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Abstract
We investigate several families of means, interpolating between the

arithmetic, geometric and harmonic means, and find the one providing
the best convergence of (

1 +
1

n

)Mt(n+1,n)

to Euler’s number.

1. Introduction

The following problem was proposed by Mihaly Bencze in the Octagon mag-
azine [7]:

e <

(
1 +

1

n

)(n)1/3 + (n+ 1)1/3

2


3

. (1)
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Although the solution to the problem has been known for a long time, its
generalization seems interesting.
Let us use standard notation:

G(x, y) =
√
xy, L(x, y) =

x− y
log x− log y

, A(x, y) =
x+ y

2

for the geometric, logarithmic and arithmetic means of positive numbers x, y
respectively. The inequalities

G(x, y) < L(x, y) < A(x, y) (2)

hold for all x 6= y (see [3] and references therein).
The logarithmic mean is linked with the Euler number by a simple and elegant
formula

e =

(
1 +

1

n

)L(n+1,n)

. (3)

This, together with the basic property of means - lying in between - leads to
the sequence of inequailities(

1 +
1

n

)n
<

(
1 +

1

n

)G(n+1,n)

< e <

(
1 +

1

n

)A(n+1,n)

<

(
1 +

1

n

)n+1

.

The following question arises: Suppose we have a continuous interpolation
between the geometric and arithmetic means, i.e. a family of means

Mt(x, y), 0 ≤ t ≤ 1, M0(x, y) = G(x, y) and M1(x, y) = A(x, y)

that is monotone in t. For which value of t the sequence(
1 +

1

n

)Mt(n+1,n)

assures the fastest convergence to e?
The aim of this paper is to answer this question for some known families of
means.

Considering (3), our task reduces to finding t such that Mt(n + 1, n) is
closest to L(n+ 1, n). Since all means we consider are homogeneous in x, y, it
is enough to investigate the behaviour of L(x, 1)−Mt(x, 1) for x ≈ 1, or that
of L(es, 1)−Mt(e

s, 1) in a neighborhood of 0.
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2. Generalized Heronian Means

Probably the most natural interpolation between A and G is their convex
combination ([6]) given by

Hep(x, y) = (1− p)G(x, y) + pA(x, y), 0 ≤ p ≤ 1,

named after Hero of Alexandria, who used He2/3 =
x+
√
xy+y

3
to calculate the

volume of a frustum of a piramid. The global inequality L < He1/3 was
obtained first by Carlsson ([3]) and then by Janous ([6]). In particular, the
inequality

L(n+ 1, n) < Hep(n+ 1, n) (4)

holds for all p ≥ 1/3.

Theorem 1. If p ≥ 1/3, then (4) holds for all natural n. If 0 < p < 1/3, then
there exists N = N(p) such that reversed (4) is valid for n > N .

Proof.

Hep(e
2t, 1)− L(e2t, 1) = (1− p)et +

e2t + 1

2
− e2t − 1

2t
(5)

= et
(

1− p+ p cosh t− sinh t

t

)
= et

∞∑
n=1

(
p− 1

2n+ 1

)
t2n

(2n)!
. (6)

Clearly, for p ≥ 1/3 all the coefficients are positive and so is the left-hand side,
which proofs (4), while for 0 < p < 1/3 the difference is negative for small
t and tends to infinity as t grows. Note that we obtain (4) or its reverse by

setting t = log
√

n+1
n

.

3. Hölder Means

The Hölder mean [8], also known as power mean [4, 8] or generalized mean
[2, 8], of order p is given as

Mp(x, y) =



max(x, y) p =∞,(
xp + yp

2

)1/p

p 6= 0,

G(x, y) p = 0,

min(x, y) p = −∞.

(7)
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With this definition and taking (3) into account, the original problem (1) can
be rewritten as:
Show that if p = 1/3, then for all natural n

L(n+ 1, n) ≤Mp(n+ 1, n). (8)

We shall prove the following:

Theorem 2. If p ≥ 1/3, then (8) holds for all natural n. If p ≤ 0, then for all
natural n reverse inequality holds. If 0 < p < 1/3, then there exists N = N(p)
such that reversed (8) is valid for n > N .

