Majorization Properties for Subclass of Analytic p-Valent Functions Defined by the Generalized Hypergeometric Function *

R. M. El-Ashwah ${ }^{\dagger}$
Department of Mathematics, Faculty of Science (Damietta Branch)
Mansoura University, New Damietta 34517, Egypt

Received April 25, 2011, Accepted April 24, 2012.

Abstract

The object of the present paper is to investigate the majorization properties of certain subclass of analytic and p-valent functions defined by the generalized hypergeometric function.

Keywords and Phrases: Analytic, p-valent, Majorization.

1. Introduction

Let f and g be analytic in the open unit disc $U=\{z \in \mathbb{C}:|z|<1\}$. We say that f is majorized by g in U (see [11]) and write

$$
\begin{equation*}
f(z) \ll g(z) \quad(z \in U) \tag{1.1}
\end{equation*}
$$

if there exists a function φ, analytic in U such that

$$
\begin{equation*}
|\varphi(z)|<1 \quad \text { and } \quad f(z)=\varphi(z) g(z) \quad(z \in U) . \tag{1.2}
\end{equation*}
$$

[^0]It may be noted that (1.1) is closely related to the concept of quasi-subordination between analytic functions.

For $f(z)$ and $g(z)$ are analytic in U, we say that $f(z)$ is subordinate to $g(z)$ written symbolically as follows:

$$
f \prec g \text { or } f(z) \prec g(z),
$$

if there exists a Schwarz function $w(z)$, which (by definition) is analytic in U with $w(0)=0$ and $|w(z)|<1(z \in U)$, such that $f(z)=g(w(z))(z \in$ $U)$. Further, if the function $g(z)$ is univalent in U, then we have the following equivalent (see [12, p. 4])

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U)
$$

Let $A(p)$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p} \quad(p \in \mathbb{N}=\{1,2, \ldots .\}) \tag{1.3}
\end{equation*}
$$

which are analytic and p-valent in U.
For complex parameters $\alpha_{1}, \ldots, \alpha_{q}$ and $\beta_{1}, \ldots, \beta_{s}\left(\beta_{j} \notin \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\} ;\right.$ $j=1,2, \ldots, s)$, we now define the generalized hypergeometric function ${ }_{q} F_{s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)$ by (see, for example, [5] and [19, p. 20])

$$
\begin{gather*}
{ }_{q} F_{s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{q}\right)_{k}}{\left(\beta_{1}\right)_{k} \ldots\left(\beta_{s}\right)_{k}} \cdot \frac{z^{k}}{k!} \tag{1.4}\\
\left(q \leq s+1 ; q, s \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} ; z \in U\right)
\end{gather*}
$$

where $(\theta)_{\nu}$ is the Pochhammer symbol defined, in terms of the Gamma function Γ, by

$$
(\theta)_{\nu}=\frac{\Gamma(\theta+\nu)}{\Gamma(\theta)}=\left\{\begin{array}{lr}
1 & \left(\nu=0 ; \theta \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}\right) \tag{1.5}\\
\theta(\theta+1) \ldots(\theta+\nu-1) & (\nu \in \mathbb{N} ; \theta \in \mathbb{C})
\end{array}\right.
$$

Corresponding to the function $h_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)$, defined by

$$
\begin{equation*}
h_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)=z^{p}{ }_{q} F_{s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right), \tag{1.6}
\end{equation*}
$$

we consider a linear operator

$$
H_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right): A(p) \rightarrow A(p),
$$

which is defined by the following Hadamard product (or convolution):

$$
\begin{equation*}
H_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right) f(z)=h_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right) * f(z) \tag{1.7}
\end{equation*}
$$

We observe that, for a function $f(z)$ of the form (1.3), we have

$$
\begin{equation*}
H_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right) f(z)=z^{p}+\sum_{k=1}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{q}\right)_{k}}{\left(\beta_{1}\right)_{k} \ldots\left(\beta_{s}\right)_{k}} \cdot \frac{a_{k+p}}{k!} z^{k+p} . \tag{1.8}
\end{equation*}
$$

