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1. Introduction and Preliminaries

Hensel[13] has introduced a normed space which does not have the Archimedean
property. During the last three decades theory of non–Archimedean spaces has
gained the interest of physicists for their research in particular in problems
coming from quantum physics, p–adic strings and superstrings [17]. Although
many results in the classical normed space theory have a non–Archimedean
counterpart, their proofs are different and require a rather new kind of intuition
[3, 4, 8, 18, 25, 30]. One may note that |n| ≤ 1 in each valuation field, every
triangle is isosceles and there may be no unit vector in a non–Archimedean
normed space; cf. [25]. These facts show that the non–Archimedean frame-
work is of special interest.

Definition 1.1. Let K be a field. A valuation mapping on K is a function
| · | : K→ R such that for any a, b ∈ K we have

(i) |a| ≥ 0 and equality holds if and only if a = 0,

(ii) |ab| = |a||b|,

(iii) |a+ b| ≤ |a|+ |b|.

A field endowed with a valuation mapping will be called a valued field. If
the condition (iii) in the definition of a valuation mapping is replaced with

(iii)′ |a+ b| ≤ max{|a|, |b|}

then the valuation | · | is said to be non–Archimedean. The condition (iii)′ is
called the strict triangle inequality. By (ii), we have |1| = | − 1| = 1. Thus,
by induction, it follows from (iii)′ that |n| ≤ 1 for each integer n. We always
assume in addition that | · | is non trivial, i.e., that there is an a0 ∈ K such
that |a0| 6∈ {0, 1}.The most important examples of non-Archimedean spaces
are p–adic numbers.

Example 1.2. Let p be a prime number. For any non–zero rational number
a = pr m

n
such that m and n are coprime to the prime number p, define the

p–adic absolute value |a|p = p−r. Then | · | is a non–Archimedean norm on Q.
The completion of Q with respect to | · | is denoted by Qp and is called the
p–adic number field.
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Definition 1.3. Let X be a linear space over a scalar field K with a non–
Archimedean non–trivial valuation | · |. A function ‖ · ‖ : X → R is a non–
Archimedean norm (valuation) if it satisfies the following conditions:

(NA1) ‖x‖ = 0 if and only if x = 0;

(NA2) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;

(NA3) the strong triangle inequality (ultrametric); namely,
‖x+ y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X).

Then (X, ‖ · ‖) is called a non–Archimedean space.

It follows from (NA3) that

‖xm − xl‖ ≤ max{‖x+1 − x‖ : l ≤  ≤ m− 1} (m > l),

therefore a sequence {xm} is Cauchy in X if and only if {xm+1−xm} converges
to zero in a non–Archimedean space.

Probabilistic normed spaces were first defined by Šerstnev in 1962 (see [28]).
Their definition was generalized in [1]. We recall and apply the definition of
Menger probabilistic normed spaces briefly as given in [27].

Definition 1.4. A distance distribution function (briefly, a d.d.f.) is a non-
decreasing function F from [0,+∞] into [0, 1] that satisfies F (0) = 0 and
F (+∞) = 1, and is left-continuous on (0,+∞). The space of d.d.f.’s will be
denoted by ∆+; and the set of all F in ∆+ for which limt→+∞− F (t) = 1 by
D+. The space ∆+ is partially ordered by the usual pointwise ordering of
functions, i.e., F ≤ G if and only if F (x) ≤ G(x) for all x in [0,+∞]. For any
a ≥ 0 , εa is the d.d.f. given by

εa(t) =

{
0, if t ≤ a,

1, if t > a.

Definition 1.5. A triangular norm (briefly t–norm) is a binary operation T :
[0, 1]×[0, 1]→ [0, 1] which is commutative, associative, non–decreasing in each
variable and has 1 as the unit element. Basic examples are the  Lukasiewicz
t–norm TL, TL(a, b) = max(a+ b− 1, 0), the product t–norm TP , TP (a, b) = ab
and the strongest triangular norm TM , TM(a, b) = min(a, b).
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Definition 1.6. A Menger Probabilistic Normed space is a triple (X, ν, T ),
where X is a real vector space, T is continuous t–norm and ν is a mapping
(the probabilistic norm) from X into ∆+, such that for every choice of p and
q in X and a, s, t in (0,+∞), the following hold:

(PN1) ν(p) = ε0, if and only if, p = θ (θ is the null vector in X);

(PN2) ν(ap)(t) = ν(p)( t
|a|);

(PN3) ν(p+ q)(s+ t) ≥ T
(
ν(p)(s), ν(q)(t)

)
.

