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Abstract

The main objective of this article is to introduce a new integral
operator =αs,bf(z) defined by using the fractional derivative for Hurwitz.
Lerch zeta function. This operator was motivated by many researchers
namely Srivastava, Srivastava and Attiya, and many others. Inclusion
relations for new subclasses of analytic functions defined by operator
aforementioned are also considered.

Keywords and Phrases: Fractional derivative, Hurwitz-Lerch zeta func-
tions, Inclusion relations.

1. Introduction

Let A denote the class of all analytic functions in the open unit disk U = {z ∈
C : |z| < 1}, given by the normalized power series of the form

f(z) = z +
∞∑
n=2

anz
n. (1.1)
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For two analytic functions f(z) given by (1.1) and g(z) = z+
∑∞

n=2 bnz
n, their

convolution (or Hadamard product) is defined by

(f ∗ g)(z) = z +
∞∑
n=2

anbnz
n.

A function f ∈ A is said to be in the class denoted by SP (k, β), (−1 ≤ β < 1),
and satisfies

Re

{
zf ′(z)

f(z)

}
≥ k

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣+ β, (k ≥ 0, and β + k ≥ 0, z ∈ U).

(1.2)

Furthermore, a function f ∈ A is said to be in the class UC(k, β) of k-uniformly
convex of order β (−1 ≤ β < 1), and satisfies

Re

{
1 +

zf ′′(z)

f ′(z)

}
≥ k

∣∣∣∣1 +
zf ′′(z)

f ′(z)

∣∣∣∣+ β, (k ≥ 0, and β + k ≥ 0, z ∈ U).

(1.3)

It is obvious that f ∈ UC(k, β) if and only if zf ′ ∈ SP (k, β). These classes
generalize various other classes. For k = 0, we get, the classes CV (β) and
ST (β) which are convex functions of order β and starlike functions of order β
respectively.

The class UC(1, 0) ≡ UC is called uniformly convex introduced by Goodman
with geometric interpretation in [6]. The class SP (1, 0) ≡ SP is defined by
Ronning in [14]. The classes UC(1, β) ≡ UC(β) and SP (1, β) ≡ SP (β) are
investigated by Ronning in [13]. For β = 0, the classes UC(k, 0) ≡ k − UC
and SP (k, 0) ≡ k−SP, respectively, are defined by Kanas and Wisniowska in
[8] and [9].

Geometric interpretation. Let f ∈ SP (k, β) and f ∈ UC(k, β) if and only

if zf ′(z)
f(z)

and zf ′′(z)
f ′(z)

+ 1 respectively, take all the values in the conic domain Rk,β

which is included in the right half plane such that

Rk,β = {u+ iv : u > k
√

(u− 1)2 + v2 + β}, (1.4)

with p(z) = zf ′(z)
f(z)

or p(z) = zf ′′(z)
f ′(z)

+ 1 and the considering the functions which
map U onto the conic domain Rk,β, such that 1 ∈ Rk,β, we may rewrite the
conditions (1.2) or (1.3) in the form

p(z) ≺ qk,β(z). (1.5)
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The functions that play the role of extremal functions for these classes in the
case k = 0 and k = 1 can be found in [2] as follows:

q0,β =
1 + (1− 2β)z

1− z
,

q1,β = 1 +
2(1− β)

π2

(
log

1 +
√
z

1−
√
z

)
.

From (1.4) and the properties of the domains Rk,β we have

<(p(z)) > <(qk,β) >
k + β

k + 1
. (1.6)

Define UCC(k, γ, β) to be the family of functions f ∈ A such that

Re

{
zf ′(z)

g(z)

}
≥ k

∣∣∣∣zf ′(z)

g(z)
− 1

∣∣∣∣+ γ, (k ≥ 0, and β + k ≥ 0, z ∈ U),

(1.7)
for some g ∈ SP (k, β).

Similarly, define UQC(k, γ, β) to be the family of functions f ∈ A such that

Re

{
(zf ′(z))′

g′(z)

}
≥ k

∣∣∣∣(zf ′(z))′

g′(z)
− 1

∣∣∣∣+γ, (k ≥ 0, and β+k ≥ 0, z ∈ U),

(1.8)
for some g ∈ SP (k, β),

if UCC(0, γ, β) is the class of close to convex functions of order γ and type β
and UQC(0, γ, β) is the class of quasi convex functions of order γ and type β.