If, for convenience, we write

$$
\begin{equation*}
H_{p, q, s}\left(\alpha_{1}\right)=H_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right), \tag{1.9}
\end{equation*}
$$

then one can easily verify from the definition (1.8) that (see [5])

$$
\begin{equation*}
z\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}=\alpha_{1} H_{p, q, s}\left(\alpha_{1}+1\right) f(z)-\left(\alpha_{1}-p\right) H_{p, q, s}\left(\alpha_{1}\right) f(z) \tag{1.10}
\end{equation*}
$$

It should be remarked that the linear operator $H_{p, q, s}\left(\alpha_{1}\right)$ is a generalization of many other linear operators considered earlier. In particular, for $f(z) \in A(p)$ we have the following observations:
(i) $H_{p, 2,1}(a, 1 ; c) f(z)=L_{p}(a ; c) f(z)\left(a \in \mathbb{R} ; c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}\right)$, this linear operator studied by Saitoh [18] which yields the operator $L(a, c) f(z)$ introduced by Carlson and Shaffer [3] for $p=1$;
(ii) $H_{p, 2,1}(n+p, 1 ; 1) f(z)=D^{n+p-1} f(z)(n \in \mathbb{N} ; n>-p)$, this linear operator studied by Goel and Sohi [6]. In the case when $p=1, D^{n} f(z)$ is the Ruscheweyh derivative [17] of $f(z) \in A(1)$;
(iii) $H_{p, 2,1}(c, \lambda+p ; a) f(z)=I_{p}^{\lambda}(a, c) f(z)\left(a, c \in \mathbb{N} \backslash \mathbb{Z}_{0}^{-} ; \lambda>-p\right)$, the Cho-Kwon-Srivastava operator [4];
(iv) $H_{p, 2,1}(1, p+1 ; n+p) f(z)=I_{n, p} f(z)(n \in \mathbb{Z} ; n>-p)$, the extended Noor integral operator considered by Liu and Noor [10];
(v) $H_{p, 2,1}(p+1,1 ; p+1-\lambda) f(z)=\Omega_{z}^{(\lambda, p)} f(z)(-\infty<\lambda<p+1)$, the extended fractional differintegral operator considered by Patel and Mishra [15].

Now, by making use of the operator $H_{p, q, s}\left(\alpha_{1}\right)$, we define a new subclass of functions $f \in A(p)$ as follows.

Definition 1. Let $-1 \leq B<A \leq 1, p \in \mathbb{N}, j \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \gamma \in$ $\mathbb{C}^{*},\left|\gamma(A-B)+\alpha_{1} B\right|<\left|\alpha_{1}\right| \quad$ and $f \in A(p)$. Then $f \in S_{p, q, s}^{j}\left(\gamma ; \alpha_{1 ;} A, B\right)$, the class of p-valent functions of complex order γ in U , if and only if

$$
\begin{equation*}
\left\{1+\frac{1}{\gamma}\left(\frac{z\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{(j+1)}}{\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{(j)}}-p+j\right)\right\} \prec \frac{1+A z}{1+B z} \tag{1.11}
\end{equation*}
$$

Clearly, we have the following relationships:
(i) $S_{p, q, s}^{j}\left(\gamma ; \alpha_{1 ;} 1,-1\right)=S_{p, q, s}^{j}\left(\gamma ; \alpha_{1}\right)$;
(ii) $S_{p, 1,0}^{j}(\gamma ; 1 ; 1,-1)=S_{p}^{j}(\gamma)$;
(ii) $S_{1,1,0}^{0}(\gamma ; 1 ; 1,-1)=S(\gamma)\left(\gamma \in \mathbb{C}^{*}\right)($ see $[13])$;
(iii) $S_{1,1,0}^{0}(1-\alpha ; 1,1,-1)=S^{*}(\alpha)(0 \leq \alpha<1)$ (see [16]).

