Real Paley-Wiener Theorems for the Modified q-Mellin Transform*

M. M. Chaffar ${ }^{\dagger}$
Faculté des Sciences de Gabes, Gabes 6072, Tunisia
K. Brahim ${ }^{\ddagger}$
Institut Préparatoire de Sokra, Tunisia
and
\section*{N. Bettaibi ${ }^{\S}$}
Mathematics Department, College of Sciences, Qassim University, P.O. BOX 6666 Buraydah 51452, Kingdom of Saudi Arabia

Received January 27, 2010, Accepted March 3, 2010.

Abstract

In this paper, a modified q-Mellin transform is introduced and studied, and a Plancherel formula as well as a Hausdorff-Young inequality are shown. Next, new type Paley-Wiener theorems for this transform are established, using real variable methods.

Keywords and Phrases: Paley-Wiener Theorems, q-Modified Mellin Transform.

[^0]
1. Introduction

In the q-theory, (see [2] and [5]), for a real parameter $q \in] 0,1[$, we write

$$
\begin{gathered}
{[a]_{q}=\frac{1-q^{a}}{1-q}, a \in \mathbb{C},} \\
(a ; q)_{0}=1, \text { and }(a ; q)_{n}=\prod_{k=0}^{n}\left(1-a q^{k}\right), \quad n \in \mathbb{N} \cup\{\infty\}, \quad a \in \mathbb{C},
\end{gathered}
$$

and

$$
\mathbb{R}_{q,+}=\left\{q^{n}: n \in \mathbb{Z}\right\}
$$

The q-Jackson's integrals from 0 to a, from 0 to ∞ and in a generic interval $[a, b]$ are defined by (see [4])

$$
\begin{align*}
& \int_{0}^{a} f(x) d_{q} x=(1-q) a \sum_{n=0}^{\infty} f\left(a q^{n}\right) q^{n} \tag{1}\\
& \int_{0}^{\infty} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{\infty} f\left(q^{n}\right) q^{n} \tag{2}
\end{align*}
$$

provided the sums converge absolutely, and

$$
\begin{equation*}
\int_{a}^{b} f(x) d_{q} x=\int_{0}^{b} f(x) d_{q} x-\int_{0}^{a} f(x) d_{q} x \tag{3}
\end{equation*}
$$

Using the q-Jackson's integral, the q-Mellin transform of a function f on $\mathbb{R}_{q,+}$ is defined in [1], by

$$
M_{q}(f)(s)=M_{q}[f(t)](s)=\int_{0}^{\infty} t^{s-1} f(t) d_{q} t
$$

It is analytic on a strip $\left\langle\alpha_{q, f} ; \beta_{q, f}\right\rangle$, called the fundamental strip, and it is a periodic function, with period $\frac{2 i \pi}{\log q}$. Furthermore, we have

$$
\begin{equation*}
\forall n \in \mathbb{N}, \forall s \in\left\langle\alpha_{q, f} ; \beta_{q, f}\right\rangle, \quad \frac{d^{n}}{d s^{n}} M_{q}(f)(s)=M_{q}\left[(\log (t))^{n} f(t)\right](s) \tag{4}
\end{equation*}
$$

The inversion formula for this transform is given by

$$
f(x)=\frac{\log (q)}{2 i \pi(1-q)} \int_{c-\frac{i \pi}{\log (q)}}^{c+\frac{i \pi}{\log (q)}} M_{q}(f)(s) x^{-s} d s, \quad x \in \mathbb{R}_{q,+},
$$

where $\alpha_{q, f}<c<\beta_{q, f}$.
It was shown in [1], that for $c \in\left\langle\alpha_{q, f} ; \beta_{q, f}\right\rangle \cap\left\langle 1-\beta_{q, g} ; 1-\alpha_{q, g}\right\rangle$, we have

$$
\begin{equation*}
\frac{\log (q)}{2 i \pi(1-q)} \int_{c-i \frac{\pi}{\log (q)}}^{c+i \frac{\pi}{\log (q)}} M_{q}(f)(s) M_{q}(g)(1-s) d s=\int_{0}^{\infty} f(x) g(x) d_{q} x \tag{5}
\end{equation*}
$$

The aim of the present paper is to introduce and study a q-analogue of the modified Mellin transform, that will be called modified q-Mellin transform. In particular, we prove for this new transform a Plancherel formula and a Hausdorff-Young inequality. Next, inspired by the ideas developed in [7], we establish for the modified q-Mellin transform some real Paley-Wiener theorems.

