N -Centralizing Generalized Derivations on Left Ideals *

Asma Ali ${ }^{\dagger}$ Faiza Shujat ${ }^{\ddagger}$
Department of Mathematics Aligarh Muslim University
Aligarh 202002, India
and
Vincenzo De Filippis ${ }^{\S}$
DISIA, Faculty of Engineering University of Messina
Contrada di Dio, 89166, Messina, Italy

Received June 10, 2011, Accepted September 26, 2012.

Abstract

Let R be a prime ring with center $Z(R)$, right Utumi quotient ring U and extended centroid C, S be a non-empty subset of R and $n \geq 1$ a fixed integer. A mapping $f: R \longrightarrow R$ is said to be n-centralizing on S if $\left[f(x), x^{n}\right] \in Z(R)$, for all $x \in S$. In this paper we will prove that if F is a non-zero generalized derivation of R, I a non-zero left ideal of $R, n \geq 1$ a fixed integer such that F is n-centralizing on the set $[I, I]$, then there exists $a \in U$ and $\alpha \in C$ such that $F(x)=x a$, for all $x \in R$ and $I(a-\alpha)=(0)$, unless when $x_{1} s_{4}\left(x_{2}, x_{3}, x_{4}, x_{5}\right)$ is an identity for I.

Keywords and Phrases: Prime ring, Generalized derivation.

[^0]Throughout the paper unless specifically stated, R always denotes a prime ring with center $Z(R)$ and extended centroid C, right Utumi quotient ring U. For any pair of elements $x, y \in R$, we denote $[x, y]=x y-y x$, the commutator of x, y and $[x, y]_{k}=\left[[x, y]_{k-1}, y\right]$ for $k>1$. An additive subgroup L of R is said to be a Lie ideal of R if $[L, R] \subseteq L$. A mapping $f: R \longrightarrow R$ is said to be n-centralizing (resp. n-commuting) on a non-empty subset S of R if $\left[f(x), x^{n}\right] \in$ $Z(R)$ (resp. $\left[f(x), x^{n}\right]=0$) for all $x \in S$ and n a fixed positive integer.
An additive mapping $d: R \longrightarrow R$ is said to be a derivation if $d(x y)=$ $d(x) y+x d(y)$ holds for all $x, y \in R$. A well known result of Posner (Theorem 4 in [23]) states that R must be commutative if there exists a nonzero derivation d on R such that $[d(x), x] \in Z(R)$ for all $x \in R$. Many related generalizations have been obtained by a number of authors in the literature (see [1], [16], [17], [22]). An additive mapping $F: R \longrightarrow R$ is said to be a generalized derivation if there exists a derivation $d: R \longrightarrow R$ such that $F(x y)=F(x) y+x d(y)$, for all $x, y \in R$. Obviously any derivation is a generalized derivation. One basic example of a generalized derivation is the mapping of the form $g(x)=a x+x b$ for all $x \in R$ and for some fixed $a, b \in R$. This kind of generalized derivations are called as inner generalized derivations of R. Many authors studied generalized derivations in context of prime and semiprime rings (see [11], [18], [19]). In [18] T.K. Lee extended the definition of a generalized derivation as follows: an additive mapping $F: J \longrightarrow U$ such that $F(x y)=F(x) y+x d(y)$, for all $x, y \in J$, where U is the right Utumi quotient ring of R, J is a dense right ideal of R and d is a derivation from J to U. He also proved that every generalized derivation of R can be uniquely extended to a generalized derivation of U. In fact there exists a in U and a derivation d of U such that $F(x)=a x+d(x)$ for all $x \in U$ (Theorem 3 in [18]). A corresponding form to dense left ideals as follows: an additive mapping $F: I \longrightarrow U$ is called a generalized derivation if there exists a derivation $d: I \longrightarrow U$ such that $F(x y)=x F(y)+d(x) y$, for all $x, y \in I$, where U is the left Utumi quotient ring of R, I is a dense left ideal of R. Following the same methods as in [14], one can extend F uniquely to a generalized derivation of U. The extended generalized derivation of U can also be denoted by F and has the form $F(x)=x a+d(x)$ for all $x \in U$ and some $a \in U$, where d is a derivation of U. In this paper we shall prove some theorems for a generalized derivation which are in spirit of the above mentioned result of Posner and the results of Deng (Theorem 2 in [7]), Deng and Bell (Theorem 2 in [8]).
In the first section we will prove the following:

Theorem 1. Let R be a prime ring, F a non-zero generalized derivation of R, L a non-central Lie ideal of $R, n \geq 1$ a fixed integer such that F is n-centralizing on L. Then either $F(x)=\lambda x$ for all $x \in R$ and for some $\lambda \in C$ or R satisfies s_{4}, the standard identity of degree 4 .

Then we will extend the above result to the one-sided case, more precisely we will prove:

Theorem 2. Let R be a prime ring, F a non-zero generalized derivation of R, I a non-zero left ideal of $R, n \geq 1$ a fixed integer such that F is n centralizing on the set $[I, I]$. Then there exists $a \in U$ and $\alpha \in C$ such that $F(x)=x a$, for all $x \in R$ and $I(a-\alpha)=(0)$, unless when $x_{1} s_{4}\left(x_{2}, x_{3}, x_{4}, x_{5}\right)$ is an identity for I.

1. N-centralizing Maps on Lie Ideals

Here we begin with the following:
Lemma 1. Let R be a non-commutative prime ring, $a, b \in R$, I a two-sided ideal of $R, n \geq 1$ a fixed integer such that $\left[a\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] b,\left[r_{1}, r_{2}\right]^{n}\right] \in Z(R)$, for any $r_{1}, r_{2} \in I$. Then either $a, b \in Z(R)$ or R satisfies the standard identity s_{4}.

Proof. Suppose that either $a \notin Z(R)$ or $b \notin Z(R)$. In both cases

$$
\begin{equation*}
\left[\left[a\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] b,\left[x_{1}, x_{2}\right]^{n}\right], x_{3}\right] \tag{1}
\end{equation*}
$$

is a non-trivial generalized polynomial identity for I and so also for R (see [4]). Moreover, by Theorem 2 in [4], (1) is also an identity for $R C$. By Martindale's result in [21] $R C$ is a primitive ring with non-zero socle. There exists a vectorial space V over a division ring D such that $R C$ is dense of D-linear transformations over V.
Firstly we will prove that $\operatorname{dim}_{D} V \leq 2$. By contradiction assume that $\operatorname{dim}_{D} V \geq$ 3. If $\{v, v a\}$ is linearly D-independent for some $v \in V$, then by the density of $R C$, there exists $w \in V$ such that $\{w, v, v a\}$ is linearly D-independent and
$x_{0}, y_{0}, z_{0} \in R C$ such that $v x_{0}=0, v y_{0}=0, v z_{0}=0,(v a) x_{0}=w,(v a) y_{0}=0$, $(v a) z_{0}=v, w y_{0}=v a$. This leads to the contradiction

$$
0=v\left[\left[a\left[x_{0}, y_{0}\right]+\left[x_{0}, y_{0}\right] b,\left[x_{0}, y_{0}\right]^{n}\right], z_{0}\right]=v
$$

Thus $\{v, v a\}$ is linearly D-dependent, for all $v \in V$, which implies that $a \in C$. From this, $R C$ satisfies

$$
\begin{equation*}
\left[\left[\left[x_{1}, x_{2}\right] b,\left[x_{1}, x_{2}\right]^{n}\right], x_{3}\right] . \tag{2}
\end{equation*}
$$