Now we introduce definition of a Menger probabilistic non–Archimedean
normed space.

Definition 1.7. Let X be a vector space over a non–Archimedean field K and
T be a continuous t–norm. A triple (X, ν, T ) is said to be a Menger proba-
bilistic non–Archimedean normed space if (PN1) and (PN2) (in Definition1.6)
and

(PNA3) ν(x+ y)(max{s, t}) ≥ T
(
ν(x)(s), ν(y)(t)

)
,

for all x, y ∈ X and all s, t ∈ K, are satisfied.

It follows from ν(x) ∈ ∆+ that ν(x) is non–decreasing for every x ∈ X.
So one can show that the condition (PNA3) is equivalent to the following
condition:

ν(x+ y)(t) ≥ T
(
ν(x)(t), ν(y)(t)

)
.

Definition 1.8. Let (X, ν, T ) be a Menger probabilistic non–Archimedean
normed space. Let {xn} be a sequence inX. Then {xn} is said to be convergent
if there exists x ∈ X such that limn→∞ ν(xn − x)(t) = 1, for all t > 0. In that
case, x is called the limit of the sequence {xn}. A sequence {xn} in X is called
Cauchy if for each ε > 0 and each t > 0 there exists n0 such that for all n ≥ n0

and all p > 0 we have ν(xn+p − xn)(t) > 1− ε.

Let T be a given t–norm. Then (by associativity) a family of mappings
T n : [0, 1]→ [0, 1], n ∈ N, is defined as follows:

T 1(x) = T (x, x) , T n(x) = T (T n−1(x), x) , x ∈ [0, 1].



General System of Cubic 411

For three important t–norms TM , TP and TL we have

T n
M(x) = x , T n

P (x) = xn , T n
L (x) = max{(n+ 1)x− n, 0} , n ∈ N.

Definition 1.9. (Hadzić[11]) A t–norm T is said to be of H–type if a family
of functions {T n(t)}; n ∈ N , is equicontinuous at t = 1, that is,

∀ε ∈ (0, 1) ∃δ ∈ (0, 1) : t > 1− δ ⇒ T n(t) > 1− ε (n ≥ 1).

The t-norm TM is a trivial example of t–norm of H–type, but there are
t-norms of H–type with T 6= TM (see, e.g., Hadzić[10]).

Lemma 1.10. We consider the notations of the definition(1.8). Also assume
that T is a t–norm of H–type. Then the sequence {xn} is Cauchy if for each
ε > 0 and each t > 0 there exists n0 such that for all n ≥ n0 we have ν(xn+1−
xn)(t) > 1− ε.

Proof. Due to

ν(xn+p − xn)(t) ≥ T
(
ν(xn+p − xn+p−1)(t), ν(xn+p−1 − xn)(t)

)
≥

T
(
ν(xn+p − xn+p−1)(t), T (ν(xn+p−1 − xn+p−2)(t), ν(xn+p−2 − xn)(t))

)
≥

...

≥ T
(
ν(xn+p − xn+p−1)(t), T (ν(xn+p−1 − xn+p−2)(t), · · · ,

T (ν(xn+2 − xn+1)(t), ν(xn+1 − xn)(t))) · · ·
)
,

and by the assumption of T, which is an H–type t–norm, the sequence {xn} is
Cauchy if for each ε > 0 and each t > 0 there exists n0 such that for all n ≥ n0

we have ν(xn+1 − xn)(t) > 1− ε. We will use this criterion in this paper.