Also, we note that:
(i) For $j=0, q=s+1, \alpha_{1}=\beta_{1}=p, \alpha_{i}=1(i=2,3, \ldots, s+1)$ and $\beta_{i}=$ $1(i=2,3, \ldots s), S_{p, q, s}^{j}\left(\gamma ; \alpha_{1}\right)$ reduces to the class $S_{p}(\gamma)\left(\gamma \in \mathbb{C}^{*}\right)$ of p-valently starlike functions of order $\gamma\left(\gamma \in \mathbb{C}^{*}\right)$ in U, where

$$
S_{p}(\gamma)=\left\{f(z) \in A(p): \operatorname{Re}\left(1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)\right)>0, p \in \mathbb{N}, \gamma \in \mathbb{C}^{*}\right\}
$$

(ii) For $j=0, q=s+1, \alpha_{1}=p+1, \beta_{1}=p, \alpha_{i}=1(i=2,3, \ldots, s+1)$ and $\beta_{i}=$ $1(i=2,3, \ldots s), S_{p, q, s}^{j}\left(\gamma ; \alpha_{1}\right)$ we get the class $K_{p}(\gamma)\left(\gamma \in \mathbb{C}^{*}\right)$ of p-valently convex functions of order $\gamma\left(\gamma \in \mathbb{C}^{*}\right)$ in U, where,
$K_{p}(\gamma)=\left\{f(z) \in A(p): \operatorname{Re}\left(1+\frac{1}{\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right)\right)>0, p \in \mathbb{N}, \gamma \in \mathbb{C}^{*}\right\}$.

We shall need the following lemma.
Lemma 1 [1]. Let $\gamma \in \mathbb{C}^{*}$ and $f \in K_{p}^{j}(\gamma)$. Then $f \in S_{p}^{j}\left(\frac{1}{2} \gamma\right)$, that is,

$$
\begin{equation*}
K_{p}^{j}(\gamma) \subset S_{p}^{j}\left(\frac{1}{2} \gamma\right) \quad\left(\gamma \in \mathbb{C}^{*}\right) \tag{1.12}
\end{equation*}
$$

A majorization problem for the class $S(\gamma)\left(\gamma \in \mathbb{C}^{*}\right)$ has been investigated by Altintas et al. [1]. Also, majorization problem for the class $S^{*}=$ $S^{*}(0)$ has been investigated by MacGregor [11]. Recently Goyal and Goswami [8] and Goyal et al. [9] generalized these results for classes of multivalent function defined by fractional derivatives operator and Saitoh operator, respectively. In this paper we investigate majorization problem for the class $S_{p, q, s}^{j}\left(\gamma ; \alpha_{1 ;} A, B\right)$ and other related subclasses.

2. Main Results

Unless otherwise mentioned we shall assume throughout the paper that $-1 \leq$ $B<A \leq 1, \gamma, \alpha_{1} \in \mathbb{C}^{*}, j \in \mathbb{N}_{0}$ and $p \in \mathbb{N}$.

Theorem 1. Let the function $f \in A(p)$ and suppose that $g \in S_{p, q, s}^{j}\left(\gamma ; \alpha_{1 ;} A, B\right)$. If $\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{(j)}$ is majorized by $\left(H_{p, q, s}\left(\alpha_{1}\right) g(z)\right)^{(j)}$ in U, then

$$
\begin{equation*}
\left|\left(H_{p, q, s}\left(\alpha_{1}+1\right) f(z)\right)^{(j)}\right| \leq\left|\left(H_{p, q, s}\left(\alpha_{1}+1\right) g(z)\right)^{(j)}\right| \quad\left(|z|<r_{0}\right) \tag{2.1}
\end{equation*}
$$

where $r_{0}=r_{0}\left(\gamma, \alpha_{1}, A, B\right)$ is the smallest positive root of the equation
$\left|\gamma(A-B)+\alpha_{1} B\right| r^{3}-\left(2|B|+\left|\alpha_{1}\right|\right) r^{2}-\left(2+\left|\gamma(A-B)+\alpha_{1} B\right|\right) r+\left|\alpha_{1}\right|=0$.
Proof. Since $g \in S_{p, q, s}^{j}\left(\gamma ; \alpha_{1 ;} A, B\right)$, we find from (1.11) that

