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Abstract

It is well known that the two spectra {λn} and {µn} uniquely determine

the potential function q(x) in a Sturm-Liouville equation defined on the unit

interval and having of the special singularity type q(x) = δ
xp +q0 (x) (where δ is

an constant, 1<p<2) at the point zero. In this work, we give the solution of the

inverse problem on two partially non-coinciding spectra for the Sturm-Liouville

equation with the peculiarity at zero. In particular in this case we obtain

Hochstadt’s theorem concerning the structure of the difference q (x)− q̃ (x) .

Keywords and Phrases: Inverse problem, Singular Sturm-Liouville opera-
tor, Spectra, Hochstadt theorem.

1. Introduction

Sturm-Liouville Problems have been an important research issue in math-
ematics, mechanics, physics, electronics, geophysics, meteorology and other
branches of natural sciences. Particularly in relation to our article, Hochstadt
showed that the potential is an even function, the potential is uniquely de-
termined [10]. Many scientists have been studing on the problems who use
different spectral data. Some of them are [1-19].
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We consider the singular problem

Ly = −y′′ +
[
δ

xp
+ q0 (x)

]
y = µy

(
µ = λ2, 0 6 x 6 π

)
(1.1)

y (0) = 0, (1.2)

y(π, λ) cosα + y′(π, λ) sinα = 0. (1.3)

Let λ0 < λ1 < ... < λn < ... be the spectrum of the problem (1.1)-(1.3), and
µ0 < µ1 < ... < µn < ... be the spectrum of the problem

Ly = −y′′ +
[
δ

xp
+ q0 (x)

]
y = µy

(
µ = λ2, 0 6 x 6 π

)
(1.4)

y (0) = 0, (1.5)

y(π, λ) cos γ + y′(π, λ) sin γ = 0, (1.6)

where the real potential q (x) satisfy the condition

π∫
0

x |q (x)| dx <∞, (1.7)

and δ =constant, q0 (x) ∈ L2 [0, π] , 1 < p < 2, q (x) = δ
xp

+ q0 (x).
It is well known [7] that a knowledge of the two spectra {λn} and {µn}

uniquely determines the operator L. Note that this type of inverse problems
for singular Sturm-Liouville operator was investigated in [6] and [8]. It is also
well known that the sequences {λn} and {µn} are alternating and conform to
the asymptotics:

λn = n− 1

2
− h

π
(
n− 1

2

) +O

(
1

n4−2p

)
(1.8)

µn = n− 1

2
− h1

π
(
n− 1

2

) +O

(
1

n4−2p

)
. (1.9)

The converse is also true; if the sequences {λn} and {µn} are alternating
and satisfy the asymptotics, there exists a function q (x) and α, γ (α 6= γ)
such that {λn} is the spectrum of the problem (1.1)-(1.3) and the {µn} is the
spectrum of the problem (1.4)-(1.6).
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From the latter result it follows that if we fix one of the sequences, say {µn}
and change an arbitrary number of the first terms of the second sequence {λn}
so that the new sequence

{
λ̃n

} (
λn = λ̃n for n > N

)
alternates with the

fixed sequence {µn} . We can find a function q̃ (x) such that the sequence
{
λ̃n

}
is the spectrum of the problem

L̃y = −y′′ +
[
δ

xp
+ q̃0 (x)

]
y = µy

(
µ = λ2, 0 6 x 6 π

)
(1.1′)

y (0) = 0, (1.2
′
)

y(π, λ) cosα + y′(π, λ) sinα = 0 (1.3′)

and {µ̃n} is the spectrum of the problem

L̃y = −y′′ +
[
δ

xp
+ q̃0 (x)

]
y = µy,

(
µ = λ2, 0 6 x 6 π

)
(1.4.′)

y (0) = 0, (1.5
′
)

y(π, λ) cos γ + y′(π, λ) sin γ = 0, (1.6′)

where
π∫

0

x |q̃ (x)| dx <∞, (1.7′)

δ = constant and q̃0 (x) ∈ L2 [0, π] , 1 < p < 2, q̃ (x) = δ
xp

+ q̃0 (x) .