As above suppose that there exists $v \in V$ such that $\{v, v b\}$ is linearly D independent. Then there exists $w \in V$ such that $\{v, v b, w\}$ is linearly D independent and there exist $x_{0}, y_{0}, z_{0} \in R C$ such that $v x_{0}=w, v y_{0}=0$, $v z_{0}=v b, w y_{0}=v,(v b) x_{0}=v,(v b) y_{0}=0,(v b) z_{0}=v$. This implies that

$$
0=v\left[\left[\left[x_{0}, y_{0}\right] b,\left[x_{0}, y_{0}\right]^{n}\right], z_{0}\right]=-v \neq 0
$$

a contradiction. Also in this case we conclude that $\{v, v b\}$ is linearly D dependent, for all $v \in V$, and so $b \in C$.
The previous argument shows that if either $a \notin C$ or $b \notin C$, then $\operatorname{dim}_{D} V \leq 2$. In this condition $R C$ is a simple ring which satisfies a non-trivial generalized polynomial identity. By [24] (Theorem 2.3.29) $R C \subseteq M_{t}(K)$, for a suitable field K, moreover $M_{t}(K)$ satisfies the same generalized identity of $R C$, hence

$$
\left[a\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] b,\left[r_{1}, r_{2}\right]^{n}\right] \in Z\left(M_{t}(K)\right)
$$

for any $r_{1}, r_{2} \in M_{t}(K)$. If $t \leq 2$, then R satisfies the standard identity s_{4}. If $t \geq 3$, by the above argument, we get $a, b \in Z\left(M_{t}(K)\right)$.

Now we will consider the n-centralizing condition on Lie ideals. We premit the following:

Fact 1. Let R be a prime ring and L a non-central Lie ideal of R. Then either there exists a non-zero ideal I of R such that $0 \neq[I, R] \subseteq L$ or $\operatorname{char}(R)=2$ and R satisfies s_{4}.
Proof. See [10] (pp 4-5), Lemma 2 and Proposition 1 in [9], Theorem 4 in [13].

1.1 The Proof of Theorem 1.

Assume that R does not satisfy s_{4}. By Fact 1 we have that there exists a two-sided ideal I of R such that $[I, I] \subseteq L$. In this last case we get that $\left[F\left(\left[r_{1}, r_{2}\right]\right),\left[r_{1}, r_{2}\right]^{n}\right] \in Z(R)$, for any $r_{1}, r_{2} \in I$.
By [18] F has the form $F(x)=a x+d(x)$, for $a \in U$ and d a derivation of U. If d is an inner derivation induced by an element $c \in U$, it follows that

$$
\left[(a+c)\left[r_{1}, r_{2}\right]-\left[r_{1}, r_{2}\right] c,\left[r_{1}, r_{2}\right]^{n}\right] \in Z(R)
$$

for any $r_{1}, r_{2} \in I$, and by Lemma 1 we have that $a, c \in C$, that is $d=0$ and $F(x)=a x$, for all $x \in R$.
Assume now d is not an inner derivation of U. Notice that, if $d=0$ then I satisfies

$$
\left[\left[a\left[x_{1}, x_{2}\right],\left[x_{1}, x_{2}\right]^{n}\right], x_{3}\right]
$$

and by Lemma 1 we get the conclusion $a \in C$ and $F(x)=a x$ for all $x \in U$ and so for all $x \in R$. Assume finally $d \neq 0$. Since

$$
\left[\left[a\left[x_{1}, x_{2}\right]+\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right],\left[x_{1}, x_{2}\right]^{n}\right], x_{3}\right]
$$

is a differential identity for I, by Kharchenko's result in [12], it follows that I satisfies

$$
\left[\left[a\left[x_{1}, x_{2}\right]+\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right],\left[x_{1}, x_{2}\right]^{n}\right], x_{3}\right]
$$

and in particular

$$
\begin{equation*}
\left[\left[\left[x_{1}, y_{2}\right],\left[x_{1}, x_{2}\right]^{n}\right], x_{3}\right] \tag{3}
\end{equation*}
$$

is a polynomial identity for I. This implies obviously that R is a PI-ring satisfying (3). Thus there exists a field K such that R and $M_{t}(K)$, the ring of all $t \times t$ matrices over K, satisfy the same polynomial identities. Since L is non-central, R must be non-commutative. Hence $t \geq 2$. In case $t=2, R$ satisfies s_{4}, a contradiction. Thus $t \geq 3$. Denote by $e_{i j}$ the usual matrix unit with 1 in the (i, j)-entry and zero elsewhere. In (3) choose $x_{1}=e_{12}, x_{2}=e_{21}$, $x_{3}=e_{33}, y_{2}=e_{23}$, then it follows the contradiction

$$
0=\left[\left[e_{13},\left(e_{11}-e_{22}\right)^{n}\right], e_{33}\right]=-e_{13}
$$