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z\left(H_{p, q, s}\left(\alpha_{1}\right) g(z)\right)^{(j+1)}}{\left(H_{p, q, s}\left(\alpha_{1}\right) g(z)\right)^{(j)}}-p+j\right)=\frac{1+A w(z)}{1+B w(z)} \tag{2.3}
\end{equation*}
$$

where w is analytic in U with $w(0)=0$ and $|w(z)|<1(z \in U)$. From (2.3), we have

$$
\begin{equation*}
\frac{z\left(H_{p, q, s}\left(\alpha_{1}\right) g(z)\right)^{(j+1)}}{\left(H_{p, q, s}\left(\alpha_{1}\right) g(z)\right)^{(j)}}=\frac{(p-j)+(\gamma(A-B)+(p-j) B) w(z)}{1+B w(z)} \tag{2.4}
\end{equation*}
$$

Also from (1.10), we have
$z\left(H_{p, q, s}\left(\alpha_{1}\right) g(z)\right)^{(j+1)}=\alpha_{1}\left(H_{p, q, s}\left(\alpha_{1}+1\right) g(z)\right)^{(j)}-\left(\alpha_{1}+j-p\right)\left(H_{p, q, s}\left(\alpha_{1}\right) g(z)\right)^{(j)}$.

From (2.4) and (2.5), we have

$$
\begin{equation*}
\left|\left(H_{p, q, s}\left(\alpha_{1}\right) g(z)\right)^{(j)}\right| \leq \frac{\left|\alpha_{1}\right|(1+|B||z|)}{\left|\alpha_{1}\right|-\left|\gamma(A-B)+\alpha_{1} B\right||z|}\left|\left(H_{p, q, s}\left(\alpha_{1}+1\right) g(z)\right)^{(j)}\right| . \tag{2.6}
\end{equation*}
$$

Next, since $\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{(j)}$ is majorized by $\left(H_{p, q, s}\left(\alpha_{1}\right) g(z)\right)^{(j)}$ in U, from (1.2), we have

$$
\begin{equation*}
\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{(j)}=\varphi(z)\left(H_{p, q, s}\left(\alpha_{1}\right) g(z)\right)^{(j)} . \tag{2.7}
\end{equation*}
$$

Differentiating (2.7) with respect to z and multiplying by z, we have
$z\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{(j+1)}=z \varphi^{\prime}(z)\left(H_{p, q, s}\left(\alpha_{1}\right) g(z)\right)^{(j)}+z \varphi(z)\left(H_{p, q, s}\left(\alpha_{1}\right) g(z)\right)^{(j+1)}$,
using (2.5) in (2.8), we have

$$
\begin{equation*}
\left(H_{p, q, s}\left(\alpha_{1}+1\right) f(z)\right)^{(j)}=\frac{z \varphi^{\prime}(z)}{\alpha_{1}}\left(H_{p, q, s}\left(\alpha_{1}\right) g(z)\right)^{(j)}+\varphi(z)\left(H_{p, q, s}\left(\alpha_{1}+1\right) g(z)\right)^{(j)} \tag{2.9}
\end{equation*}
$$

Thus, by noting that $\varphi(z)$ satisfies the inequality (see [14]),

$$
\begin{equation*}
\left|\varphi^{\prime}(z)\right| \leq \frac{1-|\varphi(z)|^{2}}{1-|z|^{2}} \quad(z \in U) \tag{2.10}
\end{equation*}
$$

and making use of (2.6) and (2.10) in (2.9), we have

$$
\begin{align*}
& \left|\left(H_{p, q, s}\left(\alpha_{1}+1\right) f(z)\right)^{(j)}\right| \leq \\
& \left(|\varphi(z)|+\frac{1-|\varphi(z)|^{2}}{1-|z|^{2}} \cdot \frac{(1+|B||z|)|z|}{\left|\alpha_{1}\right|-\left|\gamma(A-B)+\alpha_{1} B\right| z| |}\right)\left|\left(H_{p, q, s}\left(\alpha_{1}+1\right) g(z)\right)^{(j)}\right|, \tag{2.11}
\end{align*}
$$