Since the problems (1.1
′
)-(1.3

′
) and (1.4

′
)-(1.6

′
) are obtained from the prob-

lems (1.1)-(1.3) and (1.4)-(1.6) by changing a finite number of the parameters,
we can regard the first of these problems as a finite-dimensional perturbation
of the second set of problems.

Now let’s examine asymptotic behaviour of function G (x, s, λ) for
|λ| −→ ∞ in the region

Γn (2) =

{
|Reλ| ≤ n
|Imλ| ≤ n

where λ = τ 2, τ = σ + it.
Before proving the main theorem of the present paper,we prove the follow-

ing lemma.
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Lemma 1.1. For function G (x, s, λ) on the region Γn (2) one has the fol-
lowing inequality,

|G (x, s, λ)| ≤M
e−|Im τ ||x−s|

|τ |
, (1.10)

where M is a positive constant and independent from x, s and n.

Proof. We denote by ϕ (x, λ) the soluion of (1.1) satisfying the initial condi-
tion (1.2) . Then for large |λ|

|ϕ (x, λ)| ≤M1
e|Im τ |x

|τ |
, (1.11)

|ϕ (x, λ)| ≤ M̃1.x.e
|Im τ |x. (1.12)

Let ψ (x, λ) the solution of the equation (1.1) satisfying the conditions.
Thus

ψ (π, λ) = 1, ψ′ (π, λ) = h. (1.13)

−ψ′′ (x, λ) + q (x)ψ (x, λ) = λψ (x, λ) 0 ≤ x ≤ π (1.14)

now let us obtain the necessary inequality for ψ (x, λ) . In (1.14) , if we replace
x for π − x, then we obtain the following equation

−ψ′′ (π − x, λ)+q (π − x)ψ (π − x, λ) = λψ (π − x, λ) 0 ≤ x ≤ π. (1.15)

Let
θ (x, λ) = ψ (π − x, λ) .

Hence
θ′ (x, λ) = −ψ′ (π − x, λ) (1.16)

θ′′ (x, λ) = ψ′′ (π − x, λ) . (1.17)

Therefore using
q1 (x) = q (π − x) ,

then we find
−θ′′ (x, λ) + q1 (x) θ (x, λ) = λθ (x, λ) . (1.18)
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Now we obtain the potantial q1 (x) having a singular point at x = π and
(x− π) q1 (x) ∈ L1 (0, π) . Furthermore from (1.13) we obtain

θ (0, λ) = 1 θ′ (0, λ) = −h, (1.19)

and

θ (x, λ) = cos τx+O

(
e|Im τ |x

|τ |

)
(1.20)

is the solution of (1.1). From (1.15), we obtain the following equality

ψ (π − x, λ) = cos τx+O

(
e|Im τ |x

|τ |

)
. (1.21)

Replacing x for π − x, we get

ψ (x, λ) = cos τ (π − x) +O

(
e|Im τ |(π−x)

|τ |

)
. (1.22)

Therefore from the last equality, it follows for large |λ|

|ψ (x, λ)| ≤M2e
|Im τ |(π−x)

, (1.23)

w (λ) = cos τπ +O
(
e|Im τ |π) . (1.24)

Thus on the counters Γn (2) , we can get the following inequality

|cosλπ| ≥ ce|Im τ |π. (1.25)

Then we can write w (λ) as follows

w (λ) = cos τπ[1 + o (1)]. (1.26)

Thus for large |τ | , [1 + o (1)] > 1
2
, by virtue of the inequality (1.26) for large

n, we obtain from (1.24)

|w (λ)| ≥M3e
|Im τ |π, ∀τ ∈ Γn (1.27)

where M3−is the constant independent from n.
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Therefore for the function G (x, s, λ) for τ ∈ Γn and x ≤ s we have the
following estimate

|G (x, s, λ)| ≤ 1

|w (λ)|
|ϕ (x, λ)| |ψ (s, λ)|

= M
e
−|Im τ |(x−s)

|τ |
. (1.28)

Furthermore, for x ≥ s we obtain

|G (x, s, λ)| ≤ 1

|w (λ)|
|ϕ (s, λ)| |ψ (x, λ)|

= M
e
−|Im τ ||x−s|

|τ |
.

