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Abstract

In the present paper, we study the polynomial approximation of
entire functions of two complex variables over Jordan domains by using
Faber polynomials. The coefficient characterizations of order and type
of entire functions have been obtained in terms of the approximation
errors.
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1. Introduction

Let Γ1 and Γ2 be given Jordan curves in the complex plane C and Dj, Ej, j =
1,2., be the interior and exterior respectively, of Γj. Let ϕj map Ej conformally
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onto {wj : |wj| > 1} such that ϕj(∞) = ∞ and ϕ
′
j(∞) > 0. Then by [4], for

sufficiently large |zj|, ϕj(zj) can be expressed as

w1 = ϕ1(z1) =
z1

d1

+ c0 +
c1

z1

+
c2

z2
1

+ ... (1.1)

w2 = ϕ2(z2) =
z2

d2

+ c
′

0 +
c
′
1

z2

+
c
′
2

z2
2

+ .... (1.2)

where d1andd2 > 0. Let us put D = D1×D2 and E = E1×E2 in C2 and let the
function ϕ map E conformally onto the unit bidisc U = {|w1| > 1, |w2| > 1}
such that ϕ(z1, z2) = ϕ1(z1) ϕ2(z2) satisfies the conditions ϕ(∞,∞) =∞ and
ϕ
′
(∞,∞) > 0. Then for sufficiently large values of |z1|and |z2|, ϕ(z1, z2) can

be expressed as

w1w2 = ϕ(z1, z2) =
z1

d1

z2

d2

+
∞∑

m,n=0

cm,n
zm1 z

n
2

. (1.3)

An arbitrary Jordan curve can be approximated from the inside as well
as from the outside by analytic Jordan curves. Since Γ is analytic, ϕ is holo-
morphic on Γ as well. The (m,n) th Faber polynomial Fm,n(z1, z2) of Γ is the
principal part of (ϕ(z1, z2))m+n at (∞,∞), so that

Fm,n(z1, z2) =

(
z1

d1

)m(
z2

d2

)n
+ ....

Following Faber [3] for the one variable case, we can easily see that as
m,n→∞,

Fm,n(z1, z2)∼(ϕ1(z1))m(ϕ2(z2))n (1.4)

uniformly for z1 ∈ E1, z2 ∈ E2 and

lim
m,n→∞

(
max
z1,z2∈Γ

|Fm,n(z1, z2)|
)1/(m+n)

= 1. (1.5)

A function f holomorphic in D can be represented by its Faber series

f(z1, z2) =
∞∑
m=0

∞∑
n=0

am,nFm,n(z1, z2) (1.6)

where
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am,n =
1

(2πi)2

∫
|w1|=r1

∫
|w2|=r2

f(ϕ−1
1 (w1), ϕ−1

2 (w2))w
−(m+1)
1 w

−(n+1)
2 dw1dw2

and 0 < r1, r2 < 1 are sufficiently close to 1 so that for j = 1, 2., ϕ−1
j are

holomorphic and univalent in |wj| ≥ rj respectively, the series converging
uniformly on compact subsets of D. Let M(r1, r2) = max

|zj |=rj
|f(z1, z2)|, j =

1, 2 be the maximum modulus of f(z1, z2). The growth of an entire function
f(z1, z2) is measured in terms of its order ρ and type τ(see [1]) defined as under

lim sup
r1,r2→∞

ln lnM(r1, r2)

ln(r1r2)
= ρ, (1.7)

lim sup
r1,r2→∞

lnM(r1, r2)

rρ1 + rρ2
= τ, (1.8)

for 0 < ρ <∞.
Let Lp(D) denote the set of functions f holomorphic in D and such that

‖f‖Lp(D) =

(
1

A

∫ ∫
D

|f(z1, z2)|pdx1dy1dx2dy2

)1/p

<∞

where A is the area of D. For f ∈ Lp(D), set

Ep
m,n = Ep

m,n(f ;D) = min
πm,n
‖f − πm,n‖Lp(D)

where πm,n is an arbitrary polynomial of degree at most m+ n.
Giroux [4] obtained the coefficient characterizations of order and type of

entire function extensions of one complex variable of analytic functions over
Jordan domains. He also obtained necessary and sufficient conditions in terms
of approximation errors by using Faber polynomials for an entire function of
one complex variable to be of required growth. To the best of our knowl-
edge, coefficient characterization for order and type of entire functions of two
complex variables over Jordan domain have not been obtained so far.

