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Abstract

Let R be a prime ring with center Z(R), right Utumi quotient ring
U and extended centroid C, S be a non-empty subset of R and n ≥ 1
a fixed integer. A mapping f : R −→ R is said to be n-centralizing on
S if [f(x), xn] ∈ Z(R), for all x ∈ S. In this paper we will prove that
if F is a non-zero generalized derivation of R, I a non-zero left ideal of
R, n ≥ 1 a fixed integer such that F is n-centralizing on the set [I, I],
then there exists a ∈ U and α ∈ C such that F (x) = xa, for all x ∈ R
and I(a−α) = (0), unless when x1s4(x2, x3, x4, x5) is an identity for I.
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Throughout the paper unless specifically stated, R always denotes a prime
ring with center Z(R) and extended centroid C, right Utumi quotient ring U .
For any pair of elements x, y ∈ R, we denote [x, y] = xy − yx, the commuta-
tor of x, y and [x, y]k = [[x, y]k−1, y] for k > 1. An additive subgroup L of R
is said to be a Lie ideal of R if [L,R] ⊆ L. A mapping f : R −→ R is said to be
n-centralizing (resp. n-commuting) on a non-empty subset S ofR if [f(x), xn] ∈
Z(R) (resp. [f(x), xn] = 0) for all x ∈ S and n a fixed positive integer.
An additive mapping d : R −→ R is said to be a derivation if d(xy) =
d(x)y + xd(y) holds for all x, y ∈ R. A well known result of Posner (Theorem
4 in [23]) states thatR must be commutative if there exists a nonzero derivation
d on R such that [d(x), x] ∈ Z(R) for all x ∈ R. Many related generalizations
have been obtained by a number of authors in the literature (see [1], [16], [17],
[22]). An additive mapping F : R −→ R is said to be a generalized derivation
if there exists a derivation d : R −→ R such that F (xy) = F (x)y + xd(y), for
all x, y ∈ R. Obviously any derivation is a generalized derivation. One basic
example of a generalized derivation is the mapping of the form g(x) = ax+xb
for all x ∈ R and for some fixed a, b ∈ R. This kind of generalized derivations
are called as inner generalized derivations of R. Many authors studied gener-
alized derivations in context of prime and semiprime rings (see [11], [18], [19]).
In [18] T.K. Lee extended the definition of a generalized derivation as follows:
an additive mapping F : J −→ U such that F (xy) = F (x)y + xd(y), for all
x, y ∈ J , where U is the right Utumi quotient ring of R, J is a dense right ideal
of R and d is a derivation from J to U . He also proved that every generalized
derivation of R can be uniquely extended to a generalized derivation of U . In
fact there exists a in U and a derivation d of U such that F (x) = ax + d(x)
for all x ∈ U (Theorem 3 in [18]). A corresponding form to dense left ideals
as follows: an additive mapping F : I −→ U is called a generalized derivation
if there exists a derivation d : I −→ U such that F (xy) = xF (y) + d(x)y, for
all x, y ∈ I, where U is the left Utumi quotient ring of R, I is a dense left
ideal of R. Following the same methods as in [14], one can extend F uniquely
to a generalized derivation of U . The extended generalized derivation of U
can also be denoted by F and has the form F (x) = xa + d(x) for all x ∈ U
and some a ∈ U , where d is a derivation of U . In this paper we shall prove
some theorems for a generalized derivation which are in spirit of the above
mentioned result of Posner and the results of Deng (Theorem 2 in [7]), Deng
and Bell (Theorem 2 in [8]).
In the first section we will prove the following:
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Theorem 1. Let R be a prime ring, F a non-zero generalized derivation
of R, L a non-central Lie ideal of R, n ≥ 1 a fixed integer such that F is
n-centralizing on L. Then either F (x) = λx for all x ∈ R and for some λ ∈ C
or R satisfies s4, the standard identity of degree 4.

Then we will extend the above result to the one-sided case, more precisely
we will prove:

Theorem 2. Let R be a prime ring, F a non-zero generalized derivation
of R, I a non-zero left ideal of R, n ≥ 1 a fixed integer such that F is n-
centralizing on the set [I, I]. Then there exists a ∈ U and α ∈ C such that
F (x) = xa, for all x ∈ R and I(a− α) = (0), unless when x1s4(x2, x3, x4, x5)
is an identity for I.