Where M = M1M2

M3
is constant and independent from x, s and n.

Consequently we have the following asymptotic formula

G (x, s, λ) = O

(
e
−|Im τ ||x−s|

|τ |

)
. (1.29)

In [10] Hochstadt showed inverse problem for Regular Sturm Liouville equa-
tion according to eigenvalues. The purpose of our paper is to give the sctruc-
ture concerning the difference q (x)− q̃ (x) for the differential operators having
the singularity type δ

xp
+ q0 (x) , by using

Hochstadt method. Now, let’s give the main theorem and its proof.

Main Results

2. The Theorem of Hochstadt for Singular Sturm-

Liouville Operator

Consider the operator

Ly = −y′′ +
[
δ

xp
+ q0 (x)

]
y = µy

(
µ = λ2, 0 6 x 6 π

)
, (2.1)
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subject to the boundary conditions

y (0) = 0, (2.2)

y(π, λ) cosα + y′(π, λ) sinα = 0, (2.3)

where
π∫

0

x |q (x)| dx <∞,

and q (x) is square integrable real function on [0, π] . Let {λn} be the spectrum
of L with (2.2) and (2.3) boundary conditions. The condition (2.3) is replaced
by a new boundary condition

y(π, λ) cos γ + y′(π, λ) sin γ = 0, (2.4)

where sin (α− γ) 6= 0. Let {µn} be the spectrum of L with (2.2) and (2.4)
conditions.

Consider now a second operator

L̃y = −y′′ +
[
δ

xp
+ q̃0 (x)

]
y = µy

(
µ = λ2, 0 6 x 6 π

)
(2.5)

where
π∫

0

x |q̃ (x)| dx <∞

and q̃ (x) is a square integrable real function on [0, π] . Suppose that, under the

boundary conditions (2.2) and (2.4), L̃ has the spectrum
{
λ̃n

}
, with λn = λ̃n

for all except a finite number of values of n. L̃ with the boundary conditions
(2.2) and (2.4) is assumed to have the spectrum {µ̃n} .

Thus, we assume that the second-named spectra, i.e {µn} and {µ̃n}, co-

incide, and that {λn} and
{
λ̃n

}
differ in a finite number of their terms. We

shall denote by Λ0 the finite index set for which λn 6= λ̃n and by Λ the infinite
index set for which λn = λ̃n. Under the assumptions, we can give the following
theorem.

Main Theorem. If the spectra {µn} and {µ̃n} coincide and the spectra {λn}
and

{
λ̃n

}
differ in a finite number of their terms, then
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q − q̃ =
∑
Λ0

(
ψ̃nϕn

)′
(2.6)

where ψ̃n and ϕn are suitable solutions of the following equations, respectively

ψ̃
′′

n +

[
λ2 − δ

xp
− q̃0 (x)

]
ψ̃n = 0,

ϕ
′′

n +

[
λ2 − δ

xp
− q0 (x)

]
ϕn = 0.

In particularly, if Λ0 is empty and q = q̃ almost everywhere.

Proof. Let {ϕn} ({ϕ̃n}) denote the set of eigenfunctions of the operator de-
fined by (2.1) ((2.5)) with the (2.2) and (2.3) boundary conditions. We define
two Hilbert spaces that are subspaces of L2[0, π] as follows:

H = { f ∈ L2[0, π] | 〈 f, ϕn〉 = 0, n ∈ Λ0} ,

H̃ = { f ∈ L2[0, π] | 〈 f, ϕ̃n〉 = 0, n ∈ Λ0} .
By hypothesis, the spectrum of L restricted to H and the spectrum of L̃
restricted to H̃ coincide.