which upon setting

$$
|z|=r \quad \text { and } \quad|\varphi(z)|=\rho \quad(0 \leq \rho \leq 1)
$$

leads us to the inequality

$$
\begin{aligned}
& \left|\left(H_{p, q, s}\left(\alpha_{1}+1\right) f(z)\right)^{(j)}\right| \leq \\
& \quad \frac{\Psi(\rho)}{\left(1-r^{2}\right)\left(\left|\alpha_{1}\right|-\left|\gamma(A-B)+\alpha_{1} B\right| r\right)}\left|\left(H_{p, q, s}\left(\alpha_{1}+1\right) g(z)\right)^{(j)}\right|,
\end{aligned}
$$

where

$$
\begin{align*}
\Psi(\rho)= & -r(1+|B| r) \rho^{2}+\left(1-r^{2}\right)\left(\left|\alpha_{1}\right|-\left|\gamma(A-B)+\alpha_{1} B\right| r\right) \rho \\
& +r(1+|B| r) \tag{2.12}
\end{align*}
$$

takes its maximum value at $\rho=1$, with $r_{0}=r_{0}\left(\gamma, \alpha_{1}, A, B\right)$, where $r_{0}\left(\gamma, \alpha_{1}, A, B\right)$ is the smallest positive root of (2.2), then the function $\Phi(\rho)$ defined by

$$
\begin{align*}
\Phi(\rho)= & -\sigma(1+|B| \sigma) \rho^{2}+\left(1-\sigma^{2}\right)\left[\left|\alpha_{1}\right|-\left|\gamma(A-B)+\alpha_{1} B\right| \sigma\right] \rho \\
& +\sigma(1+|B| \sigma) \tag{2.13}
\end{align*}
$$

is an increasing function on the interval $0 \leq \rho \leq 1$, so that

$$
\begin{align*}
\Phi(\rho) \leq & \Phi(1)=\left(1-\sigma^{2}\right)\left(\left|\alpha_{1}\right|-\left|\gamma(A-B)+\alpha_{1} B\right| \sigma\right) \\
& \left(0 \leq \rho \leq 1 ; 0 \leq \sigma \leq r_{0}\left(p, \gamma, \alpha_{1}, A, B\right)\right) \tag{2.14}
\end{align*}
$$

Hence upon setting $\rho=1$ in (2.13), we conclude that (2.1) holds true for $|z| \leq$ $r_{0}=r_{0}\left(\gamma, \alpha_{1}, A, B\right)$, where $r_{0}\left(\gamma, \alpha_{1}, A, B\right)$ is the smallest positive root of (2.2). This completes the proof of Theorem 1.

Putting $A=1$ and $B=-1$ in Theorem 1, we obtain the following corollary.
Corollary 1. Let the function $f \in A(p)$ and suppose that $g \in S_{p, q, s}^{j}\left(\gamma ; \alpha_{1}\right)$. If $\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{(j)}$ is majorized by $\left(H_{p, q, s}\left(\alpha_{1}\right) g(z)\right)^{(j)}$ in U, then

$$
\left|\left(H_{p, q, s}\left(\alpha_{1}+1\right) f(z)\right)^{(j)}\right| \leq\left|\left(H_{p, q, s}\left(\alpha_{1}+1\right) g(z)\right)^{(j)}\right| \quad\left(|z|<r_{0}\right)
$$

where $r_{0}=r_{0}\left(\gamma ; \alpha_{1}\right)$ is given by

$$
r_{0}=r_{0}\left(\gamma ; \alpha_{1}\right)=\frac{k-\sqrt{k^{2}-4\left|2 \gamma-\alpha_{1}\right|\left|\alpha_{1}\right|}}{2\left|2 \gamma-\alpha_{1}\right|}
$$

where $\left(k=2+\left|\alpha_{1}\right|+\left|2 \gamma-\alpha_{1}\right|, \gamma, \alpha_{1} \in \mathbb{C}^{*}\right)$.
Putting $q=s+1, \alpha_{1}=\beta_{1}=p, \alpha_{i}=1(i=2,3, \ldots, s+1)$ and $\beta_{i}=1(i=$ $2,3, \ldots s)$ in Corollary 1 , we obtain the following corollary.

