{z^{c+2}} \int_{0}^{z} t^{c+1} h(t) d t
$$

Moreover q is the best dominant.

Proof. We consider $n=1$ and $r=c+2$ in Lemma 3.2. Then the proof is easily seen by means of the proof of Theorem 4.2.

References

[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci., no. 25-28 (2004), 1429-1436.
[2] F. M. Al-Oboudi and K. A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl., 339 no. 1 (2008), 655-667.
[3] D. J. Hallenbeck and S. Ruscheweyh,Subordination by convex functions, Proc. Amer. Math. Soc., 52 (1975), 191-195.
[4] G. Oros and G. I. Oros, A class of holomorphic functions II, Libertas Math., 23 (2003), 65-68.
[5] S. Owa,On the distortion theorems. I, Kyungpook Math. J., 18 no. 1 (1978), 53-59.
[6] S. Owa and H. M. Srivastava,Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39 no. 5 (1987), 1057-1077.
[7] G. Ş. Sălăgean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer, Berlin, (1983), 362-372.
[8] H. M. Srivastava and S. Owa, (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Ellis Horwood Series: Mathematics and Its Applications, Ellis Horwood, Chichester, UK; JohnWiley \& Sons, New York, NY, USA, 1989.
[9] A. O. Tăut, G. I. Oros and R. Şendruţiu, On a class of univalent functions defined by Sălăgean differential operator, Banach J. Math. Anal., 3 no. 1 (2009), 61-67.

[^0]: *2000 Mathematics Subject Classification. Primary 30C80.
 ${ }^{\dagger}$ Corresponding author. E-mail: serap.bulut@kocaeli.edu.tr
 ${ }^{\ddagger}$ E-mail: acatas@uoradea.ro