We define an operator T that maps H into H̃ by

Tϕn = ϕ̃n, n ∈ Λ. (2.7)

Let f ∈ H and expand f in terms of the set {ϕn} so that

f =
∑

Λ

fnϕn. (2.8)

If λ is an arbitrary element in the complex plane, different from all the eigen-
values, the operator (λ− L)−1 exists and it is bounded. It can be written

(λ− L)−1 f =
∑

Λ

fnϕn
(λ− λn)

. (2.9)

if we apply T , we obtain

T (λ− L)−1 f =
∑

Λ

fnϕ̃n
(λ− λn)

. (2.10)
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Since
L̃ϕ̃n = λnϕ̃n(

λ− L̃
)
T (λ− L)−1 f = Tf,

it follows that L, L̃ and T are related by(
λ− L̃

)
T (λ− L)−1 = T. (2.11)

By means of the second spectrum, we can determine the structure of T . When
T is established, conclusion of theorem can be deduced. One has the following
asymptotic formula [7,8] as λ→∞

ϕ (x, λ) =
sinλx

λ
+O

(
e|Imλ|x

|λ|5−2p

)
(2.12)

ϕ′ (x, λ) = cosλx+O

(
e|Imλ|x

|λ|4−2p

)
. (2.13)

We define two functions of λ by using the boundary conditions (2.3) and (2.4)

w (λ) = sinαϕ′ (π, λ) + cosαϕ (π, λ) , (2.14)

v (λ) = sin γϕ′ (π, λ) + cos γϕ (π, λ) . (2.15)

Using asymptotic results, we conclude that ϕ and ϕ′ are entire functions of λ.
It is well known [12]. That w (λ) and v (λ) determined by (2.14) and (2.15)
are two entire analytic functions and therefore they can also be determined by
their zeros. As follows

w (λ) = a
∞∏
n=0

(
1− λ

λn

)
, (2.16)

v (λ) = b

∞∏
n=0

(
1− λ

µn

)
, (2.17)

where a and b are constants. Similarly, we can write

w̃ (λ) = ã

∞∏
n=0

(
1− λ

λ̃n

)
, (2.18)
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ṽ (λ) = b̃

∞∏
n=0

(
1− λ

µ̃n

)
, (µ̃n = µn, n = 1, 2, ...) . (2.19)

By hypothesis, v(λ)
ṽ(λ)

is constant and w(λ)
w̃(λ)

is a rational function.
If β is different from zero, we shall show that T is a bounded and invertible

operator. Then using the asymptotic formulas

λn = n− 1

2
+O (τn) , n→∞, O (τn)→ 0 (2.20)

αn =
π

2
(
n− 1

2

)2 +O

(
τ̃n
n2

)
, (2.21)

where τn =
∫ 2
n

0
x |q (x)| dx + 1

n

∫ π
1
2n
|q (x)| dx, (see [7] and [8] ) and using the

asymptotic results for large λ,

w (λ) = sinα cosλπ +
sinλπ

λ
cosα +O

(
e|Imλ|x

|λ|5−2p

)
(2.22)

we obtain

‖ϕn‖
2 =

π∫
0

ϕ2
n (x) dx =

π2

2
(
n− 1

2

)2 +O
(τn
n2

)
. (2.23)

Similarly, it can be written as

‖ϕ̃n‖
2 =

π∫
0

ϕ̃2
n (x) dx =

π2

2
(
n− 1

2

)2 +O

(
τ̃n
n2

)
. (2.24)

From the equality (2.23) and (2.24) we conclude that

lim
n→∞

‖ϕn‖
‖ϕ̃n‖

= 1.

It follows that ‖Tϕn‖‖ϕn‖
is uniformly bounded so that T is bounded and has an

inverse.
Let f be an arbitrary function in H. Then,

fn =
〈f, ϕn〉
‖ϕn‖

2 , (2.25)
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and

(λ− L)−1 f =
∑

Λ

fnϕn
(λ− λn)

, (2.26)

provided λ 6= λn for all n. To verify the above equation we observe that
(λ− L)−1 is a compact operator and (λ− L)−1 ϕn = (λ− λn)−1 ϕn. Now we
can write

T (λ− L)−1 f =
∑

Λ

fnϕ̃n
(λ− λn)

. (2.27)

The right side of (2.27) is in the range of the unbounded operator L̃. To show
this we recall a necessary and sufficient condition for

g =
∞∑
n=0

gnϕ̃n

to be in the range of L̃ is that

∞∑
n=0

∣∣∣λ̃ngn∣∣∣2 <∞.
we see from (2.20) that

∑
Λ

∣∣∣∣ λnfnλ− λn

∣∣∣∣2 ≤ 1

min
n
|λ/λn − 1|2

∑
Λ

|fn|2 <∞.