Let

ϕ(a, c; z) =
∞∑
n=0

(a)n
(c)n

zn+1, (z ∈ U, c 6= 0,−1,−2,−3, ...),

where (x)k denotes the Pochhammer symbol (or the shifted factorial) defined

by (x)k =

{
1 for k = 0,

x(x+ 1)(x+ 2)...(x+ k − 1) for k ∈ N = {1, 2, 3, ...}.

Carlson and Shaffer [4] introduced a linear operator L(a, c) by

L(a, c)f(z) = ϕ(a, c; z) ∗ f(z),
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Note that:

L(a, a) is the identity operator,and L(a, c) = L(a, b)L(b, c) (b, c 6= 0,−1, ...).

In order to introduce a new integral operator we need the following definitions.

Definition 1.1. (Srivastava and Choi [17]) A general Hurwitz Lerch Zeta
function Φ(z, s, b) defined by

Φ(z, s, b) =
∞∑
n=0

zn

(n+ b)s
,

where s ∈ C, b ∈ C− Z0 when |z| < 1, <(b) > 1 when |z| = 1.

We define the function :

Φ∗(z, s, b) = (bszΦ(z, s, b)) ∗ f(z),

then

Φ∗(z, s, b) = z +
∞∑
n=2

bs

(n+ b− 1)s
anz

n.

Definition 1.2. (see [12] ,[16]) Let the function f be analytic in a simply con-
nected domain of the z-plane containing the origin. The fractional derivative
of f of order α is defined by

Dα
z f(z) =

1

Γ(1− α)

d

dz

∫ z

0

f(t)

(z − t)α
dt, (0 ≤ α < 1),

where the multiplicity of (z− t)−α is removed by requiring log(z− t) to be real
when z − t > 0.

Using Definition 1.2 and its known extensions involving fractional derivatives
and fractional integrals, Owa and Srivastava [12] introduced the operator Ωα :
A→ A, which is known as an extension of fractional derivative and fractional
integral, as follows:

Ωαf(z) = Γ(2− α)zαDα
z f(z), (α 6= 2, 3, 4, · · · )
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= z +
∞∑
n=2

Γ(n+ 1)Γ(2− α)

Γ(n+ 1− α)
anz

n z ∈ U.

Now, by using Definition 1.1, and Definition 1.2, the authors [18] have recently
introduced a new generalized integral operator. For s ∈ C, b ∈ C − Z−0 , and
(=αs,bf) : A→ A as the following:

=αs,bf(z) = Γ(2− α)zαDα
z Φ∗(z, s, b), (α 6= 2, 3, 4, · · · )

= z +
∞∑
n=2

Γ(n+ 1)Γ(2− α)

Γ(n+ 1− α)
.(

b

n− 1 + b
)sanz

n.

(1.9)

= z +
∞∑
n=2

ϕ(2, 2− α; z) ∗ ψ(z, s, b),

where ψ(z, s, b) = z +
∞∑
n=2

(
b

n− 1 + b
)sanz

n,

= L(2, 2− α)ψ(z, s.b)

= Ωαψ(z, s.b),

then
=αs,bf(z) = Ωαψ(z, s.b).

Note that :
=0

0,bf(z) = f(z).

Special cases of this operator includes:
• =α0,bf(z) ≡ Ωαf(z) is Owa and Srivastava operator [12].

• =0
s,b+1f(z) ≡ Js,bf(z) is the Srivastava and Attiya integral operator [15].

• =0
1,1f(z) ≡ A(f)(z) is the Alexander integral operators [1].

• =0
s+1,1f(z) ≡ L(f)(z) is the Libera integral operators [10].

• =0
1,δf(z) ≡ Lδ(f)(z) is the Bernardi integral operator [3].

• =0
σ,2f(z) ≡ Iσf(z) is the Jung-Kim-Srivastava integral operator [7].

It is easily verified from the above definition of the operator =αs,bf(z) that:

z(=αs+1,bf(z))′ = (1− b)=αs+1,bf(z) + b=αs,bf(z). (1.10)
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By using our integral operator we introduce the following subclasses of A

Definition 1.3. Let f(z) ∈ A. Then f(z) ∈ SPα
s,b(k, β) if and only if =αs,b ∈

SP (k, β).

Definition 1.4. Let f(z) ∈ A. Then f(z) ∈ UCα
s,b(k, β) if and only if =αs,b ∈

UC(k, β).