2. N-centralizing Maps on Left Ideals

In this section we would like to extend Theorem 1 to left ideals in prime rings, more precisely we will prove Theorem 2.
For the remainder of the paper we assume that the conclusion

- I satisfies $x_{1} s_{4}\left(x_{2}, x_{3}, x_{4}, x_{5}\right)$
of Theorem 2 is false.
Thus there exist $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \in I$ such that $a_{1} s_{4}\left(a_{2}, a_{3}, a_{4}, a_{5}\right) \neq 0$. Our goal is to ultimately arrive to prove that in this case there exists $a \in U$ such that $F(x)=x a$, for all $x \in R$ and $I[a, I]=(0)$.

Fact 2. In all that follows let $T=U *_{C} C\{X\}$ be the free product over C of the C-algebra U and the free C-algebra $C\{X\}$, with X the countable set consisting of non-commuting indeterminates $\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$. The elements of T are called generalized polynomials with coefficients in $U . I, I R$ and $I U$ satisfy the same generalized polynomial identities with coefficients in U. We refer the reader to [2] and [4] for the definitions and the related properties of these objects.
Recall that, if B is a basis of U over C, then any element of $T=U *_{C}$ $C\left\{x_{1}, \ldots, x_{n}\right\}$ can be written in the form $g=\sum_{i} \alpha_{i} m_{i}$, where $\alpha_{i} \in C$ and m_{i} are B-monomials, that is $m_{i}=q_{0} y_{1} \cdots y_{n} q_{n}$, with $q_{i} \in B$ and $y_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}$. In [4] it is shown that a generalized polynomial $g=\sum_{i} \alpha_{i} m_{i}$ is the zero element of T if and only if any α_{i} is zero. As a consequence, if $a_{1}, a_{2} \in U$ are linearly independent over C and $a_{1} g_{1}\left(x_{1}, \ldots, x_{n}\right)+a_{2} g_{2}\left(x_{1}, \ldots, x_{n}\right)=0 \in T$, for some $g_{1}, g_{2} \in T$, then both $g_{1}\left(x_{1}, \ldots, x_{n}\right)$ and $g_{2}\left(x_{1}, \ldots, x_{n}\right)$ are the zero element of T.

We begin with:
Lemma 2. Either R is a ring satisfying a non-trivial generalized polynomial identity (GPI), or there exists $a \in U$ such that $F(x)=x a$, for all $x \in R$ and $I(a-\alpha)=(0)$ for some $\alpha \in C$.

Proof. We know that F assumes the form $F(x)=a x+d(x)$ for all $x \in U$ and some $a \in U$, where d is a derivation on U. Suppose R does not satisfy any non-trivial GPI. We divide the proof into two cases:

Case 1: Suppose that d is an inner derivation induced by an element $q \in U$.

Let $0 \neq b \in I$. Since R does not satisfy any non-trivial GPI, then

$$
\begin{equation*}
\left[\left[a\left[x_{1} b, x_{2} b\right]+q\left[x_{1} b, x_{2} b\right]-\left[x_{1} b, x_{2} b\right] q,\left[x_{1} b, x_{2} b\right]^{n}\right], x_{3}\right] \tag{4}
\end{equation*}
$$

is the zero element in the free algebra T, for all $x_{1}, x_{2}, x_{3} \in R$ (see Fact 2), that is

$$
\begin{align*}
& \left((a+q)\left[x_{1} b, x_{2} b\right]^{n+1}\right) x_{3} \\
& +\left(-\left[x_{1} b, x_{2} b\right] q\left[x_{1} b, x_{2} b\right]^{n}-\left[x_{1} b, x_{2} b\right]^{n}(a+q)\left[x_{1} b, x_{2} b\right]+\left[x_{1} b, x_{2} b\right]^{n+1} q\right) x_{3} \\
& -x_{3}\left((a+q)\left[x_{1} b, x_{2} b\right]^{n+1}\right) \\
& +x_{3}\left[x_{1} b, x_{2} b\right] q\left[x_{1} b, x_{2} b\right]^{n} \\
& -x_{3}\left(-\left[x_{1} b, x_{2} b\right]^{n}(a+q)\left[x_{1} b, x_{2} b\right]+\left[x_{1} b, x_{2} b\right]^{n+1} q\right)=0 \in T \tag{5}
\end{align*}
$$