This paper is organized as follows: in Section 2, we introduce the modified q-Mellin transform and we prove a Plancherel formula and a Hausdorff-Young inequality. In Section 3, we establish a relation between the support of a function f on $\mathbb{R}_{q,+}$ and differentiability properties of its modified q-Mellin transform. We investigate then the support of a function only in terms of its q-Mellin transform, using real variable techniques.

2. Modified q-Mellin Transform

Notation. The notation $L_{q}^{p}\left(\mathbb{R}_{q,+}\right)$ will stand for the Banach space induced by the norm $\|f\|_{L_{q}^{p}\left(\mathbb{R}_{q,+}\right)}=\left(\int_{0}^{\infty}|f(t)|^{p} d_{q} t\right)^{\frac{1}{p}}$ and in the presence of a weight, we will write $\|f\|_{L_{q}^{p}\left(\mathbb{R}_{q,+}, w(t) d_{q} t\right)}=\left(\int_{0}^{\infty}|f(t)|^{p} w(t) d_{q} t\right)^{\frac{1}{p}}$.
Definition 1. Let f be a function defined on $\mathbb{R}_{q,+}$. We define the modified q-Mellin transform $M_{q, \gamma}(f), \gamma \in \mathbb{R}$, of f as

$$
\begin{equation*}
M_{q, \gamma}(f)(x)=\int_{0}^{\infty} t^{\gamma+i x-1} f(t) d_{q} t, \quad x \in \mathbb{R}, \tag{6}
\end{equation*}
$$

provided the q-integral converges.

It is clear that $M_{q, \gamma}(f)$ is the restriction of the q-Mellin transform of f on $\gamma+i \mathbb{R}$. So, $M_{q, \gamma}(f)$ is defined on \mathbb{R} if and only if γ is a real in the fundamental strip of $M_{q}(f)$. In the sequel, we assume that this condition holds. Moreover, it is a periodic function, with period $\frac{2 \pi}{\log q}$.
Theorem 1. Let f be a function defined on $\mathbb{R}_{q,+}$ such that $t^{\gamma-1} f(t) \in L_{q}^{1}\left(\mathbb{R}_{q,+}\right)$. Then $M_{q, \gamma}(f) \in L^{\infty}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)$ and

$$
\begin{equation*}
\left.\left.\left\|M_{q, \gamma}(f)\right\|_{L^{\infty}\left(\left[\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right]\right.\right.}\right] d x\right) \leq\left\|t^{\gamma-1} f(t)\right\|_{L_{q}^{1}\left(\mathbb{R}_{q,+}\right)} \tag{7}
\end{equation*}
$$

Proof. For all $x \in\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right]$, we have $\left|M_{q, \gamma}(f)(x)\right|=\left|\int_{0}^{\infty} t^{\gamma+i x-1} f(t) d_{q} t\right| \leq \int_{0}^{\infty} t^{\gamma-1}|f(t)| d_{q} t=\left\|t^{\gamma-1} f(t)\right\|_{L_{q}^{1}\left(\mathbb{R}_{q,+}\right)}$.