Definition 1.5. Let f(z) ∈ A. Then f(z) ∈ UCCα
s,b(k, γ, β) if and only if

=αs,b ∈ UCC(k, γ, β).

Definition 1.6. Let f(z) ∈ A. Then f(z) ∈ UQCα
s,b(k, γ, β) if and only if

=αs,b ∈ UQC(k, γ, β).

We note that

f(z) ∈ UCα
s,b(k, β)⇔ zf ′(z) ∈ SPα

s,b(k, β). (1.11)

2. Preliminaries Results

We need the following lemmas in our investigation

Lemma 2.1. ( Eenigenburg, Miller, Mocanu, and Read[5]) Let a, b be com-
plex number and let h be convex univalent in unit disk U with h (0) = c and
<{ah (z) + b} > 0. Let g(z) = c+

∑∞
n=1 pnz

n be analytic in U. Then

g(z) +
zg′ (z)

ag (z) + b
≺ h (z) , (z ∈ U) ,

implies
g(z) ≺ h(z).

Lemma 2.2. ( see Miller and Mocanu[11]) Let h be convex in the unit disk U
and let A > 0. Suppose B(z) is analytic in U with with <{B(z)} ≥ A. If g is
analytic in U and g(0) = h(0). Then

Az2g′′(z) +B(z)zg′(z) + g(z) ≺ h(z)⇒ g(z) ≺ h(z).
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3. Inclusion Relations

In the following results we will study inclusion relations

Theorem 3.1. Let <(b) > 1−β
k+1

, and f ∈ A.

SPα
s,b(k, β) ⊂ SPα

s+1,b(k, β).

Proof. Let f ∈ SPα
s,b(k, β) . Then upon setting

z(=αs+1,bf(z))′

=αs+1,bf)(z)
= p(z), (z ∈ U), (3.1)

where p(z) = 1 + p1z + p2z
2 + . . . , is analytic in U, with p(0)=1 and p(z) 6= 0

for all z ∈ U.

From (1.10) we can write

b
=αs,bf(z)

=αs+1,bf)(z)
=
z(=αs+1,bf(z))′

=αs+1,bf)(z)
− (1− b), (3.2)

b
=αs,bf(z)

=αs+1,bf)(z)
= p(z)− (1− b). (3.3)

By logarithmically differentiating both sides of the equation (3.3), we get

z(=αs,bf(z))′

(=αs,bf)(z)
=
z(=αs+1,bf(z))′

=αs+1,bf(z)
+

zp′(z)

p(z)− (1− b)
,

z(=αs,bf(z))′

(=αs,bf)(z)
= p(z) +

zp′(z)

p(z) + (b− 1)
.

From this equation and the argument given in (1.5), we may write

p(z) +
zp′(z)

p(z) + (b− 1)
≺ qk,β(z).

Therefore, the theorem follows by Lemma 2.1, and the condition (1.5), since
qk,β is univalent and convex in U and <(qk,β) > k+β

k+1
that is, f ∈ SPα

s+1,b(k, β).
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Theorem 3.2. Let <(b) > 1−β
k+1

, and f ∈ A, then UCα
s,b(γ) ⊂ UCα

s+1,b(k, β).

Proof. Applying (1.2),(1.3) and Theorem 3.1, we observe that

f(z) ∈ UCα
s,b(k, β) ⇔ (=αs,bf)(z) ∈ UC(k, β)

⇔ z(=αs,bf(z))′ ∈ SP (k, β)

⇔ =αs,b(zf ′(z)) ∈ SP (k, β)

⇔ zf ′(z) ∈ SPα
s,b(k, β)

⇒ zf ′(z) ∈ SPα
s+1,b(k, β)

⇔ =αs+1,bz(f(z))′ ∈ SP (k, β)

⇔ z(=αs+1,bf(z))′ ∈ SP (k, β)

⇔ =αs+1,bf(z) ∈ UC(k, β)

⇔ f(z) ∈ UCα
s+1,b(k, β),

the proof is complete .

Theorem 3.3. Let <(b) > 1−β
k+1

, and f ∈ A, then

UCCα
s,b(k, β) ⊂ UCCα

s+1,b(k, β).

