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Abstract

The object of the present paper is to investigate the majorization
properties of certain subclass of analytic and p-valent functions defined
by the generalized hypergeometric function.
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1. Introduction

Let f and g be analytic in the open unit disc U = {z ∈ C : |z| < 1}. We say
that f is majorized by g in U (see [11]) and write

f(z) << g(z) (z ∈ U), (1.1)

if there exists a function ϕ, analytic in U such that

|ϕ(z)| < 1 and f(z) = ϕ(z)g(z) (z ∈ U). (1.2)
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It may be noted that (1.1) is closely related to the concept of quasi-subordination
between analytic functions.

For f(z) and g(z) are analytic in U , we say that f(z) is subordinate to
g(z) written symbolically as follows:

f ≺ g or f(z) ≺ g(z),

if there exists a Schwarz function w(z), which (by definition) is analytic in
U with w(0) = 0 and |w(z)| < 1 (z ∈ U), such that f(z) = g(w(z)) (z ∈
U). Further, if the function g(z) is univalent in U , then we have the following
equivalent (see [12, p. 4])

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

Let A(p) denote the class of functions of the form:

f(z) = zp +
∞∑
k=1

ak+pz
k+p (p ∈ N = {1, 2, ....}), (1.3)

which are analytic and p-valent in U.

For complex parameters α1, ..., αq and β1, ..., βs (βj /∈ Z−0 = {0,−1,−2, ...};
j = 1, 2, ..., s), we now define the generalized hypergeometric function

qFs(α1, ..., αq; β1, ..., βs; z) by (see, for example, [5] and [19, p. 20])

qFs(α1, ..., αq; β1, ..., βs; z) =
∞∑
k=0

(α1)k...(αq)k
(β1)k...(βs)k

.
zk

k!
(1.4)

(q ≤ s+ 1; q, s ∈ N0 = N ∪ {0}; z ∈ U),

where (θ)ν is the Pochhammer symbol defined, in terms of the Gamma function
Γ, by

(θ)ν =
Γ(θ + ν)

Γ(θ)
=

{
1 (ν = 0; θ ∈ C∗ = C\{0}),
θ(θ + 1)...(θ + ν − 1) (ν ∈ N; θ ∈ C).

(1.5)
Corresponding to the function hp(α1, ..., αq; β1, ..., βs; z), defined by

hp(α1, ..., αq; β1, ..., βs; z) = zp qFs(α1, ..., αq; β1, ..., βs; z), (1.6)
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we consider a linear operator

Hp(α1, ..., αq; β1, ..., βs; z) : A(p)→ A(p),

which is defined by the following Hadamard product (or convolution):

Hp(α1, ..., αq; β1, ..., βs; z)f(z) = hp(α1, ..., αq; β1, ..., βs; z) ∗ f(z). (1.7)

We observe that, for a function f(z) of the form (1.3), we have

Hp(α1, ..., αq; β1, ..., βs)f(z) = zp +
∞∑
k=1

(α1)k...(αq)k
(β1)k...(βs)k

.
ak+p
k!

zk+p. (1.8)

If, for convenience, we write

Hp,q,s(α1) = Hp(α1, ..., αq; β1, ..., βs), (1.9)

then one can easily verify from the definition (1.8) that (see [5])

z(Hp,q,s(α1)f(z))
′
= α1Hp,q,s(α1 + 1)f(z)− (α1 − p)Hp,q,s(α1)f(z). (1.10)

It should be remarked that the linear operator Hp,q,s(α1) is a generalization of
many other linear operators considered earlier. In particular, for f(z) ∈ A(p)
we have the following observations:

(i) Hp,2,1(a, 1; c)f(z) = Lp(a; c)f(z) (a ∈ R; c ∈ R\Z−0 ), this linear operator
studied by Saitoh [18] which yields the operator L(a, c)f(z) introduced by
Carlson and Shaffer [3] for p = 1;

(ii) Hp,2,1(n + p, 1; 1)f(z) = Dn+p−1f(z) (n ∈ N;n > −p), this linear
operator studied by Goel and Sohi [6]. In the case when p = 1, Dnf(z) is
the Ruscheweyh derivative [17] of f(z) ∈ A(1);

(iii) Hp,2,1(c, λ + p; a)f(z) = Iλp (a, c)f(z)(a, c ∈ N\Z−0 ;λ > −p), the Cho–
Kwon–Srivastava operator [4];

(iv) Hp,2,1(1, p + 1;n + p)f(z) = In,pf(z)(n ∈ Z;n > −p), the extended
Noor integral operator considered by Liu and Noor [10];

(v) Hp,2,1(p + 1, 1; p + 1 − λ)f(z) = Ω
(λ,p)
z f(z) (−∞ < λ < p + 1), the

extended fractional differintegral operator considered by Patel and Mishra
[15].