Clearly,
(
λ− L̃

)
ϕ̃n = (λ− λn) ϕ̃n and(
λ− L̃

)
T (λ− L)−1 f =

∑
Λ

fnϕ̃n = Tf. (2.28)

Since (2.28) holds for an arbitrary f ∈ H.
Now, we shall seek a different representation for T . To do this we shall

employ the Green’s function of the operator L with the boundary conditions
(2.2) and (2.3). Let ψ (x) be the solution of the following problem

ψ′′ +

[
λ2 − δ

xp
− q0 (x)

]
ψ = 0 (2.29)
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ψ (π, λ) = − sinα, ψ′ (π, λ) = cosα

and y (x) be solution of the equation

y′′ +

[
λ2 − δ

xp
− q0 (x)

]
y = f (x) .

The Green’s function G (x, s) is given by

(λ− L)

1∫
0

G (x, s) f (s) ds = f (x) . (2.30)

By a standard computation, we can easily show that

G (x, s) =


ϕ(x)ψ(s)
w(λ)

, x < s

ϕ(s)ψ(x)
w(λ)

, s < x

, (2.31)

where ϕ (x) is the solution of (1.1), ψ (x) is the solution of (2.29) and w (λ)
satisfies (2.14). A more convenient notation for G (x, s) is written as

G (x, s) =
ϕ (x<)φ (x>)

w (λ)
, (2.32)

where
x< = min (x, s) , x> = max (x, s) . (2.33)

By the asymptotic results, both the numerator and the denominator of G (x, s)
are entire functions of λ of order 1

2
. Then for large λ, bounded away from the

poles of G (x, s) , we have (1.27) from Lemma 1.1.
Let {Γn} be a sequence of square which intersects the positive λ-axis be-

tween λn and λn+1. Then,

lim
n→∞

∫
Γn

G (x, s)

λ− µ
dµ = 0. (2.34)

By using a residue integration, it follows that

1

2πi

∫
Γn

G (x, s)

λ− µ
dµ = −G (x, s) +

n∑
k=0

ϕn (x<)ψn (x>)

w′ (λn) (λ− λn)
. (2.35)
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From (2.34) and (2.35) we see that the Mittag-Leffler expansion [12]. ForG (x, s)
as a function of λ is

G (x, s) =
∞∑
n=0

ϕn (x<)ψn (x>)

w′ (λn) (λ− λn)
, (2.36)

where ϕn and ψn are both eigenfunctions corresponding to the simple eigen-
values λn. Therefore, these functions are linearly dependent. Then

knϕn (x) = ψn (x) , (2.37)

for x = π,

kn =


− sinα
ϕn(π)

, α 6= 0

1
ϕ′n(π)

, α = 0
(2.38)

From (2.30) we obtain

(λ− L)−1 f =

π∫
0

G (x, s) f (s) ds. (2.39)

Hence,

(λ− L)−1 f =
∑

Λ

knϕn (x)
π∫
0

ϕn (s) f (s) ds

w′ (λn) (λ− λn)
. (2.40)

Now, using (2.25), (2.40) reduces to

(λ− L)−1 f =
∑

Λ

knϕn (x) fn ‖ϕn‖
2

w′ (λn) (λ− λn)
. (2.41)

Comparing (2.26) with (2.41), we see that

‖ϕn‖
2 =

w
′
(λn)

kn
. (2.42)

So, from (2.32) and (2.39) we obtain

(λ− L)−1 f =

ψ (x)
x∫
0

ϕ (s) f (s) ds+ ϕ (x)
π∫
x

ψ (s) f (s) ds

w (λ)
. (2.43)
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Our next claim is that

T (λ− L)−1 f =
∑

Λ

ψ̃n (x)
x∫
0

ϕn (s) f (s) ds+ ϕ̃n (x)
π∫
x

ψn (s) f (s) ds

w′ (λn) (λ− λn)
, (2.44)

where ϕ̃n and ψ̃n are solutions of (1.1) and (2.29), respectively, with q (x)

replaced by
∼
q (x) . To prove this we have to show that the right side of (2.44)

and (2.27) coincide. Using the equalities,

ψn (x) = knϕn (x) , (2.45)

ψ̃n (x) = k̃nϕ̃n (x) .