If $a+q \notin C$, then $a+q$ and 1 are linearly C-independent and in this case from (5) we have $(a+q)\left[x_{1} b, x_{2} b\right]^{n+1} x_{3}=0 \in T$. This implies $a+q=0$, a contradiction.
Hence $a+q \in C$. Thus $F(x)=(a+q) x-x q=x(a+q-q)=x a$ for all $x \in R$. Then (5) becomes

$$
\begin{aligned}
& \left(-\left[x_{1} b, x_{2} b\right] a\left[x_{1} b, x_{2} b\right]^{n}-\left[x_{1} b, x_{2} b\right]^{n+1} a\right) x_{3} \\
& -x_{3}\left(\left[x_{1} b, x_{2} b\right] a\left[x_{1} b, x_{2} b\right]^{n}-\left[x_{1} b, x_{2} b\right]^{n+1} a\right)=0 \in T .
\end{aligned}
$$

If $b a$ and b are linearly C-independent, then from above we have that R satisfies the non-trivial generalized polynomial identity $x_{3}\left[x_{1} b, x_{2} b\right] a\left[x_{1} b, x_{2} b\right]^{n}$, a contradiction. Hence we conclude that $b a$ and a are linearly C-dependent for all $b \in I$. Thus there exists $\alpha \in C$ such that $I(a-\alpha)=(0)$.

Case 2: Suppose that d is not an inner derivation of U. Since R is not commutative, then there exists $0 \neq b \in I$, such that $b \notin C$. By our main assumption, R satisfies

$$
\begin{equation*}
\left[\left[a\left[x_{1} b, x_{2} b\right]+\left[d\left(x_{1}\right) b+x_{1} d(b), x_{2} b\right]+\left[x_{1} b, d\left(x_{2}\right) b+x_{2} d(b)\right],\left[x_{1} b, x_{2} b\right]^{n}\right], x_{3}\right] . \tag{6}
\end{equation*}
$$

Since d is not inner and by [12], we have that R satisfies

$$
\begin{equation*}
\left[\left[a\left[x_{1} b, x_{2} b\right]+\left[y_{1} b+x_{1} d(b), x_{2} b\right]+\left[x_{1} b, y_{2} b+x_{2} d(b)\right],\left[x_{1} b, x_{2} b\right]^{n}\right], x_{3}\right] \tag{7}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
\left.\left[\left[y_{1} b, x_{2} b\right],\left[x_{1} b, x_{2} b\right]^{n}\right], x_{3}\right] \tag{8}
\end{equation*}
$$

is a generalized identity for R. Since $b \notin C$, then b and 1 are linearly C independent, thus (8) is a non-trivial generalized polynomial identity for R, a contradiction.

Lemma 3. Without loss of generality, R is simple and equal to its own socle, $R I=I$.

Proof. By Lemma 2, R is GPI (otherwise we are done). So U has non-zero socle H with non-zero left ideal $J=H I$ [21]. Note that H is simple, $J=H J$ and J satisfies the same basic conditions as I (we refer to [15]). Just replace R by H, I by J and we are done.

Lemma 4. Let R be a prime ring, $0 \neq c \in R, I$ a non-zero left ideal of R, $m \geq 1$ a fixed integer such that $c\left[r_{1}, r_{2}\right]^{m} \in Z(R)$, for all $r_{1}, r_{2} \in I$. Then $x_{1} s_{4}\left(x_{2}, x_{3}, x_{4}, x_{5}\right)$ is an identity for I.