Theorem 2. (Plancherel formula)
Let f be a function defined on $\mathbb{R}_{q,+}$ such that $t^{\gamma-1 / 2} f(t) \in L_{q}^{2}\left(\mathbb{R}_{q,+}\right)$. Then $M_{q, \gamma}(f)$ is in $L^{2}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)$ and

$$
\begin{equation*}
\left(\frac{\log q}{2 \pi(q-1)}\right)^{\frac{1}{2}}\left\|M_{q, \gamma}(f)\right\|_{L^{2}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)}=\left\|t^{\gamma-1 / 2} f(t)\right\|_{L_{q}^{2}\left(\mathbb{R}_{q,+}\right)} \tag{8}
\end{equation*}
$$

Proof. Using (5) and the fact

$$
\forall \lambda \in \mathbb{C}, \quad M_{q}\left[t^{\lambda} f(t)\right](s)=M_{q}(f)(\lambda+s)
$$

we obtain

$$
\begin{aligned}
\int_{0}^{+\infty}|f(x)|^{2} x^{2 \gamma-1} d_{q} x & =\int_{0}^{+\infty} f(x) \bar{f}(x) x^{2 \gamma-1} d_{q} x \\
& =\frac{\log q}{2 i \pi(1-q)} \int_{\gamma-i}^{\gamma+i \frac{\pi}{\log q}} M_{q}(f)(s) M_{q}(\bar{f})(2 \gamma-s) d s \\
& =\frac{\log q}{2 \pi(1-q)} \int_{-\frac{\pi}{\log q}}^{\frac{\pi}{\log q}} M_{q}(f)(\gamma+i t) M_{q}(\bar{f})(\gamma-i t) d t \\
& =\frac{\log q}{2 \pi(1-q)} \int_{-\frac{\pi}{\log q}}^{\frac{\pi}{\log q}}\left|M_{q, \gamma}(f)(t)\right|^{2} d t
\end{aligned}
$$

Thus,

$$
\left\|x^{\gamma-1 / 2} f\right\|_{L_{q}^{2}\left(\mathbb{R}_{q,+}\right)}=\left(\frac{\log q}{2 \pi(q-1)}\right)^{1 / 2}\left\|M_{q, \gamma}(f)\right\|_{L^{2}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)} .
$$

We are now in a situation to state a Hausdorff-Young inequality for the modified q-Mellin transform.

Theorem 3. (Hausdorff-Young inequality)
Let f be a function defined on $\mathbb{R}_{q,+}$ and $1<n \leq 2$ (resp. $n=1$) such that $t^{\gamma-\frac{1}{n}} f(t) \in L_{q}^{n}\left(\mathbb{R}_{q,+}\right)$. Then for $m=\frac{n}{n-1}$ (resp. $m=\infty$), we have $M_{q, \gamma}(f) \in L^{m}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)$ and

$$
\begin{equation*}
\left\|M_{q, \gamma}(f)\right\|_{L^{m}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)} \leq C(q, n)\left\|t^{\gamma-\frac{1}{n}} f(t)\right\|_{L_{q}^{n}\left(\mathbb{R}_{q,+}\right)} \tag{9}
\end{equation*}
$$

Proof. Consider the linear operator T defined by, $T(f)=M_{q, \gamma}\left(t^{-\gamma} f\right)$.
From Theorem 1, we have for all $f \in L_{q}^{1}\left(\mathbb{R}_{q,+}, \frac{d_{q} x}{x}\right)$,

$$
\|T(f)\|_{L^{\infty}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)} \leq\|f\|_{L_{q}^{1}\left(\mathbb{R}_{q,+}, \frac{d_{q} x}{x}\right)}
$$

and from Theorem 2, we have for all $f \in L_{q}^{2}\left(\mathbb{R}_{q,+}, \frac{d_{q} x}{x}\right)$,

$$
\|T(f)\|_{L^{2}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)}=\left(\frac{\log q}{2 \pi(q-1)}\right)^{-\frac{1}{2}}\|f\|_{L_{q}^{2}\left(\mathbb{R}_{q,+}, \frac{d_{q} x}{x}\right)}
$$

So, by the Riesz-Thorin interpolation theorem (see [3] and [6]), we obtain the result with $C(q, n)=\left(\frac{\log q}{2 \pi(q-1)}\right)^{\frac{1-n}{n}}$.