It is easy to see that every convergent sequence in a (Menger probabilis-
tic) non–Archimedean normed space is Cauchy. If each Cauchy sequence is
convergent, then the (Menger probabilistic) non–Archimedean normed space
is said to be complete and is called (Menger probabilistic) non–Archimedean
Banach space.
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The first stability problem concerning group homomorphisms was raised
by Ulam[29] in 1940 and solved in the next year by Hyers[12]. Hyers’ theorem
was generalized by Aoki[2] for additive mappings and by Rassias[26] for linear
mappings by considering an unbounded Cauchy difference. In 1994, a gener-
alization of the Rassias?theorem was obtained by Gǎvruta[9] by replacing the
unbounded Cauchy difference by a general control function.

Jun and Kim [14] introduced the following cubic functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x) (1.1)

and they established the general solution and the generalized Hyers–Ulam–
Rassias stability for the functional equation(1.1). They proved that a function
f : X → Y where X and Y are real vector spaces, is a solution of (1.1) if
and only if there exists a unique function C : X × X × X → Y such that
f(x) = C(x, x, x) for all x ∈ X. Moreover, C is symmetric for each fixed one
variable and is additive for fixed two variables. The function C is given by

C(x, y, z) =
1

24
(f(x+ y + z) + f(x− y − z)− f(x+ y − z)− f(x− y + z)),

for all x, y, z ∈ X. Obviously, the function f(x) = cx3 satisfies the functional
equation(1.1) which is called the cubic functional equation. Jun et al.[15]
investigated the solution and the Hyers?Ulam stability for the cubic functional
equation

f(ax+ by) + f(ax− by) = ab2(f(x+ y) + f(x− y)) + 2a(a2 − b2)f(x)

where a, b ∈ Z\{0} with a 6= ±1,±b.
In recent years, many authors have proved the stability of various functional

equations in various spaces (see for instance [4–7],[16],[19–25]). Using the
method of our paper, one can investigate the stability of many general systems
of various functional equations with n functional equations and n variables
(n ∈ N) and our paper notably generalizes previous papers in this area.

We assume that f : Xn → Y is a mapping and consider the following
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generalized system of cubic functional equations:

f(a1x1 + b1y1, x2, ..., xn) + f(a1x1 − b1y1, x2, ..., xn) =

a1b
2
1(f(x1 + y1, x2, ..., xn) + f(x1 − y1, x2, ..., xn))

+2a1(a
2
1 − b21)f(x1, x2, ..., xn);

...

f(x1, x2, ..., xn−1, anxn + bnyn) + f(x1, x2, ..., xn−1, anxn − bnyn) =

anb
2
n(f(x1, x2, ..., xn−1, xn + yn) + f(x1, x2, ..., xn−1, xn − yn))

+2an(a2n − b2n)f(x1, x2, ..., xn);

(1.2)

for all xi, yi ∈ X and ai, bi ∈ K \ {0}, with ai 6= ±1,±bi , i = 1, ..., n.
In the section(4), we establish the generalized Hyers–Ulam–Rassias sta-

bility of system(1.2) in non–Archimedean Banach spaces. In the section(3),
we establish the generalized Hyers–Ulam–Rassias stability of system(1.2) in
Menger probabilistic non–Archimedean Banach spaces.

2. Stability of System(1.2) in non–Archimedean

Banach Spaces

In this section, we prove the generalized Hyers–Ulam–Rassias stability of
system(1.2) in non–Archimedean Banach spaces. Throughout this section,
we assume that i, k,m, n, p ∈ N ∪ {0}, K is a non–Archimedean field, Y is a
non–Archimedean Banach space over K and X is a vector space over K. Also
assume that f : Xn → Y is a mapping.

