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Abstract

In this paper, we generalise Nevanlinna’s five-value theorem for
derivatives of meromorphic functions by considering weaker assump-
tions of sharing five values to partially sharing k(≥ 5) values. As a
particular cases of our results, we deduce earlier results of C.-C. Yang
[8, Theorem 3.2] and T.-G. Chen, K.-Y. Chen and Y.-L. Tsai [1].
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1. Introduction, Definitions and Main Results

Nevanlinna’s five-value theorem [8] is a very important result of Nevanlinna on
the uniqueness of meromorphic functions, which says that if two meromorphic
functions share five values ignoring multiplicity, then these two functions must
be identical.
C.-C. Yang [8, Theorem 3.2] observed that one can weaken the assumption
sharing five values to “ partially ′ ′ sharing five values in Nevanlinna’s five-
value theorem.
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We say that a meromorphic function f(z) partially shares a value a with a
meromorphic function g(z) if

E(a, f) ⊆ E(a, g).

Under this terminology, Yang [8, Theorem 3.2] proved that if a meromorphic
function f(z) partially share five values a1, a2, · · · , a5 with a meromorphic
function g(z) and
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then, f(z) and g(z) must be identical. In Nevanlinna’s five-value theorem, we
have E (aj, f) = E (aj, g) for all 1 ≤ j ≤ 5. In this case,
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So, f(z) ≡ g(z). Hence Yang’s result is a generalization of Nevanlinna’s five-
value theorem.
We assume that the reader is familiar with the basic notations and fundamen-
tal results of Nevanlinna’s theory of meromorphic functions, as found in [8, 9].
In particular, we use E to denote a subset of (0,∞) such that E is of finite
linear measure, which may be varied in different places.

Definition 1.1. Let h(z) be a non-constant meromorphic function and a be
a value in the extended complex plane. We define

E(a, h) = {z|h(z)− a = 0}

denotes zero set of h(z) − a in which each zero is counted according to its
multiplicity and

E(a, h) = {z|h(z)− a = 0}

denotes zero set of h(z)− a, in which each zero is counted only once.
In 2003, Yang[8, Theorem 3.2] proved the following theorem.
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Theorem 1.A. Let f(z) and g(z) be two non-constant meromorphic functions
and a1, a2, · · · , a5 be five distinct values. If E (aj, f) ⊆ E (aj, g) for all 1 ≤
j ≤ 5 and
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(1.1)

then f(z) ≡ g(z).

In 2007, Chen, Chen and Tsai [1, Theorem A] extended Theorem 1.A by
considering f(z) and g(z) partially sharing more than five values and proved
the following theorems.

Theorem 1.B. Let f(z) and g(z) be two non-constant meromorphic functions
and a1, a2, · · · , ak be k distinct values, where k ≥ 5 and E (aj, f) ⊆ E (aj, g)
for all 1 ≤ j ≤ k. If

lim
r→∞

[
k∑

j=1

N

(
r,

1

f − aj

) ∣∣∣∣∣
k∑

j=1

N

(
r,

1

g − aj

)]
>

1

k − 3
(1.2)

then f(z) ≡ g(z).

It is a natural question to ask if f (n)(z) and g(n)(z) partially share more
than five values for a positive integer n, what the corresponding inequality
becomes?
In this paper, we answer this question by proving the following theorem.

Theorem 1.1. Let f(z) and g(z) be two non-constant meromorphic functions
and a1, a2, · · · , ak be k distinct complex numbers, where k ≥ 5 and for a non-
negative integer n, if
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then f (n)(z) ≡ g(n)(z).

Remark 1.1. If n = 0 in Theorem 1.1, then the conditions E(0, f) ⊆
E
(
0, f (n)

)
and E(0, g) ⊆ E

(
0, g(n)

)
are obvious and hence in this case, Theo-

rem 1.1 reduces to Theorem 1.B.

Remark 1.2. If n = 0 and k = 5 in Theorem 1.1, then Theorem 1.1 reduces
to Theorem 1.A, a result of Yang.

Remark 1.3. If f (n) and g(n) share partially 2n + 5 complex numbers IM ,
then f (n) ≡ g(n).

2. Lemmas

In this section, we state the following lemma which will be needed in the proof
of Theorem 1.1.

Lemma 2.1. [8; Theorem 3.35] Let f(z) be a non-constant meromorphic
function and bj (j = 1, 2, · · · , q) be distinct finite non-zero complex numbers.
Then for any positive integer n, we have
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3. Proof of Theorem 1.1

By the Lemma 2.1, we have
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and
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Using (1.4), (3.1) and (3.2) reduces to
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Without loss of generality, we may assume ak =∞ and ak−1 = 0.
First we may assume that all aj (1 ≤ j ≤ k) in (1.3) are finite. Then by (3.3)
and (3.4), we have
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Assume f (n)(z) 6≡ g(n)(z). Then from (1.3), we have
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Again from (3.5) and (3.6), we have
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It follows that,
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Relace k − 1 by k in (3.7), we get
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where ak is finite (since all aj (1 ≤ j ≤ k) are finite).
(3.8) contradicts to (1.5) and hence f (n)(z) ≡ g(n)(z). Now assume that one
of the aj (1 ≤ j ≤ k) in (1.3) is infinity say ak = ∞. Taking any finite value
a such that a 6= aj (1 ≤ j ≤ k − 1). Set

F (n)(z) =
1

f (n) − a
, G(n)(z) =

1

g(n) − a
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Put bj = 1
aj−a (1 ≤ j ≤ k − 1) and bk = 0.

So, F (n)(z) and G(n)(z) partially share finite values bj (1 ≤ j ≤ k) IM .
Then by the above case F (n)(z) ≡ G(n)(z).

This completes proof of Theorem 1.1.
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