In this paper, we have made an attempt to bridge this gap. First we obtain
coefficient characterization for order and type of entire functions of two com-
plex variables over Jordan domains. Next we obtain necessary and sufficient
conditions of order and type of entire functions of two complex variables in
terms of approximation errors.
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2. Order and Type

In this section we obtain the growth characterizations in terms of the coeffi-
cients {am,n} of the Faber series (1.6). We first prove

Theorem 1. The function f is the restriction to domain D of an entire func-
tion of finite order ρ if and only if

µ = lim sup
m,n→∞

lnmmnn

− ln |am,n|
. (2.1)

is finite and then the order ρ of f is equal to µ.

Proof. Let f(z1, z2) =
∑∞

m,n=0 am,nFm,n(z1, z2) be an entire function of two
complex variables in z1 and z2, where

am,n =
1

(2πi)2

∫
|w1|=r1

∫
|w2|=r2

f(ϕ−1
1 (w1), ϕ−1

2 (w2))w
−(m+1)
1 w

−(n+1)
2 dw1dw2

with arbitrarily large r1, r2. Then

|am,n| =

∣∣∣∣∣ 1

(2πi)2

∫
|w1|=r1

∫
|w2|=r2

f(ϕ−1
1 (w1), ϕ−1

2 (w2))w
−(m+1)
1 w

−(n+1)
2 dw1dw2

∣∣∣∣∣ .
Since from (1.1) and (1.2), we have

ϕ1(z1) = w1 ⇒ ϕ−1
1 (w1) = z1

ϕ2(z2) = w2 ⇒ ϕ−1
2 (w2) = z2.

Hence

|am,n| ≤M(r1, r2) r−m1 r−n2 (2.2)

where M(r1, r2) = max|zt|≤rt |f(z1, z2)|, t = 1, 2.
Now first we show that ρ ≥ µ and we assume that µ > 0.Let ε > 0be

chosen such that ε < µ <∞. Then from (2.1), we have

−(µ− ε) ln |am,n| ≤ ln(mmnn)
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⇒ ln |am,n| ≥ −
1

(µ− ε)
(m lnm+ n lnn)

for an infinite sequence of values of m and n. From (2.2), we have

lnM(r1, r2) ≥ ln |am,n|+ ln(rm1 r
n
2 )

≥ − 1

(µ− ε)
(m lnm+ n lnn) +m ln r1 + n ln r2

= m

(
ln r1 −

1

(µ− ε)
lnm

)
+ n

(
ln r2 −

1

(µ− ε)
lnn

)
.

Choosing

r1 = (em)
1

(µ−ε) , r2 = (en)
1

(µ−ε) .

in the above inequality, we have

lnM(r1, r2) ≥ m

(µ− ε)
+

n

(µ− ε)
=
rµ−ε1 + rµ−ε2

e(µ− ε)
.

Since µ− ε is independent of r1 and r2, therefore

ρ = lim sup
r1,r2→∞

ln lnM(r1, r2)

ln(r1r2)
≥ µ− ε.

and since ε is arbitrary, therefore we have

ρ ≥ µ. (2.3)

Conversely, let

lim sup
m,n→∞

ln(mmnn)

− ln |am,n|
= σ.