3. Paley-Wiener Theorems for the Modified q Mellin Transform

From (4), one can see that $M_{q, \gamma}(f)$ is a C^{∞}-function on \mathbb{R} and for all $x \in \mathbb{R}$ and all $n \in \mathbb{N}$, we have

$$
\frac{d^{n}}{d x^{n}} M_{q, \gamma}(f)(x)=M_{q, \gamma}\left[(i \log t)^{n} f(t)\right](x)
$$

Then, for a polynomial function $P(x)$, we have

$$
\begin{equation*}
P\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)(x)=M_{q, \gamma}[P(\log t) f(t)](x) \tag{10}
\end{equation*}
$$

For a real positive number r, we put

$$
\Omega_{P, r}=\{t>0: \mid P(\log (t) \mid \leq r\}
$$

We begin by the following useful lemma.
Lemma 1. Let $p>0, F$ and Q be two functions defined on $\mathbb{R}_{q,+}$, such that $Q^{n} F \in L_{q}^{p}\left(\mathbb{R}_{q,+}\right)$ for all $n=0,1,2, \ldots$, then

$$
\lim _{n \rightarrow+\infty}\left\|Q^{n} F\right\|_{L_{q}^{p}\left(\mathbb{R}_{q,+}\right)}^{\frac{1}{n}}=\sup _{t \in \operatorname{supp}(F) \cap \mathbb{R}_{q,+}}|Q(t)|
$$

Proof. The case $F=0$ is trivial, since in this case $\operatorname{supp}(F)=\varnothing$. Suppose now that $F \neq 0$ and define a measure μ on $\mathbb{R}_{q,+}$ by

$$
d \mu=\|F\|_{L_{q}^{p}\left(\mathbb{R}_{q,+}\right)}^{-p}|F(x)|^{p} d_{q} x .
$$

We have : $\mu\left(\mathbb{R}_{q,+}\right)=1$ and

$$
\left\|Q^{n} F\right\|_{L_{q}^{p}\left(\mathbb{R}_{q,+}\right)}^{\frac{1}{n}}=\|F\|_{L_{q}^{p}\left(\mathbb{R}_{q,+}\right)}^{\frac{1}{n}}\|Q\|_{L_{q}^{p n}\left(\mathbb{R}_{q,+}, d \mu\right)} .
$$

On the other hand, we have

$$
\lim _{n \rightarrow+\infty}\|Q\|_{L_{q}^{p n}\left(\mathbb{R}_{q,+}, d \mu\right)}=\|Q\|_{L_{q}^{\infty}\left(\mathbb{R}_{q,+}, d \mu\right)}
$$

and

$$
\|Q\|_{L_{q}^{\infty}\left(\mathbb{R}_{q,+}, d \mu\right)}=\sup _{t \in \operatorname{supp}(\mu)}|Q(t)|=\sup _{t \in \operatorname{supp}(F) \cap \mathbb{R}_{q,+}}|Q(t)| .
$$

Then, the result follows from the fact that $\lim _{n \rightarrow+\infty}\|F\|_{L_{q}^{p}\left(\mathbb{R}_{q,+}\right)}^{\frac{1}{n}}=1$.

Theorem 4. Let f be a function defined on $\mathbb{R}_{q,+}$ such that $(1+|\log t|)^{k} t^{\gamma-1 / 2} f(t) \in L_{q}^{2}\left(\mathbb{R}_{q,+}\right)$ for all $k=0,1,2 \ldots$. Then

$$
\begin{equation*}
\lim _{k \rightarrow+\infty}\left\|P^{k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{2}\left(\left[\frac{\pi}{\log q}, \frac{\pi}{\log q}\right], d x\right)}^{1 / k}=\sup _{t \in \operatorname{supp}(f) \cap \mathbb{R}_{q,+}}|P(\log t)| . \tag{11}
\end{equation*}
$$