Proof. Firstly we notice that if $c\left[x_{1}, x_{2}\right]^{m}$ is a generalized polynomial identity for I, then by [6] and since $c \neq 0$, we have $r_{1}\left[r_{2}, r_{3}\right]=0$ for all $r_{1}, r_{2}, r_{3} \in I$, and a fortiori $x_{1} s_{4}\left(x_{2}, x_{3}, x_{4}, x_{5}\right)$ is an identity for I. Therefore we may assume there exist $a_{1}, a_{2} \in I$ such that $0 \neq c\left[a_{1}, a_{2}\right]^{m} \in Z(R)$. By Theorem 1 in [3] R is a PI-ring and so $R C$ is a finite dimensional central simple C-algebra. By Wedderburn-Artin theorem $R C \cong M_{k}(D)$ for some $k \geq 1$ and D a finitedimensional central division C-algebra. By Theorem 2 in [14] $c\left[r_{1}, r_{2}\right]^{m} \in C$ for all $r_{1}, r_{2} \in C I$. Without loss of generality we may replace R with $R C$ and assume that $R=M_{k}(D)$. Let E be a maximal subfield of D, so that $E \otimes_{C} M_{k}(D) \cong M_{t}(E)$ where $t=k \cdot[E: C]$. Hence $c\left[r_{1}, r_{2}\right]^{m} \in C$ for all $r_{1}, r_{2} \in Z\left(M_{t}(E)\right)$ for any $r_{1}, r_{2} \in E \otimes_{C} I$ (Lemma 2 in [14] and Proposition in [20]). Therefore we may assume that $R \cong M_{t}(E)$ and replace I with $E \otimes_{C} I$. Moreover $0 \neq c\left[b_{1}, b_{2}\right]^{m} \in Z\left(M_{t}(E)\right)$, for $b_{1}=1_{E} \otimes_{C} a_{1}, b_{2}=1_{E} \otimes_{C} a_{2}$. Then I contains an invertible element of R, and so $I=R=M_{t}(E)$ and $c\left[r_{1}, r_{2}\right]^{m} \in Z(R)$, for all $r_{1}, r_{2} \in R$. Consider the following subset of R,

$$
G=\left\{a \in R \mid a\left[r_{1}, r_{2}\right]^{m} \in Z(R), \quad \forall r_{1}, r_{2} \in R\right\}
$$

and notice that G is a subgroup of R, which is invariant under the action of all automorphisms of R, moreover $c \in G$. By a Theorem of Chuang ([5]), one of the following holds:

- R satisfies s_{4} and $\operatorname{char}(R)=2$ (in this case we are done);
- $G \subseteq Z(R)$ and since $c \neq 0$, it follows $\left[r_{1}, r_{2}\right]^{m} \in Z(R)$, for all $r_{1}, r_{2} \in R$;
- $[R, R] \subseteq G$, which implies $\left[s_{1}, s_{2}\right]\left[r_{1}, r_{2}\right]^{m} \in Z(R)$, for all $s_{1}, s_{2}, r_{1}, r_{2} \in R$.

In order to conclude our proof, we may assume that in any case $\left[r_{1}, r_{2}\right]^{2 m} \in$ $Z(R)$, for all $r_{1}, r_{2} \in R$. This implies easily that R must satisfy s_{4}.

We are now ready for the following:

2.1 The Proof of Theorem 2.

By the regularity of R, there exists $e^{2}=e \in R I$ such that $R e=R a_{1}+R a_{2}+$ $R a_{3}+R a_{4}+R a_{5}$ and $a_{i} e=a_{e}$, for $i=1, \ldots, 5$. In view of Kharchenko's Theorem in [12], we divide the proof into two cases:

Case 1. If d is an inner derivation induced by the element $q \in U$, then I satisfies the

$$
\begin{equation*}
\left[\left[a\left[x_{1}, x_{2}\right]+q\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right] q,\left[x_{1}, x_{2}\right]^{n}\right], x_{3}\right] . \tag{9}
\end{equation*}
$$

Thus for all $r, s, t \in R$

$$
\begin{equation*}
\left[\left[a[r e, s e]+q[r e, s e]-[r e, s e] q,[r e, s e]^{n}\right], t\right]=0 \tag{10}
\end{equation*}
$$