We transform, the right side of (2.44) to the form,

∑
Λ

k̃nϕ̃n (x)
x∫
0

ϕn (s) f (s) ds+ knϕ̃n (x)
π∫
x

ϕn (s) f (s) ds

w′ (λn) (λ− λn)
, (2.46)

and if kn = k̃n, (2.42) reduces to
∑
Λ

knϕ̃n(x)
π∫
0

ϕn(s)f(s)ds

w′ (λn)(λ−λn)
=
∑
Λ

ϕ̃n(x)
π∫
0

ϕn(s)f(s)ds

‖ϕn‖
2(λ−λn)

. Now,

we have to show that kn = k̃n. So far, the second spectrum has not been used.
It must be used only in this step. We return to (2.14) and (2.15) and let
λ = λn. Since w (λn) = 0, these reduce to

ϕn(π, λ) cosα + ϕ′n(π, λ) sinα = 0, (2.48)

ϕn(π, λ) cos γ + ϕ′n(π, λ) sin γ = v (λn) , (2.49)

and solving for ϕn (π, λ) , we find that

ϕn(π) = − sinαv (λn)

sin (α− γ)
, (2.50)

and by using (2.38), we can obtain

kn =
sin (γ − α)

v (λn)
. (2.51)
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Similarly,

k̃n =
sin (γ − α)

ṽ (λn)
. (2.52)

Using of asymptotic formulas shows that v (λ) and ṽ (λ) have the same asymp-
totic forms. Then we have kn = k̃n for n ∈ Λ. So that (2.44) holds. From the
formulas (2.11) and (2.44), we obtain

Tf =
(
λ− L̃

)∑
Λ

ψ̃n (x)
x∫
0

ϕn (s) f (s) ds+ ϕ̃n (x)
π∫
x

ψn (s) f (s) ds

w′ (λn) (λ− λn)
. (2.53)

We calculate

g (x) =

ψ̃ (x)
x∫
0

ϕ (s) f (s) ds+ ϕ̃ (x)
π∫
x

ψ (s) f (s) ds

w (λ)
. (2.54)

By virtue of Mittag-Leffler expansion of g (x), we get the following equation:

g (x) =
∑
Λ0

ũn (x)
x∫
0

ϕn (s) f (s) ds+ z̃n (x)
π∫
x

ψn (s) f (s) ds

w′ (λn) (λ− λn)

+
∑

Λ

ψn (x)
x∫
0

ϕn (s) f (s) ds+ ϕ̃n (x)
π∫
x

ψn (s) f (s) ds

w′ (λn) (λ− λn)
. (2.55)

The second summation is T (λ − L)−1f as in (2.44). In the first term ũn (x)
and z̃n (x) represent ψ̃ (x) and ϕ̃ (x) evaluated at λn, respectively.

Hence,

(λ− L̃)−1Tf = g (x)−
∑
Λ0

ũn (x)
x∫
0

ϕn (s) f (s) ds+ z̃n (x)
π∫
x

ψn (s) f (s) ds

w′ (λn) (λ− λn)

(2.56)



254 Etibar S. Panakhov and Erdal Bas

(λ− L̃)−1Tf =

ψ̃ (x)
x∫
0

ϕ (s) f (s) ds+ ϕ̃ (x)
π∫
x

φ (s) f (s) ds

w (λ)

−
∑
Λ0

ũn (x)
x∫
0

ϕn (s) f (s) ds+ z̃n (x)
π∫
x

φn (s) f (s) ds

w′ (λn) (λ− λn)
. (2.57)