Now, by making use of the operator Hp,q,s(α1), we define a new subclass of
functions f ∈ A(p) as follows.
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Definition 1. Let −1 ≤ B < A ≤ 1, p ∈ N, j ∈ N0 = N ∪ {0}, γ ∈
C∗, |γ(A−B) + α1B| < |α1| and f ∈ A(p). Then f ∈ Sjp,q,s (γ;α1;A,B) , the
class of p-valent functions of complex order γ in U, if and only if{

1 +
1

γ

(
z (Hp,q,s(α1)f(z))(j+1)

(Hp,q,s(α1)f(z))(j)
− p+ j

)}
≺ 1 + Az

1 +Bz
, (1.11)

Clearly, we have the following relationships:
(i) Sjp,q,s (γ;α1;1,−1) = Sjp,q,s (γ;α1) ;

(ii) Sjp,1,0 (γ; 1; 1,−1) = Sjp (γ) ;
(ii) S0

1,1,0 (γ; 1; 1,−1) = S (γ) (γ ∈ C∗) (see [13]);
(iii) S0

1,1,0 (1− α; 1, 1,−1) = S∗ (α) (0 ≤ α < 1) (see [16]).
Also, we note that:
(i) For j = 0, q = s + 1, α1 = β1 = p, αi = 1(i = 2, 3, ..., s + 1) and βi =

1(i = 2, 3, ...s), Sjp,q,s (γ;α1) reduces to the class Sp (γ) (γ ∈ C∗) of p−valently
starlike functions of order γ (γ ∈ C∗) in U, where

Sp (γ) =

{
f(z) ∈ A(p) : Re

(
1 +

1

γ

(
zf ′(z)

f(z)
− p
))

> 0, p ∈ N, γ ∈ C∗
}

;

(ii) For j = 0, q = s+1, α1 = p+1, β1 = p, αi = 1(i = 2, 3, ..., s+1) and βi =
1(i = 2, 3, ...s), Sjp,q,s (γ;α1) we get the class Kp (γ) (γ ∈ C∗) of p−valently
convex functions of order γ (γ ∈ C∗) in U, where,

Kp (γ) =

{
f(z) ∈ A(p) : Re

(
1 +

1

γ

(
1 +

zf ′′(z)

f ′(z)
− p
))

> 0, p ∈ N, γ ∈ C∗
}
.

We shall need the following lemma.

Lemma 1 [1]. Let γ ∈ C∗ and f ∈ Kj
p(γ). Then f ∈ Sjp(12γ), that is,

Kj
p(γ) ⊂ Sjp(

1

2
γ) (γ ∈ C∗). (1.12)

A majorization problem for the class S(γ)(γ ∈ C∗) has been investi-
gated by Altintas et al. [1]. Also, majorization problem for the class S∗ =
S∗(0) has been investigated by MacGregor [11]. Recently Goyal and Goswami
[8] and Goyal et al. [9] generalized these results for classes of multivalent
function defined by fractional derivatives operator and Saitoh operator, re-
spectively. In this paper we investigate majorization problem for the class
Sjp,q,s (γ;α1;A,B) and other related subclasses.
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2. Main Results

Unless otherwise mentioned we shall assume throughout the paper that −1 ≤
B < A ≤ 1, γ, α1 ∈ C∗, j ∈ N0 and p ∈ N.

Theorem 1. Let the function f ∈ A(p) and suppose that g ∈ Sjp,q,s (γ;α1;A,B) .

If (Hp,q,s(α1)f(z))(j) is majorized by (Hp,q,s(α1)g(z))(j) in U, then∣∣∣(Hp,q,s(α1 + 1)f(z))(j)
∣∣∣ ≤ ∣∣∣(Hp,q,s(α1 + 1)g(z))(j)

∣∣∣ (|z| < r0) , (2.1)

where r0 = r0(γ, α1, A,B) is the smallest positive root of the equation

|γ(A−B) + α1B| r3 − (2 |B|+ |α1|)r2 − (2 + |γ(A−B) + α1B|)r + |α1| = 0.
(2.2)

Proof. Since g ∈ Sjp,q,s (γ;α1;A,B) , we find from (1.11) that

1 +
1

γ

(
z (Hp,q,s(α1)g(z))(j+1)