Suppose σ < ∞. Then for every ε > 0, ∃ X(ε), Y (ε) such that for all
m ≥ X and n ≥ Y , we have

|am,n| ≤ K m−
m
σ+ε n−

n
σ+ε .
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Since f(z1, z2) =
∑∞

m,n=0 am,n Fm,n(z1, z2), therefore

|f(z1, z2)| ≤ K

∞∑
m,n=0

m−
m
σ+ε n−

n
σ+ε |Fm,n(z1, z2)|.

By using (1.5), for all z1 ∈ E1 and z2 ∈ E2, we have

|Fm,n(z1, z2)| ≤ K (|ϕ1(z1)|)m(|ϕ2(z2)|)n

and by using (1.1) and (1.2), for all sufficiently large |z1| and |z2|, we have

|ϕ1(z1)| ≤ |z1|
d1 − ε

, and |ϕ2(z2)| ≤ |z2|
d2 − ε

.

By applying these inequalities, for all sufficiently large |z1| and |z2|, we
have

|f(z1, z2)| ≤ K
∞∑

m,n=0

m−
m
σ+ε n−

n
σ+ε

(
|z1|
d1 − ε

)m (
|z2|
d2 − ε

)n
.

Hence

M(r1, r2) ≤
M∑
m=0

N∑
n=0

m−
m
σ+ε n−

n
σ+ε

(
r1

d1 − ε

)m (
r2

d2 − ε

)n

+
∞∑

m=M+1

∞∑
n=N+1

m−
m
σ+ε n−

n
σ+ε

(
r1

d1 − ε

)m (
r2

d2 − ε

)n

+
M∑
m=0

∞∑
n=N+1

m−
m
σ+ε n−

n
σ+ε

(
r1

d1 − ε

)m (
r2

d2 − ε

)n

+
∞∑

m=M+1

N∑
n=0

m−
m
σ+ε n−

n
σ+ε

(
r1

d1 − ε

)m (
r2

d2 − ε

)n
.

We now proceed as in proof of Theorem IV of Bose and Sharma [1, pp.
221-223] and obtain

M(r1, r2) ≤ 0

{
e

(
4r1r2

(d1−ε)(d1−ε)

)σ+2ε
}
.
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Proceeding to limits and since ε is arbitrary and independent of r1and r2,
we have

lim sup
r1,r2→∞

ln lnM(r1, r2)

ln(r1r2)
≤ σ. (2.4)

From (2.3) and (2.4), we obtain the required result (2.1).This completes the
proof of Theorem 1.

Next we prove

Theorem 2. Let α = lim supm,n→∞

{
mmnn

(
|am,n|
dm1 d

n
2

)ρ} 1
m+n

. If 0 < α < ∞,

the function f is the restriction to domain D of an entire function of finite
order ρ and type τ if and only if

α = eτρ. (2.5)

Proof. Since f is an entire function of finite order ρ and type τ , therefore

|f(ϕ−1
1 (w1), ϕ−1

2 (w2))| ≤ e(τ+ε)((d1+ε)|w1|)ρ+((d2+ε)|w2|)ρ ,

and from Cauchy’s inequality, we have

|am,n| ≤ r−m1 r−n2 e(τ+ε)((d1+ε)|w1|)ρ+((d2+ε)|w2|)ρ

≤ r−m1 r−n2 e(τ+ε)((d1+ε)r1)ρe(τ+ε)((d2+ε)r2)ρ

for all r1, r2 sufficiently large. To minimize the right hand side of this inequal-
ity, we select

r1 = 1
d1+ε

[
m

ρ(τ+ε)

]1/ρ

, and r2 = 1
d2+ε

[
n

ρ(τ+ε)

]1/ρ

.

Substitute r1, r2 in the above inequality, we have

|am,n| ≤
(d1 + ε)m (d2 + ε)n [eρ(τ + ε)](m+n)/ρ

(mmnn)1/ρ

or,
{
mmnn

(
|am,n|

(d1+ε)m(d2+ε)n

)ρ}1/(m+n)

≤ eρ(τ + ε).