In particular for $t=1-e$ and left multiplying by e, we have

$$
\begin{equation*}
e \cdot\left[\left[(a+q)[r e, s e]-[r e, s e] q,[r e, s e]^{n}\right], 1-e\right]=0 \tag{11}
\end{equation*}
$$

that is $e[r e, s e]^{n+1} q(1-e)=0$, for all $r, s \in R$. This implies $[e r, e s]^{n+1} e q(1-$ $e)=0$. By [6], either $[e R, e R] e=(0)$ or $e q(1-e)=0$. Since $s_{4}(e R e) \neq 0$, then a fortiori $[e R e, e R e] \neq 0$, therefore we have $e q=e q e \in R e$ and $F(R e) \subseteq R e$. Let $\lambda=R e, \bar{\lambda}=\frac{\lambda}{\lambda \cap r_{R}(\lambda)}$, where $r_{R}(\lambda)$ is the right annihilator of λ in R.

Therefore the prime ring $\bar{\lambda}$ satisfies the generalized polynomial identity (9) and by Lemma 1 it follows $s_{4}(\bar{\lambda})=\overline{0}$ or both $[a, \bar{\lambda}]=\overline{0}$ and $[q, \bar{\lambda}]=\overline{0}$.
Since $s_{4}(\bar{\lambda})=\overline{0}$ implies the contradiction $a_{1} s_{4}\left(a_{2}, a_{3}, a_{4}, a_{5}\right)=0$, we may assume that $\lambda[a, \lambda]=0$ and $\lambda[q, \lambda]=0$. In this case, standard arguments show that there exist $\alpha, \gamma \in C$ such that $I(a-\alpha)=(0)$ and $I(q-\gamma)=(0)$. Denote $a^{\prime}=a-\alpha, q^{\prime}=q-\gamma$ and notice that, in light of (9), we also have that

$$
\begin{equation*}
\left[\left[a^{\prime}\left[x_{1}, x_{2}\right]+q^{\prime}\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right] q^{\prime},\left[x_{1}, x_{2}\right]^{n}\right], x_{3}\right] \tag{12}
\end{equation*}
$$

is satisfies by I, that is $\left(a^{\prime}+q^{\prime}\right)\left[x_{1}, x_{2}\right]^{n+1}$ is a generalized identity for I. By Lemma 4 and since $a_{1} s_{4}\left(a_{2}, a_{3}, a_{4}, a_{5}\right) \neq 0$, it follows $a^{\prime}+q^{\prime}=0$, i.e. $a+q \in C$. Therefore $F(x)=a x+q x-x q=x a$ and we are done.

Case 2. Now assume that d is not inner. By our main assumption, R satisfies

$$
\begin{equation*}
\left[\left[a\left[x_{1} e, x_{2} e\right]+\left[d\left(x_{1}\right) e+x_{1} d(e), x_{2} e\right]+\left[x_{1} e, d\left(x_{2}\right) e+x_{2} d(e)\right],\left[x_{1} e, x_{2} e\right]^{n}\right], x_{3}\right] . \tag{13}
\end{equation*}
$$

Since d is not inner and by [12], we have that

$$
\begin{equation*}
\left[\left[a\left[x_{1} e, x_{2} e\right]+\left[y_{1} e+x_{1} d(e), x_{2} e\right]+\left[x_{1} e, y_{2} e+x_{2} d(e)\right],\left[x_{1} e, x_{2} e\right]^{n}\right], x_{3}\right] \tag{14}
\end{equation*}
$$

is a generalized identity for R. In particular R satisfies both

$$
\begin{equation*}
\left[\left[\left[y_{1} e, x_{2} e\right],\left[x_{1} e, x_{2} e\right]^{n}\right], x_{3}\right] \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\left[\left[x_{1} e, y_{2} e\right],\left[x_{1} e, x_{2} e\right]^{n}\right], x_{3}\right] . \tag{16}
\end{equation*}
$$