1. N-centralizing Maps on Lie Ideals

Here we begin with the following:

Lemma 1. Let R be a non-commutative prime ring, a, b ∈ R, I a two-sided
ideal of R, n ≥ 1 a fixed integer such that [a[r1, r2] + [r1, r2]b, [r1, r2]

n] ∈ Z(R),
for any r1, r2 ∈ I. Then either a, b ∈ Z(R) or R satisfies the standard identity
s4.

Proof. Suppose that either a /∈ Z(R) or b /∈ Z(R). In both cases[
[a[x1, x2] + [x1, x2]b, [x1, x2]

n], x3

]
(1)

is a non-trivial generalized polynomial identity for I and so also for R (see
[4]). Moreover, by Theorem 2 in [4], (1) is also an identity for RC. By
Martindale’s result in [21] RC is a primitive ring with non-zero socle. There
exists a vectorial space V over a division ring D such that RC is dense of
D-linear transformations over V .
Firstly we will prove that dimDV ≤ 2. By contradiction assume that dimDV ≥
3. If {v, va} is linearly D-independent for some v ∈ V , then by the density
of RC, there exists w ∈ V such that {w, v, va} is linearly D-independent and
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x0, y0, z0 ∈ RC such that vx0 = 0, vy0 = 0, vz0 = 0, (va)x0 = w, (va)y0 = 0,
(va)z0 = v, wy0 = va. This leads to the contradiction

0 = v

[
[a[x0, y0] + [x0, y0]b, [x0, y0]

n], z0

]
= v.

Thus {v, va} is linearly D-dependent, for all v ∈ V , which implies that a ∈ C.
From this, RC satisfies [

[[x1, x2]b, [x1, x2]
n], x3

]
. (2)

As above suppose that there exists v ∈ V such that {v, vb} is linearly D-
independent. Then there exists w ∈ V such that {v, vb, w} is linearly D-
independent and there exist x0, y0, z0 ∈ RC such that vx0 = w, vy0 = 0,
vz0 = vb, wy0 = v, (vb)x0 = v, (vb)y0 = 0, (vb)z0 = v. This implies that

0 = v

[
[[x0, y0]b, [x0, y0]

n], z0

]
= −v 6= 0,

a contradiction. Also in this case we conclude that {v, vb} is linearly D-
dependent, for all v ∈ V , and so b ∈ C.
The previous argument shows that if either a /∈ C or b /∈ C, then dimDV ≤ 2.
In this condition RC is a simple ring which satisfies a non-trivial generalized
polynomial identity. By [24] (Theorem 2.3.29) RC ⊆ Mt(K), for a suitable
field K, moreover Mt(K) satisfies the same generalized identity of RC, hence[

a[r1, r2] + [r1, r2]b, [r1, r2]
n

]
∈ Z(Mt(K))

for any r1, r2 ∈ Mt(K). If t ≤ 2, then R satisfies the standard identity s4. If
t ≥ 3, by the above argument, we get a, b ∈ Z(Mt(K)).

Now we will consider the n-centralizing condition on Lie ideals. We premit
the following:

Fact 1. Let R be a prime ring and L a non-central Lie ideal of R. Then either
there exists a non-zero ideal I of R such that 0 6= [I, R] ⊆ L or char(R) = 2
and R satisfies s4.

Proof. See [10] (pp 4-5), Lemma 2 and Proposition 1 in [9], Theorem 4 in
[13].
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1.1 The Proof of Theorem 1.

Assume that R does not satisfy s4. By Fact 1 we have that there exists a
two-sided ideal I of R such that [I, I] ⊆ L. In this last case we get that
[F ([r1, r2]), [r1, r2]

n] ∈ Z(R), for any r1, r2 ∈ I.
By [18] F has the form F (x) = ax+ d(x), for a ∈ U and d a derivation of U .
If d is an inner derivation induced by an element c ∈ U , it follows that

[(a+ c)[r1, r2]− [r1, r2]c, [r1, r2]
n] ∈ Z(R)

for any r1, r2 ∈ I, and by Lemma 1 we have that a, c ∈ C, that is d = 0 and
F (x) = ax, for all x ∈ R.
Assume now d is not an inner derivation of U . Notice that, if d = 0 then I
satisfies [

[a[x1, x2], [x1, x2]
n], x3

]
and by Lemma 1 we get the conclusion a ∈ C and F (x) = ax for all x ∈ U
and so for all x ∈ R. Assume finally d 6= 0. Since[