(Hp,q,s(α1)g(z))(j)
− p+ j

)
=

1 + Aw(z)

1 +Bw(z)
, (2.3)

where w is analytic in U with w(0) = 0 and |w(z)| < 1 (z ∈ U). From (2.3),
we have

z (Hp,q,s(α1)g(z))(j+1)

(Hp,q,s(α1)g(z))(j)
=

(p− j) + (γ(A−B) + (p− j)B)w(z)

1 +Bw(z)
. (2.4)

Also from (1.10), we have

z (Hp,q,s(α1)g(z))(j+1) = α1 (Hp,q,s(α1 + 1)g(z))(j)−(α1+j−p) (Hp,q,s(α1)g(z))(j) .
(2.5)

From (2.4) and (2.5), we have∣∣∣(Hp,q,s(α1)g(z))(j)
∣∣∣ ≤ |α1| (1 + |B| |z|)
|α1| − |γ(A−B) + α1B| |z|

∣∣∣(Hp,q,s(α1 + 1)g(z))(j)
∣∣∣ .

(2.6)

Next, since (Hp,q,s(α1)f(z))(j) is majorized by (Hp,q,s(α1)g(z))(j) in U, from
(1.2), we have

(Hp,q,s(α1)f(z))(j) = ϕ(z) (Hp,q,s(α1)g(z))(j) . (2.7)
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Differentiating (2.7) with respect to z and multiplying by z, we have

z (Hp,q,s(α1)f(z))(j+1) = zϕ
′
(z) (Hp,q,s(α1)g(z))(j)+zϕ(z) (Hp,q,s(α1)g(z))(j+1) ,

(2.8)

using (2.5) in (2.8), we have

(Hp,q,s(α1 + 1)f(z))(j) =
zϕ

′
(z)

α1

(Hp,q,s(α1)g(z))(j)+ϕ(z) (Hp,q,s(α1 + 1)g(z))(j) .

(2.9)

Thus, by noting that ϕ(z) satisfies the inequality (see [14]),∣∣∣ϕ′
(z)
∣∣∣ ≤ 1− |ϕ(z)|2

1− |z|2
(z ∈ U), (2.10)

and making use of (2.6) and (2.10) in (2.9), we have∣∣∣(Hp,q,s(α1 + 1)f(z))(j)
∣∣∣ ≤(

|ϕ(z)|+ 1− |ϕ(z)|2

1− |z|2
.

(1 + |B| |z|) |z|
|α1| − |γ(A−B) + α1B |z||

)∣∣∣(Hp,q,s(α1 + 1)g(z))(j)
∣∣∣ ,

(2.11)

which upon setting

|z| = r and |ϕ(z)| = ρ (0 ≤ ρ ≤ 1),

leads us to the inequality∣∣∣(Hp,q,s(α1 + 1)f(z))(j)
∣∣∣ ≤

Ψ(ρ)

(1− r2)(|α1| − |γ(A−B) + α1B| r)

∣∣∣(Hp,q,s(α1 + 1)g(z))(j)
∣∣∣ ,

where

Ψ(ρ) = −r (1 + |B| r) ρ2 + (1− r2)(|α1| − |γ(A−B) + α1B| r)ρ
+r (1 + |B| r) , (2.12)
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takes its maximum value at ρ = 1, with r0 = r0(γ, α1, A,B), where r0(γ, α1, A,B)
is the smallest positive root of (2.2), then the function Φ(ρ) defined by

Φ(ρ) = −σ (1 + |B|σ) ρ2 + (1− σ2) [|α1| − |γ(A−B) + α1B|σ] ρ

+σ (1 + |B|σ) (2.13)

is an increasing function on the interval 0 ≤ ρ ≤ 1, so that

Φ(ρ) ≤ Φ(1) = (1− σ2)(|α1| − |γ(A−B) + α1B|σ)

(0 ≤ ρ ≤ 1; 0 ≤ σ ≤ r0(p, γ, α1, A,B)) . (2.14)

Hence upon setting ρ = 1 in (2.13), we conclude that (2.1) holds true for |z| ≤
r0 = r0(γ, α1, A,B), where r0(γ, α1, A,B) is the smallest positive root of (2.2).
This completes the proof of Theorem 1.

Putting A = 1 and B = −1 in Theorem 1, we obtain the following corollary.