356 G. S. Srivastava and Ramesh Ganti

Proceeding to limits, since ε is arbitrary, we obtain

lim sup
m,n→∞

{
mmnn

(
|am,n|
dm1 dn2

)ρ}1/(m+n)

≤ eρτ. (2.6)

Conversely, let

lim sup
m,n→∞

1

eρ

{
mmnn

(
|am,n|
dm1 dn2

)ρ}1/(m+n)

= σ.

Suppose σ < ∞. Then for given ε > 0, ∃ M(ε), N(ε) such that for all
m ≥M and n ≥ N , we have

|am,n| ≤ K m−m/ρ n−n/ρ dm1 d
n
2 [eρ(σ + ε)](m+n)/ρ.

Since f(z1, z2) =
∑∞

m,n=0 am,n Fm,n(z1, z2), therefore

|f(z1, z2)| ≤ K
∞∑

m,n=0

m−m/ρ n−n/ρ dm1 dn2 [eρ(σ + ε)](m+n)/ρ |Fm,n(z1, z2)|.

From (1.5), by using the estimate of Fm,n(z1, z2) in the above inequality,
we have

|f(z1, z2)|

≤ K
∞∑

m,n=0

m−m/ρ n−n/ρ dm1 dn2 [eρ(σ + ε)](m+n)/ρ

(
|z1|
d1 − ε

)m (
|z2|
d2 − ε

)n
≤ K

∞∑
m,n=0

m−m/ρ n−n/ρ [eρ(σ + ε)](m+n)/ρ

(
d1|z1|
d1 − ε

)m (
d2|z2|
d2 − ε

)n
≤ K

∞∑
m,n=0

m−m/ρ n−n/ρ [eρ(σ + ε)](m+n)/ρ rm1 rn2 .

To estimate the right hand side of the above inequality, we proceeded on the
similar lines of proof of Theorem V of Bose and Sharma [1, p 224], and we
obtain

|f(z1, z2)| ≤ 0{e(σ+ε)(rρ1+rρ2)}.
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Hence

M(r1, r2) ≤ 0{e(σ+ε)(rρ1+rρ2)}.

⇒ lnM(r1, r2)

rρ1 + rρ2
≤ σ + ε.

On proceeding to limits, we obtain

lim sup
m,n→∞

lnM(r1, r2)

rρ1 + rρ2
≤ σ. (2.7)

From (2.6) and (2.7), we get the required result. This completes the proof
of Theorem 2.

3. Lp - Approximation

In this section we consider the approximations of an entire function over the
domain D. Consider the polynomials

pm,n(z1, z2) = λm,nz
m
1 z

n
2 + ...(λm,n > 0)

defined through the relation

1

A

∫ ∫
D

pm,n(z1, z2) pk,l(z1, z2) dx1dy1dx2dy2 = δm,n,k,l.

By applying Carleman’s result [2] independently on z1 and z2, we have

pm,n(z1, z2) ∼
(

(m+ 1)(n+ 1)A1A2

π2

)1/2

ϕ
′

1(z1)(ϕ1(z1))m ϕ
′

2(z2)(ϕ2(z2))n

(3.1)
as m,n → ∞, uniformly for z1 ∈ E1 and z2 ∈ E2. Any function f ∈ L2(D)
can be expanded in terms of these polynomials as

f(z1, z2) =
∞∑
m=0

∞∑
n=0

bm,n pm,n(z1, z2) (3.2)

where
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bm,n =
1

A

∫ ∫
D

f(z1, z2) pm,n(z1, z2) dx1dy1dx2dy2

and the series is uniformly convergent on compact subsets of D.
Applying Parseval’s relation of one variable independently on m and n, we

have

E2
m,n =

(
∞∑

k=m+1

∞∑
l=n+1

|bk,l|2
)1/2

. (3.3)

Before going to main results here we state and prove two lemmas which
are more useful in the proof of main theorems. We now prove

Lemma 1.

lim sup
m,n→∞

ln(mmnn)

− ln |bm,n|
= lim sup

m,n→∞

ln(mmnn)

− ln(E2
m,n)

. (3.4)

Proof. From (3.3), we have

|bm+1,n+1| ≤ E2
m,n,

⇒ − ln |bm+1,n+1| ≥ − ln(E2
m,n).