[a[x1, x2] + [d(x1), x2] + [x1, d(x2)], [x1, x2]
n], x3

]
is a differential identity for I, by Kharchenko’s result in [12], it follows that I
satisfies [

[a[x1, x2] + [y1, x2] + [x1, y2], [x1, x2]
n], x3

]
and in particular [

[[x1, y2], [x1, x2]
n], x3

]
(3)

is a polynomial identity for I. This implies obviously that R is a PI-ring
satisfying (3). Thus there exists a field K such that R and Mt(K), the ring
of all t × t matrices over K, satisfy the same polynomial identities. Since L
is non-central, R must be non-commutative. Hence t ≥ 2. In case t = 2, R
satisfies s4, a contradiction. Thus t ≥ 3. Denote by eij the usual matrix unit
with 1 in the (i, j)-entry and zero elsewhere. In (3) choose x1 = e12, x2 = e21,
x3 = e33, y2 = e23, then it follows the contradiction

0 =

[
[e13, (e11 − e22)n], e33

]
= −e13.
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2. N-centralizing Maps on Left Ideals

In this section we would like to extend Theorem 1 to left ideals in prime rings,
more precisely we will prove Theorem 2.
For the remainder of the paper we assume that the conclusion

• I satisfies x1s4(x2, x3, x4, x5)

of Theorem 2 is false.
Thus there exist a1, a2, a3, a4, a5 ∈ I such that a1s4(a2, a3, a4, a5) 6= 0. Our
goal is to ultimately arrive to prove that in this case there exists a ∈ U such
that F (x) = xa, for all x ∈ R and I[a, I] = (0).

Fact 2. In all that follows let T = U ∗CC{X} be the free product over C of the
C-algebra U and the free C-algebra C{X}, with X the countable set consisting
of non-commuting indeterminates {x1, x2, . . . , xn, . . .}. The elements of T are
called generalized polynomials with coefficients in U . I, IR and IU satisfy
the same generalized polynomial identities with coefficients in U . We refer
the reader to [2] and [4] for the definitions and the related properties of these
objects.
Recall that, if B is a basis of U over C, then any element of T = U ∗C
C{x1, . . . , xn} can be written in the form g =

∑
i αimi, where αi ∈ C and mi

are B-monomials, that is mi = q0y1 ····ynqn, with qi ∈ B and yi ∈ {x1, . . . , xn}.
In [4] it is shown that a generalized polynomial g =

∑
i αimi is the zero element

of T if and only if any αi is zero. As a consequence, if a1, a2 ∈ U are linearly
independent over C and a1g1(x1, . . . , xn) + a2g2(x1, . . . , xn) = 0 ∈ T , for some
g1, g2 ∈ T , then both g1(x1, . . . , xn) and g2(x1, . . . , xn) are the zero element of
T .

We begin with:

Lemma 2. Either R is a ring satisfying a non-trivial generalized polynomial
identity (GPI), or there exists a ∈ U such that F (x) = xa, for all x ∈ R and
I(a− α) = (0) for some α ∈ C.

Proof. We know that F assumes the form F (x) = ax + d(x) for all x ∈ U
and some a ∈ U , where d is a derivation on U . Suppose R does not satisfy
any non-trivial GPI. We divide the proof into two cases:

Case 1: Suppose that d is an inner derivation induced by an element
q ∈ U .
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Let 0 6= b ∈ I. Since R does not satisfy any non-trivial GPI, then[
[a[x1b, x2b] + q[x1b, x2b]− [x1b, x2b]q, [x1b, x2b]

n], x3

]
(4)

is the zero element in the free algebra T , for all x1, x2, x3 ∈ R (see Fact 2),
that is(

(a+ q)[x1b, x2b]
n+1

)
x3

+

(
−[x1b, x2b]q[x1b, x2b]

n − [x1b, x2b]
n(a+ q)[x1b, x2b] + [x1b, x2b]

n+1q

)
x3

− x3
(

(a+ q)[x1b, x2b]
n+1

)
+ x3[x1b, x2b]q[x1b, x2b]

n

− x3
(
−[x1b, x2b]

n(a+ q)[x1b, x2b] + [x1b, x2b]
n+1q

)
= 0 ∈ T.