In particular, $\operatorname{supp}(f) \cap \mathbb{R}_{q,+} \subset \Omega_{P, r}$ if and only if

$$
\begin{equation*}
\lim _{k \rightarrow+\infty}\left\|P^{k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{2}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)}^{1 / k} \leq r \tag{12}
\end{equation*}
$$

Proof. On the one hand, from the relation (10) and the Plancherel formula, we have

$$
\begin{aligned}
& \left(\frac{\log q}{2 \pi(q-1)}\right)^{\frac{1}{2}}\left\|P^{k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{2}\left(\left[\frac{\pi}{L \operatorname{ogq}},-\frac{\pi}{\operatorname{Logq}}\right], d x\right)} \\
& =\left\|t^{\gamma-1 / 2} P^{k}(\log t) f(t)\right\|_{L_{q}^{2}\left(\mathbb{R}_{q,+}\right)} .
\end{aligned}
$$

On the other hand, Lemma 1 gives

$$
\begin{aligned}
& \left.\left.\lim _{k \rightarrow+\infty}\left\|P^{k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{2}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right]\right.}\right] d x\right) \\
= & \lim _{k \rightarrow+\infty}\left\|t^{\gamma-1 / 2} P^{k}(\log t) f(t)\right\|_{L_{q}^{2}\left(\mathbb{R}_{q,+}\right)}^{1 / k} \\
= & \sup _{t \in \operatorname{supp}\left(t^{\gamma-1 / 2} f\right) \cap \mathbb{R}_{q,+}}|P(\log t)| \\
= & \sup _{t \in \operatorname{supp}(f) \cap \mathbb{R}_{q,+}}|P(\log t)| .
\end{aligned}
$$

Finally, the fact that $\operatorname{supp}(f) \cap \mathbb{R}_{q,+} \subset \Omega_{P, r}$ if and only if

$$
\sup _{t \in \operatorname{supp}(f) \cap \mathbb{R}_{q,+}}|P(\log t)| \leq r
$$

completes the proof.
In the particular case $P(t)=t$, we have the following result.
Corollary 1. A function F is the modified q-Mellin transform $M_{q, \gamma}(f)$ of a function $f \in L_{q}^{2}\left(\mathbb{R}_{q,+}\right)$ with support in the interval $\left[e^{-r}, e^{r}\right]$ if and only if $\frac{d^{k}}{d x^{k}} F \in L^{2}\left(\left[\frac{\pi}{\operatorname{Logq}},-\frac{\pi}{\operatorname{Logq}}\right], d x\right)$ for all $k=0,1, \ldots$ and

$$
\lim _{k \rightarrow+\infty}\left\|\frac{d^{k}}{d x^{k}} F(x)\right\|_{L^{2}\left(\left[\frac{\pi}{\operatorname{Logq}},-\frac{\pi}{\operatorname{Logq}}\right], d x\right)}^{1 / k} \leq r
$$

Owing to the Hausdorff-Young inequality, the previous theorem can be generalized by the substitution of the L^{2} norm by an L^{p} norm, $2 \leq p \leq \infty$. This is the aim of the following result.

Theorem 5. For $2 \leq p \leq \infty$, we have for all polynomial function P with real coefficients

$$
\begin{equation*}
\lim _{k \rightarrow+\infty}\left\|P^{k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{p}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)}^{1 / k}=\sup _{t \in \operatorname{supp}(f) \cap \mathbb{R}_{q,+}}|P(\log t)| \tag{13}
\end{equation*}
$$

Proof. For $2 \leq p \leq \infty$, we note p^{\prime} its conjugate number (i.e. $\frac{1}{p}+\frac{1}{p^{\prime}}=1$).
If $2 \leq p<\infty$, then from the Hausdorff-Young inequality and the relation (10), we have

$$
\left\|P^{k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{p}\left(\left[\frac{\pi}{\operatorname{Logq}},-\frac{\pi}{\log q}\right], d x\right)} \leq C(q, p) \| P^{k}(\text { Logt }) t^{\gamma-1 / p^{\prime}} f(t) \|_{L_{q}^{p^{\prime}}\left(\mathbb{R}_{q,+}\right)}
$$