Proof. The second part follows from inequality M0 = G < L.
Tung-Po Lin proved in [5] that the inequality

L(x, y) < M1/3(x, y)

holds for all x 6= y, which combined with monotonicity of power means com-
pletes the first part of the proof. For 0 < p < 1/3, L and Mp are not com-
parable, but in a neighborhood of x = 1 they behave nicely. Consider the
function

fp(x) =
p lnx

2p
+

(1− xp)
(1 + x)p

.

By simple computation, we see that fp(1) = f ′p(1) = f ′′p (1) = 0 and f ′′′p (1) =

− p2

2p+2 (p− 3) , hence for 0 < p < 1/3, there is a δ > 1 such that f1/p(x) < 0 if
x ∈ (1, δ). Therefore, for sufficiently large n

f1/p

((
1 +

1

n

)p)
< 0,

which is equivalent to L(n+ 1, n) > Mp(n+ 1, n).

4. Heinz Means

Heinz means are defined by

Hα(x, y) =
x

1+α
2 y

1−α
2 + x

1−α
2 y

1+α
2

2
, 0 ≤ α ≤ 1. (9)
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We have H0 = G and H1 = A, and they increase with α. As above, we are
asking if the inequality (

1 +
1

n

)Hα(n+1,n)

< e (10)

or its reverse holds.
Comparison between Heinz means and the logarithmic mean was investigated
by Pittenger in [1]. The proof below differs from the original one only in
details.

Theorem 3. If α ≤
√
3
3
, then (10) holds for all n. If

√
3
3
< α < 1, then there

exists N = N(α) such that reversed (10) holds for n > N .

Proof. We shall show a stronger fact, that for α ≤
√
3
3

the logarithmic mean
is always greater than the Heinz mean. As in case of Heronian means, we let
y = 1 and x = e2t. We have

L(e2t, 1)−Hα(e2t, 1) =
e2t − 1

2t
− et(1+α) + et(1−α)

2
(11)

= et
[

sinh t

t
− coshαt

]
= et

∞∑
n=0

an(α)
t2n

(2n)!

where

an(α) =
1

2n+ 1
− α2n. (12)

For α ≤
√

3/3 we have a0(α) = 0, a1(α) ≥ a1(
√

3/3) = 0 and an(α) > 0
for n ≥ 2, which yields L > Hα. To prove the second part, note that for
α >
√

3/3, a0 = 0 and a1(α) < 0, which means that the left-hand side of (11)

is negative in a neighborhood of 0. For n large enough, log
√

n+1
n

falls into

this neighborhood, and (11) becomes equivalent to reversed (10).

5. Geometric Interpolation

In section 2 we apply linear interpolation between A and G. In this section
we deal with the family

Gα(x, y) = G1−α(x, y)Aα(x, y) 0 ≤ α ≤ 1.
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Theorem 4. If α ≤ 1/3, then Gα(x, y) < L(x, y) for all x 6= y. If α > 1/3,
then there exists N = N(α) such that Gα(n+ 1, n) > L(n+ 1, n) for n > N .

Proof. As above, setting y = 1, x = e2t reduces out task to comparison
between two functions: gα(t) = coshα t and l(t) = t−1 sinh t. We have

lim
t→0+

l(t)/gα(t) = 1 and lim
t→∞

l(t)/gα(t) =∞. (13)

Consider the function hα(t) = sinh t
coshα t

. Its second derivative equals

h′′α(t) = (1− α)2 sinh t cosh−2−α t

[
cosh2 t− 1− 3α− 1

(1− α)2

]
and we see that hα is convex for α ≤ 1/3, hence its divided difference t−1hα(t) =
l(t)/gα(t) increases, which, together with (13), completes the first part of our
proof.
In case α > 1/3, hα is concave in some interval (0, δ) and its divided differ-
ence decreases, so we have l(t) < gα(t) which yields the second part.

6. Geometric Version of Heinz Means

To define the Heinz means we take the arithmetic mean and let the arguments
vary between x, y and their geometric mean. Here we do a similar construction
reversing the roles of the means:

Kp(x, y) = G

(
x+ y

2
+ (1− p)x− y

2
,
x+ y

2
− (1− p)x− y

2

)
, 0 ≤ p ≤ 1.