(5)

If a+ q /∈ C, then a+ q and 1 are linearly C-independent and in this case
from (5) we have (a + q)[x1b, x2b]

n+1x3 = 0 ∈ T . This implies a + q = 0, a
contradiction.
Hence a+q ∈ C. Thus F (x) = (a+q)x−xq = x(a+q−q) = xa for all x ∈ R.
Then (5) becomes(

−[x1b, x2b]a[x1b, x2b]
n − [x1b, x2b]

n+1a
)
x3

− x3
(
[x1b, x2b]a[x1b, x2b]

n − [x1b, x2b]
n+1a

)
= 0 ∈ T.

If ba and b are linearly C-independent, then from above we have that R sat-
isfies the non-trivial generalized polynomial identity x3[x1b, x2b]a[x1b, x2b]

n, a
contradiction. Hence we conclude that ba and a are linearly C-dependent for
all b ∈ I. Thus there exists α ∈ C such that I(a− α) = (0).

Case 2: Suppose that d is not an inner derivation of U . Since R is not
commutative, then there exists 0 6= b ∈ I, such that b /∈ C. By our main
assumption, R satisfies[

[a[x1b, x2b]+[d(x1)b+x1d(b), x2b]+[x1b, d(x2)b+x2d(b)], [x1b, x2b]
n], x3

]
. (6)
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Since d is not inner and by [12], we have that R satisfies[
[a[x1b, x2b] + [y1b+ x1d(b), x2b] + [x1b, y2b+ x2d(b)], [x1b, x2b]

n], x3

]
(7)

and in particular [
[y1b, x2b], [x1b, x2b]

n], x3

]
(8)

is a generalized identity for R. Since b /∈ C, then b and 1 are linearly C-
independent, thus (8) is a non-trivial generalized polynomial identity for R, a
contradiction.

Lemma 3. Without loss of generality, R is simple and equal to its own socle,
RI = I.

Proof. By Lemma 2, R is GPI (otherwise we are done). So U has non-zero
socle H with non-zero left ideal J = HI [21]. Note that H is simple, J = HJ
and J satisfies the same basic conditions as I (we refer to [15]). Just replace
R by H, I by J and we are done.

Lemma 4. Let R be a prime ring, 0 6= c ∈ R, I a non-zero left ideal of R,
m ≥ 1 a fixed integer such that c[r1, r2]

m ∈ Z(R), for all r1, r2 ∈ I. Then
x1s4(x2, x3, x4, x5) is an identity for I.

Proof. Firstly we notice that if c[x1, x2]
m is a generalized polynomial identity

for I, then by [6] and since c 6= 0, we have r1[r2, r3] = 0 for all r1, r2, r3 ∈ I,
and a fortiori x1s4(x2, x3, x4, x5) is an identity for I. Therefore we may assume
there exist a1, a2 ∈ I such that 0 6= c[a1, a2]

m ∈ Z(R). By Theorem 1 in [3]
R is a PI-ring and so RC is a finite dimensional central simple C-algebra.
By Wedderburn-Artin theorem RC ∼= Mk(D) for some k ≥ 1 and D a finite-
dimensional central division C-algebra. By Theorem 2 in [14] c[r1, r2]

m ∈ C
for all r1, r2 ∈ CI. Without loss of generality we may replace R with RC
and assume that R = Mk(D). Let E be a maximal subfield of D, so that
E ⊗C Mk(D) ∼= Mt(E) where t = k · [E : C]. Hence c[r1, r2]

m ∈ C for all
r1, r2 ∈ Z(Mt(E)) for any r1, r2 ∈ E⊗C I (Lemma 2 in [14] and Proposition in
[20]). Therefore we may assume that R ∼= Mt(E) and replace I with E ⊗C I.
Moreover 0 6= c[b1, b2]

m ∈ Z(Mt(E)), for b1 = 1E ⊗C a1, b2 = 1E ⊗C a2.
Then I contains an invertible element of R, and so I = R = Mt(E) and
c[r1, r2]

m ∈ Z(R), for all r1, r2 ∈ R. Consider the following subset of R,

G = {a ∈ R|a[r1, r2]
m ∈ Z(R), ∀r1, r2 ∈ R}
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and notice that G is a subgroup of R, which is invariant under the action of
all automorphisms of R, moreover c ∈ G. By a Theorem of Chuang ([5]), one
of the following holds:

• R satisfies s4 and char(R) = 2 (in this case we are done);

• G ⊆ Z(R) and since c 6= 0, it follows [r1, r2]
m ∈ Z(R), for all r1, r2 ∈ R;

• [R,R] ⊆ G, which implies [s1, s2][r1, r2]
m ∈ Z(R), for all s1, s2, r1, r2 ∈ R.