So, by Lemma 1, we get

$$
\begin{align*}
\limsup _{k \rightarrow+\infty} \| P^{k} & \left(-i \frac{d}{d x}\right) M_{q, \gamma}(f) \|_{L^{p}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)}^{1 / k} \\
& \leq \limsup _{k \rightarrow+\infty} C(q, p)^{1 / k}\left\|P^{k}(\log t) t^{\gamma-1 / p^{\prime}} f(t)\right\|_{L_{q}^{p^{\prime}}\left(\mathbb{R}_{q,+}\right)}^{1 / k} \tag{14}\\
& =\sup _{t \in \operatorname{supp}} \mid\left(t^{\left.\gamma-1 / p^{\prime} f\right) \cap \mathbb{R}_{q,+}}|P(\log t)|=\sup _{t \in \operatorname{supp}(f) \cap \mathbb{R}_{q,+}}|P(\log t)| .\right.
\end{align*}
$$

If $p=\infty$, then we have from Theorem 1 and the Hölder's inequality

$$
\begin{aligned}
\left\|M_{q, \gamma}(f)\right\|_{L^{\infty}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)} & \leq\left\|t^{\gamma-1} f\right\|_{L_{q}^{1}\left(\mathbb{R}_{q,+}\right)} \\
& =\int_{0}^{\infty}\left(1+t^{2}\right)^{-1}\left|\left(1+t^{2}\right) t^{\gamma-1} f(t)\right| d_{q} t \\
& \leq\left\|\left(1+t^{2}\right)^{-1}\right\|_{L_{q}^{2}\left(\mathbb{R}_{q,+}\right)}\left\|\left(1+t^{2}\right) t^{\gamma-1} f(t)\right\|_{L_{q}^{2}\left(\mathbb{R}_{q,+}\right)} \\
& \leq C\left\|\left(1+t^{2}\right) t^{\gamma-1} f(t)\right\|_{L_{q}^{2}\left(\mathbb{R}_{q,+}\right)} .
\end{aligned}
$$

Therefore,

$$
\left\|P^{k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{\infty}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)} \leq C\left\|P^{k}(\log t)\left(1+t^{2}\right) t^{\gamma-1} f(t)\right\|_{L_{q}^{2}\left(\mathbb{R}_{q,+}\right)}
$$

Also, the use of Lemma 1 gives

$$
\begin{align*}
\limsup _{k \rightarrow+\infty}\left\|P^{k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{\infty}\left(\left[\frac{\pi}{\operatorname{Logq} q},-\frac{\pi}{\operatorname{Logq}}\right], d x\right)}^{1 / k} & \leq \sup _{t \in \operatorname{supp}} \sup _{\left(1+t^{2}\right) t^{\gamma-1} f \cap \mathbb{R}_{q,+}}|P(\log t)| \\
& =\sup _{t \in \operatorname{supp}(f) \cap \mathbb{R}_{q,+}}|P(\log t)| . \tag{15}
\end{align*}
$$

On the other hand, since $M_{q, \gamma}(f)$ is a $\frac{2 \pi}{\log q}$ periodic function, then some integrations by parts give

$$
\begin{aligned}
\int_{\frac{\pi}{\log q}}^{-\frac{\pi}{\log q}} P^{k}\left(-i \frac{d}{d x}\right) & M_{q, \gamma}(f)(t) P^{k}\left(i \frac{d}{d x}\right) \overline{M_{q, \gamma}(f)(t)} d t= \\
& \int_{\frac{\pi}{\log q}}^{-\frac{\pi}{\log q}} \overline{M_{q, \gamma}(f)(t)} P^{2 k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)(t) d t
\end{aligned}
$$

So, by the Hölder's inequality, we obtain

$$
\begin{align*}
& \left\|P^{k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{2}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)}^{2} \leq \\
& \left\|M_{q, \gamma}(f)\right\|_{L^{p^{\prime}}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)}\left\|P^{2 k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{p}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)} . \tag{16}
\end{align*}
$$