Corollary 1. Let the function f ∈ A(p) and suppose that g ∈ Sjp,q,s (γ;α1) . If

(Hp,q,s(α1)f(z))(j) is majorized by (Hp,q,s(α1)g(z))(j) in U, then∣∣∣(Hp,q,s(α1 + 1)f(z))(j)
∣∣∣ ≤ ∣∣∣(Hp,q,s(α1 + 1)g(z))(j)

∣∣∣ (|z| < r0) ,

where r0 = r0(γ;α1) is given by

r0 = r0(γ;α1) =
k −

√
k2 − 4 |2γ − α1| |α1|

2 |2γ − α1|
,

where (k = 2 + |α1|+ |2γ − α1| , γ, α1 ∈ C∗).

Putting q = s + 1, α1 = β1 = p, αi = 1(i = 2, 3, ..., s + 1) and βi = 1(i =
2, 3, ...s) in Corollary 1, we obtain the following corollary.

Corollary 2 [1, Theorem 1]. Let the function f ∈ A(p) and suppose that
g ∈ Sjp(γ). If f (j)(z) is majorized by g(j)(z) in U, then∣∣f (j+1)(z)

∣∣ ≤ ∣∣g(j+1)(z)
∣∣ (|z| < r0) ,
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where r0 = r0(γ, p, j) is given by

r0 = r0(γ, p, j) =
k −

√
k2 − 4p |2γ − p+ j|
2 |2γ − p+ j|

,

where (k = 2 + p− j + |2γ − p+ j| , p ∈ N, j ∈ N0, γ ∈ C∗).

Putting j = 0 in Corollary 2, we obtain the following corollary.

Corollary 3. Let the function f ∈ A(p) and suppose that g ∈ Sp(γ). If f(z)
is majorized by g(z) in U, then

|f ′(z)| ≤ |g′(z)| (|z| < r0) ,

where r0 = r0(γ, p) is given by

r0 = r0(γ, p) =
k −

√
k2 − 4p |2γ − p|
2 |2γ − p|

,

where (k = 2 + p+ |2γ − p| , p ∈ N, γ ∈ C∗).

Putting j = 0, q = s + 1, α1 = p + 1, β1 = p, αi = 1(i = 2, 3, ..., s +
1) and βi = 1(i = 2, 3, ...s), in Corollary 1, with the aid of Lemma 1 (with
j = 0), we obtain the following corollary.

Corollary 4. Let the function f ∈ A(p) and suppose that g ∈ Kp(γ). If f(z)
is majorized by g(z) in U, then

|f ′(z)| ≤ |g′(z)| (|z| < r0) ,

where r0 = r0(γ, p) is given by

r0 = r0(γ, p) =
k −

√
k2 − 4p |γ − p|
2 |γ − p|

,

where (k = 2 + p+ |γ − p| , p ∈ N, γ ∈ C∗).

Putting A = 1, B = −1, p = 1, j = 0 and q = 2, s = 1, α1 = α2 = β1 = 1, in
Theorem 1, we obtain the following corollary.
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Corollary 5 [2, Theorem 1]. Let the function f ∈ A and suppose that g ∈
S(γ). If f(z) is majorized by g(z) in U, then

|f ′(z)| ≤ |g′(z)| (|z| < r0) ,

where r0 = r0(γ) is given by

r0 = r0(γ) =
k −

√
k2 − 4 |2γ − 1|

2 |2γ − 1|
,

where (k = 3 + |2γ − 1| , γ ∈ C∗).

Letting γ → 1 in Corollary 5, we obtain the following corollary.

Corollary 6 [11]. Let the function f ∈ A and suppose that g ∈ S∗. If f(z) is
majorized by g(z) in U, then

|f ′(z)| ≤ |g′(z)| (|z| < r0) ,

where r0 is given by

r0 = 2−
√

3.

Remarks. (i) Putting q = 2, s = 1, α1 = p+ 1, α2 = 1 and β1 = p+ 1− λ, in
Theorem 1 we obtain the result obtained by Goswami and Wang [7, Theorem
1];

(ii) Putting A = 1, B = −1, q = 2, s = 1, α1 = p + 1, α2 = 1 and β1 =
p+ 1−λ, in Corollary 1 we obtain the result obtained by Goyal and Goswami
[8, Theorem 1];

(iii) Putting q = 2, s = 1, α1 ∈ R, α2 = 1 and β1 ∈ R\Z−0 , in Theorem 1 we
obtain the result obtained by Goyal et al. [9, Theorem 1];

(iv) Also by specializing the parameters p,αi(i = 1, 2, ..., q) and βj(j =
1, 2, ..., s), we obtain various results corresponding to various operators defined
in the introduction.
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