Proof. Let f(z) ∈ UCCα
s,b(k, β). Then, in view of the definition ,we can write

Re

{
z(=αs,bf(z))′

ψ(z)

}
≺ qk,β (z ∈ U),

for some ψ(z) ∈ SP (k, β). Choose the function g(z) such that =αs,bg(z) = ψ(z),
so we have

Re
z(=αs,bf(z))′

=αs,bg(z)
≺ qk,β. (3.4)

New we set

z(=αs+1,bf(z))′

=αs+1,bg(z)
= p(z), (3.5)

where p(z) = 1 + p1z + p2z
2 + . . . , is analytic in U ,p(0) = 1 and p(z) 6= 0 for

all z ∈ U.
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Using the identity (1.10) we have we have

z(=αs,bf(z))′

=αs,bg(z)
=
=αs,b(zf ′(z))

=αs,bg(z)
,

=
z(=αs+1,bzf

′(z))′ − (1− b)(=αs+1,bzf
′(z))

z(=αs+1,bg(z))′ − (1− b)(=αs+1,bg(z))

=

z(=αs+1,bzf
′(z))′

=αs+1,bg(z)
− (1−b)(=αs+1,bzf

′(z))

=αs+1,bg(z)

z(=αs+1,bg(z)

=αs+1,bg(z)
− (1− b)

. (3.6)

Since g(z) ∈ SPα
s+1,b(k, β), and by Theorem 3.1, we can write

z(=αs+1,bg(z))
′

=αs+1,bg(z)
=

r(z), where <{r(z)} > 0, (z ∈ U),

z(=αs,bf(z))′

=αs,bg(z)
=

z(=αs+1,bzf
′(z))′

=αs+1,bg(z)
− (1− b)p(z)

r(z)− (1− b)
. (3.7)

From (3.5) we consider that

z(=αs+1,bf(z))′ = =αs+1,bg(z)[p(z)] (3.8)

differentiating both sides of (3.8) with respect to z, we get

z[z(=αs+1,bf(z))′]′

=αs+1,bg(z)
= zp′(z) + p(z)(r(z)). (3.9)

Using (3.8) and (3.9), we obtain

z(=αs,bf(z))′

=αs,bg(z)
=

p(z).r(z) + zp′(z)− (1− b)p(z)

r(z)− (1− b)
,

= p(z) +
zp′(z)

r(z)− (1− b)
. (3.10)

From (3.4) and (3.10) we conclude that
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p(z) +
1

r(z)− (1− b)
zp′(z) ≺ qk,β.

For letting A = 0 and B(z) = 1
r(z)−(1−b) ,we obtain

<{B(z)} =
1

r(z) + (b− 1)
=

1

(r(z) + (b− 1))2
<[r(z) + (b− 1)] > 0.

The above inequality satisfies the conditions required by Lemma 2.2 . Hence
p(z) ≺ qk,β

so the proof is complete.

Theorem 3.4. Let <b > 1−β
k+1

, and f ∈ A, then

UQCα
s,b(k, β) ⊂ UQCα

s+1,b(k, β). (3.11)

Proof. Applying (1.7),(1.8) and Theorem 3.3, we observe that

f(z) ∈ UQCα
s,b(k, β) ⇔ (=αs,bf)(z) ∈ UQC(k, β)

⇔ z(=αs,bf(z))′ ∈ UCC(k, β)

⇔ =αs,b(zf ′(z)) ∈ UCC(k, β)

⇔ zf ′(z) ∈ UCCα
s,b(k, β)

⇒ zf ′(z) ∈ UCCα
s+1,b(k, β)

⇔ =αs,b(zf(z))′ ∈ UCC(k, β)

⇔ z(=αs+1,bf(z))′ ∈ UCC(k, β)

⇔ =αs+1,bf(z) ∈ UQC(k, β)

⇔ f(z) ∈ UQCα
s+1,b(k, β),

the proof is complete .

Now, we examine the closure properties of generalized Libera integral operator
Lc(f)(z). [10] defined by:

Lc(f)(z) =
c+ 1

zc

∫ z

0

tc−1f(t)dt (f ∈ A, c > −1).
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Theorem 3.5. Let c > −k+β
k+1

, and f ∈ A. If

=αs,bf(z) ∈ SP (k, β) so is Lc(=αs,bf(z)).