Theorem 2.1. Let ϕk : Xn+1 → [0,∞) for k ∈ {1, ..., n} be a function such
that

lim
m→∞

1

|a3m1 ...a3mn |
ϕk(am1 x1, ..., a

m
k xk, a

m
k yk, ..., a

m
n xn) = 0, (2.1)

and

lim
m→∞

max{ 1

|2a3(m+1)
1 ...a

3(m+1)
k a3mk+1...a

3m
n |

ϕk(am+1
1 x1, ..., a

m+1
k−1 xk−1, a

m
k xk, 0, a

m
k+1xk+1, ..., a

m
n xn) : k = 1, ..., n} = 0,

(2.2)



414 M. B. Ghaemi, H. Majani and M. E. Gordji

and

Φ(x1, ..., xn) = lim
p→∞

max
{

max{ 1

|2a3(m+1)
1 ...a

3(m+1)
k a3mk+1...a

3m
n |

ϕk(am1 x1, ..., a
m+1
k−1 xk−1, a

m
k xk, 0, a

m
k+1xk+1, ..., a

m
n xn)

: k = 1, ..., n} , m = 0, 1, ..., p
}
<∞,

(2.3)

for all xi, yi ∈ X, i = 1, ..., n. Let f : Xn → Y be a mapping satisfying

‖f(a1x1 + b1y1, x2, ..., xn) + f(a1x1 − b1y1, x2, ..., xn)

−a1b21(f(x1 + y1, x2, ..., xn) + f(x1 − y1, x2, ..., xn))

−2a1(a
2
1 − b21)f(x1, x2, ..., xn)‖ ≤ ϕ1(x1, y1, x2, ..., xn);

...

‖f(x1, x2, ..., anxn + bnyn) + f(x1, x2, ..., anxn − bnyn)

−anb2n(f(x1, x2, ..., xn−1, xn + yn) + f(x1, x2, ..., xn−1, xn − yn))

−2an(a2n − b2n)f(x1, x2, ..., xn)‖ ≤ ϕn(x1, x2, ..., xn, yn);

for all xi, yi ∈ X, i = 1, ..., n. Then there exists a unique mapping T : Xn → Y
satisfying (1.2) and

‖f(x1, ..., xn)− T (x1, ..., xn)‖ ≤ Φ(x1, ..., xn) (2.4)

for all xi ∈ X, i = 1, ..., n.

Proof. Fix k ∈ {1, 2, ..., n} and consider the following inequality.

‖f(x1, x2, ..., akxk + bkyk, ..., xn) + f(x1, x2, ..., akxk − bkyk, ..., xn)

− akb2k(f(x1, x2, ..., xk + yk, ..., xn) + f(x1, x2, ..., xk − yk, ..., xn))

− 2ak(a2k − b2k)f(x1, x2, ..., xn)‖ ≤ ϕk(x1, ..., xk−1, xk, yk, xk+1, ..., xn).

(2.5)

Let yk = 0 in (2.5). Then we get

‖f(x1, ..., xk, ..., xn)− 1

a3k
f(x1, x2, ..., akxk, ..., xn)‖

≤ 1

|2a3k|
ϕk(x1, ..., xk−1, xk, 0, xk+1, ..., xn).
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Therefore one can obtain

‖ 1

a31...a
3
k−1

f(a1x1, ..., ak−1xk−1, xk, xk+1, ..., xn)

− 1

a31...a
3
k−1a

3
k

f(a1x1, ..., ak−1xk−1, akxk, xk+1, ..., xn)‖

≤ 1

|2a31...a3k−1a3k|
ϕk(a1x1, ..., ak−1xk−1, xk, 0, xk+1, ..., xn).

So we have

‖f(x1, x2, ..., xn)− 1

a31...a
3
n

f(a1x1, ..., anxn)‖ ≤

max{ 1

|2a31...a3k−1a3k|
ϕk(a1x1, ..., ak−1xk−1, xk, 0, xk+1, ..., xn) : k = 1, ..., n}

Therefore we get

‖ 1

a3m1 ...a3mn
f(am1 x1, ..., a

m
n xn)− 1

a
3(m+1)
1 ...a

3(m+1)
n

f(am+1
1 x1, ..., a

m+1
n xn)‖ ≤

max
{ 1

|2a3(m+1)
1 ...a

3(m+1)
k a3mk+1...a

3m
n |

ϕk(am+1
1 x1, ..., a

m+1
k−1 xk−1, a

m
k xk, 0, a

m
k+1xk+1, ..., a

m
n xn) : k = 1, ..., n

}
,

(2.6)

for all m ∈ N ∪ {0}. It follows from (2.6) and (2.2) that the sequence

{ 1

a3m1 ...a3mn
f(am1 x1, ..., a

m
n xn)}

is Cauchy. Since the space Y is complete, it is convergent. Therefore we can
define T : Xn → Y by