Theorem 5. For p ≥ 1 −
√

2/3, the inequality Kp(x, y) > L(x, y) holds

for all x 6= y. If p < 1 −
√

2/3, then there exists N = N(p) such that
Kp(n+ 1, n) < L(n+ 1, n) is valid for n > N .

The proof is basically the same as in case of Heronian means and we leave
it to the reader.

It is interesting to see if looking for optimal inequalities really makes sense,
i.e. wheter the approximations are significantly better that the ones given by
the geometric and arithmetic means. To learn that good approximation really
makes the difference, consider Table 1, which shows the values of

log10

∣∣∣∣∣
(

1 +
1

n

)Mp(n+1,n)

− e

∣∣∣∣∣
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or, in other words, the number of exact decimal digits of the Euler’s number.

n A G He1/3 M1/3 H√3
3

G1/3 K 1
3+
√
6

101 -2.68 -2.98 -7.46 -7.11 -6.51 -7.29 -2.70
102 -4.65 -4.95 -11.39 -11.04 -10.43 -11.22 -4.67
103 -6.65 -6.95 -15.39 -15.03 -14.43 -15.21 -6.67
104 -8.65 -8.95 -19.39 -19.04 -18.44 -19.22 -8.67
105 -10.65 -10.95 -23.40 -23.04 -22.44 -23.22 -10.67
106 -12.65 -12.95 -27.40 -27.05 -26.45 -27.23 -12.67
107 -14.66 -14.96 -31.40 -31.05 -30.45 -31.23 -14.68
108 -16.66 -16.96 -35.41 -35.06 -34.46 -35.23 -16.68
109 -18.66 -18.96 -39.41 -39.06 -38.46 -39.24 -18.68
1010 -20.66 -20.96 -43.42 -43.06 -42.46 -43.24 -20.68
1011 -22.66 -22.96 -47.43 -47.07 -46.47 -47.25 -22.69
1012 -24.66 -24.97 -51.43 -51.07 -50.47 -51.25 -24.69
1013 -26.67 -26.97 -55.43 -55.08 -54.48 -55.26 -26.69
1014 -28.67 -28.97 -59.44 -59.09 -58.48 -59.26 -28.69
1015 -30.67 -30.97 -63.44 -63.09 -62.49 -63.26 -30.70
1016 -32.67 -32.98 -67.45 -67.10 -66.49 -67.27 -32.70
1017 -34.68 -34.98 -71.45 -71.10 -70.50 -71.27 -34.70
1018 -36.68 -36.98 -75.46 -75.10 -74.50 -75.28 -36.70
1019 -38.68 -38.98 -79.46 -79.11 -78.50 -79.28 -38.70

Table 1: log10

∣∣∣(1 + 1
n

)Mp(n+1,n) − e
∣∣∣

7. Record Breaker

We finish this discussion with a mean found trough some numerical experi-
ments by the first author.

Theorem 6. Let

R(x, y) =
14A(x, y)−H(x, y) + 32G(x, y)

45
.

The inequality L(x, y) < R(x, y) holds for every x 6= y .
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Proof.

R(et, 1)− L(et, 1) =
1

et + 1

∞∑
k=1

ak
tk

(2k)!
,

where ak = 32
(

3k+1
2k

)
+ 12 +

(
7− 90

k+1

)
2k. One can easily calculate that a1 =

. . . = a5 = 0, a6, . . . , a12 > 0. For k > 12 all ak’s are obviously positive, thus
the proof is complete. Table 2 shows why we call it a record breaker:

n R n R n R
101 -10.18 107 -46.09 1013 -82.13
102 -16.07 108 -52.10 1014 -88.14
103 -22.06 109 -58.10 1015 -94.14
104 -28.07 1010 -64.11 1016 -100.15
105 -34.08 1011 -70.12 1017 -106.16
106 -40.08 1012 -76.13 1018 -112.16

Table 2: log10

∣∣∣(1 + 1
n

)R(n+1,n) − e
∣∣∣
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