By replacing in (15) y_{1} with $(1-e) y_{1}$ and x_{3} wih $x_{3} e$ it follows that R satisfies $(1-e) y_{1} e x_{2} e\left[x_{1} e, x_{2} e\right]^{n} x_{3} e$ and by the primeness of R we have

$$
\begin{equation*}
e r_{2} e\left[r_{1} e, r_{2} e\right]^{n}=0, \quad \forall r_{1}, r_{2} \in R \tag{17}
\end{equation*}
$$

Analogously, by replacing in (16) y_{2} with $(1-e) y_{2}$ and x_{3} wih $x_{3} e$ it follows that R satisfies $-(1-e) y_{2} e x_{1} e\left[x_{1} e, x_{2} e\right]^{n} x_{3} e$ and by the primeness of R we have

$$
\begin{equation*}
e r_{1} e\left[r_{1} e, r_{2} e\right]^{n}=0, \quad \forall r_{1}, r_{2} \in R \tag{18}
\end{equation*}
$$

In light of (17) and (18) we finally have that $\left[r_{1} e, r_{2} e\right]^{n+1}=0$, for all $r_{1}, r_{2} \in R$. Again by [6] we get $e[R e, R e]=0$, a contradiction. The proof of Theorem is now complete.

References

[1] N. Argaç and Ç. Demir, A result on generalized derivations with engel conditions on one-sided ideals, J. Korean Math. Soc., 47 no. 3 (2010), 483-494.
[2] K. I. Beidar, W. S. Martindale, and A. V. Mikhalev, Rings with generalized identities, Pure and applied Math., 1996, Dekker.
[3] C. M. Chang and T. K. Lee, Annihilators of power values of derivations in prime rings, Comm. Algebra, 26 no. 7 (1998), 2091-2113.
[4] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 no. 3 (1988), 723-728.
[5] C. L. Chuang, On invariant additive subgroups, Israel Journal of Mathematics, 57 no. 1 (1987), 116-128,
[6] C. L. Chuang and T. K. Lee, Rings with annihilator conditions on multilinear polynomials, Chinese J. Math., 24 no. 2 (1996), 177-185.
[7] Q. Deng, On n-centralizing mappings of prime rings, Proc. R. Ir. Acad., 93A no. 2 (1993), 171-176.
[8] Q. Deng and H. E. Bell, On derivations and commutativity in semiprime rings, Comm. Algebra, 23 no. 10 (1995), 3705-3713.
[9] O. M. Di Vincenzo, On the n-th centralizer of a Lie ideal, Boll. UMI, A(7) no. 3 (1989), 77-85.
[10] I. N. Herstein, Topics in ring theory (1969), Univ. of Chicago Press.
[11] B. Hvala, Generalized derivations in rings, Comm. Algebra, 26 no. 4 (1998), 1147-1166.
[12] V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika, 17 no. 2 (1978), 242-243.
[13] C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific Journal of Math., 42 no. 1 (1972), 117-135 .
[14] T. K. Lee, Left annihilators characterized by GPI's, Trans. Amer. Math. Soc., 347 no. 8 (1995), 3159-3165.
[15] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20 no. 1 (1992), 27-38.
[16] T. K. Lee, Semiprime rings with hypercentral derivations, Canad. Math. Bull., 38 no. 4 (1995), 445- 449.
[17] T. K. Lee, Derivations with Engel conditions on polynomials, Algebra Colloq., 5 no. 1 (1998), 13-24.
[18] T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27 no. 2 (1999), 793-810.
[19] T. K. Lee and W. K. Shiue, Identities with generalized derivations, Comm. Algebra, 29 no. 10 (2001), 4437-4450.
[20] T. K. Lee and T. L. Wong, Derivations centralizing Lie ideals, Bull. Inst. Math. Acad. Sinica, 23 no. 1 (1995), 1-5.
[21] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
[22] J. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull., 27 no. 1 (1984), 122-126.
[23] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
[24] L. Rowen, Polynomial identities in ring theory (1980), Pure and Applied Math.

[^0]: *2010 Mathematics Subject Classification. Primary 16N60; Secondary 16W25.
 †E-mail: asma_ali2@rediffmail.com
 ${ }^{\ddagger}$ E-mail: faiza.shujat@gmail.com
 §Corresponding author. E-mail: defilippis@unime.it