In order to conclude our proof, we may assume that in any case [r1, r2]
2m ∈

Z(R), for all r1, r2 ∈ R. This implies easily that R must satisfy s4.

We are now ready for the following:

2.1 The Proof of Theorem 2.

By the regularity of R, there exists e2 = e ∈ RI such that Re = Ra1 +Ra2 +
Ra3 + Ra4 + Ra5 and aie = ae, for i = 1, . . . , 5. In view of Kharchenko’s
Theorem in [12], we divide the proof into two cases:

Case 1. If d is an inner derivation induced by the element q ∈ U , then I
satisfies the [

[a[x1, x2] + q[x1, x2]− [x1, x2]q, [x1, x2]
n], x3

]
. (9)

Thus for all r, s, t ∈ R[
[a[re, se] + q[re, se]− [re, se]q, [re, se]n], t

]
= 0. (10)

In particular for t = 1− e and left multiplying by e, we have

e ·
[
[(a+ q)[re, se]− [re, se]q, [re, se]n], 1− e

]
= 0 (11)

that is e[re, se]n+1q(1− e) = 0, for all r, s ∈ R. This implies [er, es]n+1eq(1−
e) = 0. By [6], either [eR, eR]e = (0) or eq(1−e) = 0. Since s4(eRe) 6= 0, then
a fortiori [eRe, eRe] 6= 0, therefore we have eq = eqe ∈ Re and F (Re) ⊆ Re.
Let λ = Re, λ = λ

λ∩rR(λ)
, where rR(λ) is the right annihilator of λ in R.
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Therefore the prime ring λ satisfies the generalized polynomial identity (9)
and by Lemma 1 it follows s4(λ) = 0 or both [a, λ] = 0 and [q, λ] = 0.
Since s4(λ) = 0 implies the contradiction a1s4(a2, a3, a4, a5) = 0, we may
assume that λ[a, λ] = 0 and λ[q, λ] = 0. In this case, standard arguments
show that there exist α, γ ∈ C such that I(a − α) = (0) and I(q − γ) = (0).
Denote a′ = a−α, q′ = q−γ and notice that, in light of (9), we also have that[

[a′[x1, x2] + q′[x1, x2]− [x1, x2]q
′, [x1, x2]

n], x3

]
(12)

is satisfies by I, that is (a′ + q′)[x1, x2]
n+1 is a generalized identity for I. By

Lemma 4 and since a1s4(a2, a3, a4, a5) 6= 0, it follows a′+q′ = 0, i.e. a+q ∈ C.
Therefore F (x) = ax+ qx− xq = xa and we are done.

Case 2. Now assume that d is not inner. By our main assumption, R
satisfies[

[a[x1e, x2e] + [d(x1)e+ x1d(e), x2e] + [x1e, d(x2)e+ x2d(e)], [x1e, x2e]
n], x3

]
.

(13)
Since d is not inner and by [12], we have that[

[a[x1e, x2e] + [y1e+ x1d(e), x2e] + [x1e, y2e+ x2d(e)], [x1e, x2e]
n], x3

]
(14)

is a generalized identity for R. In particular R satisfies both[[
[y1e, x2e], [x1e, x2e]

n
]
, x3

]
(15)

and [[
[x1e, y2e], [x1e, x2e]

n
]
, x3

]
. (16)

By replacing in (15) y1 with (1−e)y1 and x3 wih x3e it follows that R satisfies
(1− e)y1ex2e[x1e, x2e]nx3e and by the primeness of R we have

er2e[r1e, r2e]
n = 0, ∀r1, r2 ∈ R. (17)

Analogously, by replacing in (16) y2 with (1 − e)y2 and x3 wih x3e it follows
that R satisfies −(1 − e)y2ex1e[x1e, x2e]

nx3e and by the primeness of R we
have

er1e[r1e, r2e]
n = 0, ∀r1, r2 ∈ R. (18)
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In light of (17) and (18) we finally have that [r1e, r2e]
n+1 = 0, for all r1, r2 ∈ R.

Again by [6] we get e[Re,Re] = 0, a contradiction.
The proof of Theorem is now complete.
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