But, from Theorem 4, we have

$$
\begin{aligned}
& \sup _{t \in \operatorname{suppf} \cap \mathbb{R}_{q,+}}|P(\log t)|=\lim _{k \rightarrow+\infty}\left\|P^{k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{2}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)}^{1 / k} \\
\leq & \lim _{k \rightarrow+\infty}\left\|M_{q, \gamma}(f)\right\|_{L^{p^{\prime}}\left(\left[\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)\right.}^{1 / 2 k} \\
& \liminf _{k \rightarrow+\infty}\left\|P^{2 k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{p}}^{1 / 2 k}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right) \\
= & \liminf _{k \rightarrow+\infty}\left\|P^{2 k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{p}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)}^{1 / 2 k} .
\end{aligned}
$$

Now, replacing $M_{q, \gamma}(f)$ by $P\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)$ in formula (16), we obtain

$$
\begin{aligned}
& \left.\left\|P^{k+1}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{2}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right]\right.}^{2}, d x\right) \\
\leq & \left\|P\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{p^{\prime}}}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right) \\
& \left\|P^{2 k+1}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{p}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \sup _{t \in \operatorname{supp} f \cap \mathbb{R}_{q,+}}|P(\log t)|=\lim _{k \rightarrow+\infty}\left\|P^{k+1}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{2}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right.}^{\frac{1}{k+1}} \\
= & \lim _{k \rightarrow+\infty}\left\|P^{k+1}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{2}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)}^{\frac{2}{2 k+1}} \\
\leq & \lim _{k \rightarrow+\infty}\left\|M_{q, \gamma}(f)\right\|_{L^{p^{\prime}}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right]\right)}^{1 / 2 k+1} \\
& \liminf _{k \rightarrow+\infty}\left\|P^{2 k+1}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{p}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)}^{1 / 2 k+1} \\
= & \liminf _{k \rightarrow+\infty}\left\|P^{2 k+1}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{p}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)}^{1 / 2 k+1} .
\end{aligned}
$$

Thus,

$$
\liminf _{k \rightarrow+\infty}\left\|P^{k}\left(-i \frac{d}{d x}\right) M_{q, \gamma}(f)\right\|_{L^{p}\left(\left[\frac{\pi}{\log q},-\frac{\pi}{\log q}\right], d x\right)}^{1 / k} \geq \sup _{t \in \operatorname{supp}(f) \cap \mathbb{R}_{q,+}}|P(\log t)| .
$$

Finally, the result follows from this relation and formulas (14) and (15).

References

[1] A. Fitouhi, N. Bettaibi, and K. Brahim, The Mellin transform in Quantum Calculus, Constructive Approximation, 23 Nr 3 (2006), 305-323.
[2] G. Gasper and M. Rahmen, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Application, Vol 35 Cambridge Univ. Press, Cambridge, UK, 1990.
[3] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., New Jersey, 2004.
[4] F. H. Jackson, On a q-Definite Integrals, Quarterly Journal of Pure and Applied Mathematics, 41(1910), 193-203.
[5] V. G. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
[6] C. Sadosky, Intrpolation of Operators and Singular Integrals, (Monographs and textbooks in pure and applied mathematics, 53), (1979), Marcel Dekker, Inc.
[7] V. K. Tuan, New Type PaleyWiener Theorems for the Modified Multidimensional Mellin Transform, J. Fourier Analysis and Appl, 4 Issue 3 (1998).

[^0]: *2010 Mathematics Subject Classification. Primary 33D60, 39A12, 44A20.
 ${ }^{\dagger}$ Corresponding author. E-mail: mokhtar.chaffar@yahoo.fr
 ${ }^{\ddagger}$ E-mail: kamel710@yahoo.fr
 ${ }^{\text {§ }}$ E-mail: Neji.Bettaibi@ipein.rnu.tn