Applying (λ − L̃) to the both sides we observe that it is continuous and it is
differentiable. Using the formulas (2.54) and differentiation of the right side
of (2.56), we obtain

ψ̃
′
(x)

x∫
0

ϕ (s) f (s) ds+ ϕ̃′ (x)
π∫
x

ψ (s) f (s) ds

w (λ)

−
∑
Λ0

ũ′n (x)
x∫
0

ϕn (s) f (s) ds+ z̃′n (x)
π∫
x

ψn (s) f (s) ds

w′ (λn) (λ− λn)

+

{
ψ̃ (x)ϕ (x)− ϕ̃ (x)ψ (x)

w (λ)
−
∑
Λ0

ũn (x)ϕn (x)− z̃n (x)ψn (x)

w′ (λn) (λ− λn)

}
f (x) . (2.58)

An inspection of the term in the second braces shows that it vanishes iden-
tically. To do this one merely computes the residue at each λn and observes
that it becomes zero. One can differentiate the expression in the first braces
in last expression and then obtain from (2.58)

Tf =

[
ψ̃
′
(x)ϕ (x)− ϕ̃′ (x)ψ (x)

w (λ)
−
∑
Λ0

ũ′n (x)ϕn (x)− z̃′n (x)ψn (x)

w′ (λn) (λ− λn)

]
f (x)

−
∑
Λ0

ũn (x)
x∫
0

ϕn (s) f (s) ds+ z̃n (x)
π∫
x

ψn (s) f (s) ds

w′ (λn)
. (2.59)

The operator T must be independent of λ. To deduce the value of the expres-
sion in the braces in (2.59) we let λ→∞. Using the asymptotic formulas we
see that the term in the braces must, in fact, reduce to unity. To simplify the
second term in (2.59) we recall that
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φn = knϕn ,

π∫
0

ϕn (s) f (s) ds = 0, n ∈ Λ0

hence,

Tf = f −
∑
Λ0

ũn (x)− knz̃n (x)

w′ (λn)

x∫
0

ϕn (s) f (s) ds,

Tf = f − 1

2

∑
Λ0

ψ̃n (x)

x∫
0

ϕn (s) f (s) ds, (2.60)

where
ũn (x)− knz̃n (x)

w′ (λn)
=

1

2
ψ̃n (x) .

Now, from the (2.11) we conclude that(
λ− L̃

)
T (λ− L)−1 = T,

L̃T = TL,

and this equality holds for each f ∈ H

L̃Tf = TLf. (2.61)

We substitute (2.60) into (2.61) and then by straightforward computations,
we obtain that

L̃Tf = − (Tf)′′ +

[
δ

xp
+ q̃0 (x)

]
Tf

= −

f − 1

2

∑
Λ0

ψ̃n (x)

x∫
0

ϕn (s) f (s) ds

′′

+q̃ (x)

f − 1

2

∑
Λ0

ψ̃n (x)

x∫
0

ϕn (s) f (s) ds

 ,
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and

TLf = T

{
−f ′′ +

[
δ

xp
+ q0 (x)

]
f

}
= −f ′′ +

[
δ

xp
+ q0 (x)

]
f

−1

2

∑
Λ0

ψ̃n (x)

x∫
0

ϕn (s)

{
−f ′′ +

[
δ

xp
+ q0 (x)

]
f (s)

}
ds.

Consequently,

(q − q̃) =
∑
Λ0

[
ψ̃n (x)ϕn (x)

]′
.

If Λ0 is empty, then T is the identity operator and L = L̃. Hence, q(x) = q̃(x).
This completes the proof of theorem.

Finally, we should note that the similar results were obtained for regular
and singular Sturm-Liouville operators with a different method in [12].

Conclusion. In this paper, we give the solution of the inverse Sturm-Liouville
problem having special singularity type at zero on two partially coinciding
spectra. In this case, we proved Hocshtadt’s theorem concerning the structure
of the difference q(x)− q̃(x).

Acknowledgments. We thank the referee and editor for helpful comments
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