Corollary 2 [1, Theorem 1]. Let the function $f \in A(p)$ and suppose that $g \in S_{p}^{j}(\gamma)$. If $f^{(j)}(z)$ is majorized by $g^{(j)}(z)$ in U, then

$$
\left|f^{(j+1)}(z)\right| \leq\left|g^{(j+1)}(z)\right| \quad\left(|z|<r_{0}\right)
$$

where $r_{0}=r_{0}(\gamma, p, j)$ is given by

$$
r_{0}=r_{0}(\gamma, p, j)=\frac{k-\sqrt{k^{2}-4 p|2 \gamma-p+j|}}{2|2 \gamma-p+j|}
$$

where $\left(k=2+p-j+|2 \gamma-p+j|, p \in \mathbb{N}, j \in \mathbb{N}_{0}, \gamma \in \mathbb{C}^{*}\right)$.
Putting $j=0$ in Corollary 2, we obtain the following corollary.
Corollary 3. Let the function $f \in A(p)$ and suppose that $g \in S_{p}(\gamma)$. If $f(z)$ is majorized by $g(z)$ in U, then

$$
\left|f^{\prime}(z)\right| \leq\left|g^{\prime}(z)\right| \quad\left(|z|<r_{0}\right)
$$

where $r_{0}=r_{0}(\gamma, p)$ is given by

$$
r_{0}=r_{0}(\gamma, p)=\frac{k-\sqrt{k^{2}-4 p|2 \gamma-p|}}{2|2 \gamma-p|}
$$

where $\left(k=2+p+|2 \gamma-p|, p \in \mathbb{N}, \gamma \in \mathbb{C}^{*}\right)$.
Putting $j=0, q=s+1, \alpha_{1}=p+1, \beta_{1}=p, \alpha_{i}=1(i=2,3, \ldots, s+$ 1) and $\beta_{i}=1(i=2,3, \ldots s)$, in Corollary 1 , with the aid of Lemma 1 (with $j=0$), we obtain the following corollary.

Corollary 4. Let the function $f \in A(p)$ and suppose that $g \in K_{p}(\gamma)$. If $f(z)$ is majorized by $g(z)$ in U, then

$$
\left|f^{\prime}(z)\right| \leq\left|g^{\prime}(z)\right| \quad\left(|z|<r_{0}\right)
$$

where $r_{0}=r_{0}(\gamma, p)$ is given by

$$
r_{0}=r_{0}(\gamma, p)=\frac{k-\sqrt{k^{2}-4 p|\gamma-p|}}{2|\gamma-p|}
$$

where $\left(k=2+p+|\gamma-p|, p \in \mathbb{N}, \gamma \in \mathbb{C}^{*}\right)$.
Putting $A=1, B=-1, p=1, j=0$ and $q=2, s=1, \alpha_{1}=\alpha_{2}=\beta_{1}=1$, in Theorem 1, we obtain the following corollary.