Proceeding to limits, we have

lim sup
m,n→∞

ln(mmnn)

− ln(E2
m,n)

≤ lim sup
m,n→∞

ln(mmnn)

− ln |bm,n|
. (3.5)

Conversely, let

lim sup
m,n→∞

ln(mmnn)

− ln |bm,n|
= σ.

Suppose σ < ∞. Then for each ε > 0, ∃ M,N such that for all m ≥ M,
and n ≥ N , we have

|bm,n| ≤ K m−
m
σ+ε n−

n
σ+ε

so that
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(E2
m,n)2

≤ K
∞∑

k=m+1

∞∑
l=n+1

k−
2k
σ+ε l−

2l
σ+ε ≤ K

∞∑
k=m+1

∞∑
l=n+1

(m+ 1)−
2k
σ+ε (n+ 1)−

2l
σ+ε

≤ K(m+ 1)−
2(m+1)
σ+ε (n+ 1)−

2(n+1)
σ+ε

[
1− 1

(m+ 1)2/(σ+ε)

]−1 [
1− 1

(n+ 1)2/(σ+ε)

]−1

≤ O(1)K(m+ 1)−
2(m+1)
σ+ε (n+ 1)−

2(n+1)
σ+ε .

Therefore

E2
m,n ≤ (m+ 1)−

(m+1)
σ+ε (n+ 1)−

(n+1)
σ+ε

⇒ − ln(E2
m,n) ≥ 1

σ + ε
ln((m+ 1)m+1) ((n+ 1)n+1).

Proceeding to limits and since ε is arbitrary, therefore we have

σ = lim sup
m,n→∞

ln(mmnn)

− ln |bm,n|
≥ lim sup

m,n→∞

ln(mmnn)

− ln(E2
m,n)

. (3.6)

From (3.5) and (3.6), we obtain the required result. This completes the
proof of Lemma 1.

Next we prove

Lemma 2. For any ρ > 0,

lim sup
m,n→∞

1

eρ

{
mmnn

(
|bm,n|
dm1 d

n
2

)ρ}1/(m+n)

= lim sup
m,n→∞

1

eρ

{
mmnn

(
E2
m,n

dm1 d
n
2

)ρ}1/(m+n)

.

(3.7)

Proof. From (3.3), we have

(|bm+1,n+1|)ρ ≤ (E2
m,n)ρ.

Since d1, d2 > 0, therefore for all m,n > 0, we have
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(
|bm+1,n+1|
dm1 d

n
2

)ρ
≤
(
E2
m,n

dm1 d
n
2

)ρ

⇒
{
mmnn

(
|bm,n|
dm1 d

n
2

)ρ}1/(m+n)

≤

{
mmnn

(
E2
m,n

dm1 d
n
2

)ρ}1/(m+n)

or 1
eρ

{
mmnn

(
|bm,n|
dm1 d

n
2

)ρ}1/(m+n)

≤ 1
eρ

{
mmnn

(
E2
m,n

dm1 d
n
2

)ρ}1/(m+n)

.

Proceeding to limits, we have

lim sup
m,n→∞

1

eρ

{
mmnn

(
|bm,n|
dm1 d

n
2

)ρ}1/(m+n)

≤ lim sup
m,n→∞

1

eρ

{
mmnn

(
E2
m,n)

dm1 d
n
2

)ρ}1/(m+n)

.

(3.8)

Conversely, let

lim sup
m,n→∞

1

eρ

{
mmnn

(
|bm,n|
dm1 d

n
2

)ρ}1/(m+n)

= σ.