T (x1, ..., xn) := lim
m→∞

1

a3m1 ...a3mn
f(am1 x1, ..., a

m
n xn), (2.7)
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for all xi ∈ X, i = 1, ..., n. Using induction with (2.6) one can show that

‖f(x1, ..., xn)− 1

a
3(p+1)
1 ...a

3(p+1)
n

f(ap+1
1 x1, ..., a

p+1
n xn)‖ ≤

max
{

max{ 1

|2a3(m+1)
1 ...a

3(m+1)
k a3mk+1...a

3m
n |

ϕk(am+1
1 x1, ..., a

m+1
k−1 xk−1, a

m
k xk, 0, a

m
k+1xk+1, ..., a

m
n xn)

: k = 1, ..., n} , m = 0, 1, ..., p
}
.

(2.8)

for all xi ∈ X, i = 1, ..., n and p ∈ N ∪ {0}. By taking p to approach infinity
in (2.8) and using (2.3) one obtains (2.4).

For k ∈ {1, 2, ..., n} and by (2.5) and (2.7), we get

‖T (x1, x2, ..., akxk + bkyk, ..., xn) + T (x1, x2, ..., akxk − bkyk, ..., xn)

− akb2k(T (x1, x2, ..., xk + yk, ..., xn) + T (x1, x2, ..., xk − yk, ..., xn))

− 2ak(a2k − b2k)T (x1, x2, ..., xn)‖

= lim
m→∞

‖ 1

a3m1 ...a3mn
f(am1 x1, ..., a

m
k (akxk + bkyk), ..., amn xn)

+
1

a3m1 ...a3mn
f(am1 x1, ..., a

m
k (akxk − bkyk), ..., amn xn)

− akb
2
k

a3m1 ...a3mn
(f(am1 x1, ..., a

m
k xk + amk yk, ..., a

m
n xn)

+ f(am1 x1, ..., a
m
k xk − amk yk, ..., amn xn))

− 2ak(a2k − b2k)

a3m1 ...a3mn
f(am1 x1, ..., a

m
n xn)‖

≤ lim
m→∞

1

|a3m1 ...a3mn |
ϕk(am1 x1, ..., a

m
k xk, a

m
k yk, ..., a

m
n xn).

(2.9)

By (2.1) and (2.9), we conclude that T satisfies (1.2).

Suppose that there exists another mapping T ′ : Xn → Y which satisfies
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(1.2) and (2.4). So we have

‖T (x1, x2, ..., xn)− T ′(x1, x2, ..., xn)‖ ≤
1

|a3m1 ...a3mn |
max

{
‖T (am1 x1, ..., a

m
n xn)− f(am1 x1, ..., a

m
n xn)‖,

‖f(am1 x1, ..., a
m
n xn)− T ′(am1 x1, ..., amn xn)‖

}
≤

1

|a3m1 ...a3mn |
max

{
Φ(am1 x1, ..., a

m
n xn) ,Φ(am1 x1, ..., a

m
n xn)

}
,

which tends to zero as m → ∞ by (2.3). Therefore T = T ′. This completes
the proof.

3. Stability of System(1.2) in Menger Proba-

bilistic non–Archimedean Banach Spaces

In this section, we prove the generalized Hyers–Ulam–Rassias stability of
system(1.2) in Menger probabilistic non–Archimedean Banach spaces. Through-
out this section, we assume that u ∈ R, i, k,m, n ∈ N ∪ {0}, K is a non–
Archimedean field, T is a continuous t–norm of H–type, (Y, ν, T ) is a Menger
probabilistic non–Archimedean Banach space over K, (Z, ω, T ) is a Menger
probabilistic non–Archimedean normed space over K and X is a vector space
over K. Also assume that f : Xn → Y is a mapping.