Corollary 5 [2, Theorem 1]. Let the function $f \in A$ and suppose that $g \in$ $S(\gamma)$. If $f(z)$ is majorized by $g(z)$ in U, then

$$
\left|f^{\prime}(z)\right| \leq\left|g^{\prime}(z)\right| \quad\left(|z|<r_{0}\right)
$$

where $r_{0}=r_{0}(\gamma)$ is given by

$$
r_{0}=r_{0}(\gamma)=\frac{k-\sqrt{k^{2}-4|2 \gamma-1|}}{2|2 \gamma-1|}
$$

where $\left(k=3+|2 \gamma-1|, \gamma \in \mathbb{C}^{*}\right)$.
Letting $\gamma \rightarrow 1$ in Corollary 5, we obtain the following corollary.
Corollary 6 [11]. Let the function $f \in A$ and suppose that $g \in S^{*}$. If $f(z)$ is majorized by $g(z)$ in U, then

$$
\left|f^{\prime}(z)\right| \leq\left|g^{\prime}(z)\right| \quad\left(|z|<r_{0}\right)
$$

where r_{0} is given by

$$
r_{0}=2-\sqrt{3} .
$$

Remarks. (i) Putting $q=2, s=1, \alpha_{1}=p+1, \alpha_{2}=1$ and $\beta_{1}=p+1-\lambda$, in Theorem 1 we obtain the result obtained by Goswami and Wang [7, Theorem 1];
(ii) Putting $A=1, B=-1, q=2, s=1, \alpha_{1}=p+1, \alpha_{2}=1$ and $\beta_{1}=$ $p+1-\lambda$, in Corollary 1 we obtain the result obtained by Goyal and Goswami [8, Theorem 1];
(iii) Putting $q=2, s=1, \alpha_{1} \in \mathbb{R}, \alpha_{2}=1$ and $\beta_{1} \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}$, in Theorem 1 we obtain the result obtained by Goyal et al. [9, Theorem 1];
(iv) Also by specializing the parameters $p, \alpha_{i}(i=1,2, \ldots, q)$ and $\beta_{j}(j=$ $1,2, \ldots, s)$, we obtain various results corresponding to various operators defined in the introduction.

Acknowledgments.

The author thanks the referees for their valuable suggestions which led to improvement of this paper.

References

[1] O. Altinas and H. M. Srivastava, Some majorization properties associated with p-valent starlike and convex functions of complex order, East Asian Math., J. 17 no. 2(2001), 175-183.
[2] O. Altintas, O. Ozkan, and H. M. Srivastava, Majorization by starlike functions of complex order, Complex Var., 46 (2001), 207-218.
[3] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.
[4] N. E. Cho, O.H. Kwon, and H.M. Srivastava, Inclusion and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292 (2004), 470-483.
[5] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1-13.
[6] R. M. Goel and N. S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc., 78 (1980), 353-357.
[7] P. Goswami and Z.-G. Wang, Majorization for certain classes of analytic functions, Acta Univ. Apulensis, (2010), no. 21, 97-104.
[8] S. P. Goyal and P. Goswami, Majorization for certain classes of analytic functions defined by fractional derivatives, Appl. Math. Letters, 22 (2009), 1855-1858.
[9] S. P. Goyal, S. K. Bansal, and P. Goswami, Majorization for certain subclass of analytic functions defined by linear operator using differential subordination, J. Appl. Math. Stat. Informatics, 6 no. 2 (2010), 45-50.
[10] J.-L. Liu and K.I. Noor, Some properties of Noor integral operator, J. Natur. Geom., 21 (2002), 81-90.
[11] T. H. MacGregor, Majorization by univalent functions, Duke Math. J., 34 (1967), 95-102.
[12] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York. and Basel, 2000.
[13] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Nature. Sci. Math., 25 (1985), 1-12.
[14] Z. Nehari, Conformal Mapping, MacGraw-Hill Book Company, New York, Toronto and London, 1952.
[15] J. Patel and A. K. Mishra, On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl., 332 (2007), 109-122.
[16] M. S. Robertson, On the theory of univalent functions, Ann. Math., 37 no. 2 (1936), 374-408.
[17] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
[18] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japon., 44 (1996), 31-38.
[19] E. T. Whittaker and G. N. Wastson, A Course on Modern Analysis : An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Accout of the Principal Transcenclental Functions, Fourth Edition (Reprinted), Cambridge Univ. Press, Camridge, 1927.

[^0]: *2000 Mathematics Subject Classification. Primary 30C45.
 †E-mail: r_ elashwah@yahoo.com