Proof. From definition of Lc(f)(z) and the linear operator (=αs,bf)(z), we have

z(=αs,bLc(f))′(z) = (c+ 1)=αs,bf(z)− c(z(=αs,bLc(f))(z). (3.12)

Setting
z(=αs,bLcf(z))′

=αs,bLcf)(z)
= p(z),

where p(z) = 1 + p1z + p2z
2 + . . . , is analytic in U and p(z) 6= 0 for all z ∈ U.

From (3.12) we can write

p(z) = (c+ 1)
(=αs,bf(z)

=αs,bLcf)(z)
− c. (3.13)

By logarithmically differentiating both sides of the equation (3.13), we get

z(=αs,bf(z))′

=αs,bf)(z)
=
z(=αs,bLcf(z))′

=αs,bLcf(z)
+

zp′(z)

p(z) + c
,

z(=αs,bf(z))′

(=αs,bf)(z)
= p(z) +

zp′(z)

p(z) + c
.

Therefore, the theorem follows by Lemma 2.1, since <{qk,β(z) + c} > 0.

Which complete the proof of Theorem.

Theorem 3.6. Let c > −k+β
k+1

, and f ∈ A. If

=αs,bf(z) ∈ UC(k, β) so is Lc(=αs,bf).
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Proof. Consider the following

f(z) ∈ UCα
s,b(k, β) ⇔ (=αs,bf)(z) ∈ UC(k, β)

⇔ z(=αs,bf(z))′ ∈ SP (k, β)

⇔ =αs,b(zf ′(z)) ∈ SP (k, β)

⇔ zf ′(z) ∈ SPα
s,b(k, β)

⇒ Lc(zf
′(z)) ∈ SPα

s,b(k, β)

⇔ z(Lcf(z))′ ∈ SPα
s,b(k, β)

⇔ (Lcf)(z) ∈ UCα
s,b(k, β),

the proof is complete .

Theorem 3.7. Let c > −k+β
k+1

, and f ∈ A. If

=αs,bf(z) ∈ UCC(k, β) so is Lc(=αs,bf).

Proof. Let f(z) ∈ UCCα
s,b(k, β). Then, in view of the definition ,we can write

Re

{
z(=αs,bf(z))′

ψ(z)

}
≺ qk,β, (z ∈ U),

for some ψ(z) ∈ SP (k, β). For g such that =αs,bg(z) = ψ(z),

Re(
z(=αs,bf(z))′

=αs,bg(z)
) ≺ qk,β. (3.14)

New we set

z(=αs,bLcf(z))′

=αs+1,bLcg(z)
= p(z), (3.15)

Now from (3.12) we have

z(=αs,bf(z))′

=αs,bg(z)
=

z(=αs,bLc(zf ′)′(z) + c=αs,bLc(zf ′(z)

z=αs,bLcg(z′) + c=αs,bLcg(z)
,

=

z(=αs,bLc(zf
′)′(z))

=αs,bLcg(z)
+

c(=αs,bLc(zf
′(z)))

(=αs,bLcg)(z)
z(=αs,bLc(g))′(z)
(=αs,bLc(g))(z)

− (1− b)
. (3.16)
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Since g(z) ∈ SPα
s,b(k, β),and by theorem 3.5, we have (Lcg)(z) ∈ SPα

s,b(k, β).

Letting
z((=αs,bLcg)(z))′

(=αs,bLcg)(z)
= H(z).

Also, we can defined h by

z((=αs,bLcf)(z))′ = (=αs,bLcg)(z)[h(z)], (3.17)

differentiating both sides of (3.17) with respect to z, we get

z[z(=αs,bLcf(z))′]′

=αs,bLcg(z)
= zh′(z) + h(z)(H(z)). (3.18)

Using (3.16) and (3.18), we obtain

z(=αs,bf(z))′

=αs,bg(z)
=

h(z)H(z) + zh′(z) + ch(z)

H(z) + c

= h(z) +
zh′(z)

H(z) + c
. (3.19)

This in conjunction with (3.14) leads to

h(z) +
1

H(z) + c
zh′(z) ≺ qk,β.

For letting A = 0 and B(z) = 1
H(z)+c

we note that

<{B(z)} > 0 if c > −k+β
k+1

. The above inequality satisfies the conditions

required by Lemma 2.2 . so the proof is complete.

A similar argument yields

Theorem 3.8. Let c > −k+β
k+1

, and f ∈ A. If

=αs,bf(z) ∈ UQC(k, β) so is Lc(=αs,bf).
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