Theorem 3.1. Let ϕk : Xn+1 → Z for k ∈ {1, ..., n} be a mappings such that

ϕ̃k = ϕ̃k(x1, ..., xn, u) =

ω
(

1
|2a31...a3k−1a

3
k|
ϕk(a1x1, ..., ak−1xk−1, xk, 0, xk+1, ..., xn)

)
(u);

Φ1 = Φ1(x1, ..., xn, u) = ϕ̃1(x1, ..., xn, u);

Φk = Φk(x1, ..., xn, u) = T
(
ϕ̃k(x1, ..., xn, u),Φk−1(x1, ..., xn, u)

)
;

limm→∞Φn

(
am1 x1, ..., a

m
n xn, |a3m1 ...a3mn |u

)
= 1;

(3.1)

and

lim
m→∞

ω
( 1

|a3m1 ...a3mn |
ϕk(am1 x1, ..., a

m
k xk, a

m
k yk, ..., a

m
n xn)

)
(u) = 1 (3.2)
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and

Φ∗m = Φ∗m(x1, ..., xn, u) = Φn

(
am1 x1, ..., a

m
n xn, |a3m1 ...a3mn |u

)
;

Ψ0 = Φ∗0(x1, ..., xn, u) = Φn(x1, ..., xn, u);

Ψm = Ψm(x1, ..., xn, u) = T
(

Φ∗m(x1, ..., xn, u),Ψm−1(x1, ..., xn, u)
)

;

Ψ = Ψ
(
x1, ..., xn, u

)
= limm→∞Ψm.

(3.3)

for all u > 0 and xi, yi ∈ X, i = 1, ..., n. Let f : Xn → Y be a mapping
satisfying

ν
(
f(a1x1 + b1y1, x2, ..., xn) + f(a1x1 − b1y1, x2, ..., xn)

−a1b21(f(x1 + y1, x2, ..., xn) + f(x1 − y1, x2, ..., xn))

−2a1(a
2
1 − b21)f(x1, ..., xn)

)
(u) ≥ ω

(
ϕ1(x1, y1, x2, ..., xn)

)
(u);

...

ν
(
f(x1, x2, ..., xn−1, anxn + bnyn) + f(x1, x2, ..., xn−1, anxn − bnyn)

−anb2n(f(x1, x2, ..., xn−1, xn + yn) + f(x1, x2, ..., xn−1, xn − yn))

−2an(a2n − b2n)f(x1, ..., xn)
)

(u) ≥ ω
(
ϕn(x1, ..., xn, yn)

)
(u);

for all u > 0 and xi, yi ∈ X, i = 1, ..., n. Then there exists a unique mapping
F : Xn → Y satisfying (1.2) and

ν
(
f(x1, ..., xn)− F (x1, ..., xn)

)
(u) ≥ Ψ (3.4)

for all u > 0 and xi ∈ X, i = 1, ..., n.

Proof. Fix k ∈ {1, 2, ..., n} and consider the following inequality.

ν
(
f(x1, x2, ..., akxk + bkyk, ..., xn) + f(x1, x2, ..., akxk − bkyk, ..., xn)

− akb2k(f(x1, x2, ..., xk + yk, ..., xn) + f(x1, x2, ..., xk − yk, ..., xn))

− 2ak(a2k − b2k)f(x1, x2, ..., xn)
)

(u) ≥ ω
(
ϕk(x1, ..., xk, yk, ..., xn)

)
(u).

(3.5)

Let yk = 0 in (3.5). Then we get

ν
(
f(x1, ..., xn)− 1

a3k
f(x1, x2, ..., akxk, ..., xn)

)
(u) ≥

ω
( 1

|2a3k|
ϕk(x1, ..., xk, 0, ..., xn)

)
(u).
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Therefore one can obtain

ν
( 1

a31...a
3
k−1

f(a1x1, ..., ak−1xk−1, xk, xk+1, ..., xn)

− 1

a31...a
3
k−1a

3
k

f(a1x1, ..., ak−1xk−1, akxk, xk+1, ..., xn)
)

(u) ≥

ω
( 1

|2a31...a3k−1a3k|
ϕk(a1x1, ..., ak−1xk−1, xk, 0, xk+1, ..., xn)

)
(u) = ϕ̃k.

Therefore we get

ν
(
f(x1, ..., xn)− 1

a31...a
3
n

f(a1x1, ..., anxn)
)

(u) ≥ Φn.

So we have

ν
( 1

a3m1 ...a3mn
f(am1 x1, ..., a

m
n xn)− 1

a
3(m+1)
1 ...a

3(m+1)
n

f(am+1
1 x1, ..., a

m+1
n xn)

)
(u)

≥ Φn

(
am1 x1, ..., a

m
n xn, |a3m1 ...a3mn |u

)
.

(3.6)

for all m ∈ N ∪ {0}. Therefore by (3.1) the sequence

{ 1

a3m1 ...a3mn
f(am1 x1, ..., a

m
n xn)}

is Cauchy. By completeness of Y , we conclude that it is convergent. Therefore
we can define F : Xn → Y by

lim
m→∞

ν
(
F (x1, ..., xn)− 1

a3m1 ...a3mn
f(am1 x1, ..., a

m
n xn)

)
(u) = 1, (3.7)

for all u > 0 and xi ∈ X, i = 1, ..., n. Using induction with (3.6) one can show
that

ν
(
f(x1, ..., xn)− 1

a
3(m+1)
1 ...a

3(m+1)
n

f(am+1
1 x1, ..., a

m+1
n xn)

)
(u) ≥ Ψm. (3.8)

By taking m to approach infinity in (3.8) and using (3.3) one obtains (3.4).
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For k ∈ {1, 2, ..., n} and by (3.5) and (3.7), we get

ν
(
F (x1, x2, ..., akxk + bkyk, ..., xn) + F (x1, x2, ..., akxk − bkyk, ..., xn)

− akb2k(F (x1, x2, ..., xk + yk, ..., xn) + F (x1, x2, ..., xk − yk, ..., xn))

− 2ak(a2k − b2k)F (x1, x2, ..., xn)
)

(u)

= lim
m→∞

ν
( 1

a3m1 ...a3mn
f(am1 x1, ..., a

m
k (akxk + bkyk), ..., amn xn)

+
1

a3m1 ...a3mn
f(am1 x1, ..., a

m
k (akxk − bkyk), ..., amn xn)

− akb
2
k

a3m1 ...a3mn
(f(am1 x1, ..., a

m
k xk + amk yk, ..., a

m
n xn)

+ f(am1 x1, ..., a
m
k xk − amk yk, ..., amn xn))

− 2ak(a2k − b2k)

a3m1 ...a3mn
f(am1 x1, ..., a

m
n xn)

)
(u)

≥ lim
m→∞

ω
( 1

|a3m1 ...a3mn |
ϕk(am1 x1, ..., a

m
k xk, a

m
k yk, ..., a

m
n xn)

)
(u).

(3.9)

By (3.2) and (3.9), we conclude that F satisfies (1.2).
Suppose that there exists another mapping F ′ : Xn → Y which satisfies

(1.2) and (3.4). So we have

ν
(
F (x1, x2, ..., xn)− F ′(x1, x2, ..., xn)

)
(u) =

ν
( 1

a3m1 ...a3mn
F (am1 x1, ..., a

m
n xn)− 1

a3m1 ...a3mn
f(am1 x1, ..., a

m
n xn)

+
1

a3m1 ...a3mn
f(am1 x1, ..., a

m
n xn)− 1

a3m1 ...a3mn
F ′(am1 x1, ..., a

m
n xn)

)
(u)

≥ T
{

Ψ
(
am1 x1, ..., a

m
n xn, |a3m1 ...a3mn |u

)
,Ψ
(
am1 x1, ..., a

m
n xn, |a3m1 ...a3mn |u

)}
,

which tends to 1 as m → ∞ by (3.1) and (3.3). Therefore F = F ′. This
completes the proof.
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