Suppose σ < ∞. Then for each ε > 0, ∃ M(ε), N(ε) such that for all
m ≥M and n ≥ N , we have

|bm,n| ≤
{

(eρ(σ + ε))m+n m−mn−n
}1/ρ

dm1 d
n
2

so that

(E2
m,n)2 ≤ K

∞∑
k=m+1

∞∑
l=n+1

{
(eρ(σ + ε))k+l k−kl−l

}2/ρ

d2k
1 d

2l
2

≤ K
{

(eρ(σ + ε))(m+1)+(n+1) (s+ 1)−(s+1)
}2/ρ

d
2(m+1)
1 d

2(n+1)
2

≤ O(1)K
{

(eρ(σ + ε))(m+1)+(n+1) (s+ 1)−(s+1)
}2/ρ

d
2(m+1)
1 d

2(n+1)
2

for m > 4dρ1 e ρ (σ + ε) and n > 4dρ2 e ρ (σ + ε),
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where (s+1)−(s+1) = (m+1)−(m+1)(n+1)−(n+1), X1 =

[
1−

(
(eρ(σ+ε))2dρ1
(m+1)(m+1)

)2/ρ
]−1

,

and X2 =

[
1−

(
(eρ(σ+ε))2dρ2
(n+1)(n+1)

)2/ρ
]−1

. Therefore

E2
m,n ≤ O(1)K

{
(eρ(σ + ε))(m+1)+(n+1) (s+ 1)−(s+1)

}1/ρ

d
(m+1)
1 d

(n+1)
2 .

Proceeding to limits, we have

σ = lim sup
m,n→∞

1

eρ

{
mmnn

(
|bm,n|
dm1 d

n
2

)ρ}1/(m+n)

≥ lim sup
m,n→∞

1

eρ

{
mmnn

(
E2
m,n

dm1 d
n
2

)ρ}1/(m+n)

.

(3.9)

From (3.8) and (3.9), we get the required result. This completes the proof
of Lemma 2.

4. Main Results

Now we prove

Theorem 3. Let 2 ≤ p ≤ ∞. Then f is restriction to the domain D of
an entire function of finite order ρ if and only if

lim sup
m,n→∞

ln(mmnn)

− ln(Ep
m,n)

= ρ. (4.1)

Proof. We prove the result in two steps. First we consider the case p = 2. Let
us assume that f is an entire function having finite order ρ. Then by Theorem
1, we have

|am,n| ≤ K m−
m
ρ+ε n−

n
ρ+ε .

Now, by considering the property of orthonormality of polynomials pm,n(z1, z2),
we have

bm,n =
∞∑

k=m+1

∞∑
l=n+1

ak,l
1

A

∫ ∫
D

Fk,l(z1, z2)pm,n(z1, z2) dx1dy1dx2dy2.



362 G. S. Srivastava and Ramesh Ganti

Hence

|bm,n| ≤
∞∑

k=m+1

∞∑
l=n+1

|ak,l| max
z1,z2∈Γ

|Fk,l(z1, z2)|.

Since, by (1.5), we have

max
z1,z2∈Γ

|Fk,l(z1, z2)| ≤ K(1 + ε)(k+l),

on substituting all these values the above inequality becomes,

|bm,n| ≤ K

∞∑
k=m+1

∞∑
l=n+1

k−
k
ρ+ε l−

l
ρ+ε (1 + ε)(k+l)

≤ Km−
m
ρ+ε n−

n
ρ+ε (1 + ε)(m+n)

for all sufficiently large m and n. Therefore, we have

− ln |bm,n| ≥
1

(ρ+ ε)
ln(mmnn).

Proceeding to limits and since ε is arbitrary, we obtain

lim sup
m,n→∞

ln(mmnn)

− ln |bm,n|
≤ ρ. (4.2)

Conversely, let

lim sup
m,n→∞

ln(mmnn)

− ln |bm,n|
= σ.

Suppose σ <∞. Then for each ε > 0, ∃ L(ε), Z(ε) such that for all m > L
and n > Z, we have

|bm,n| ≤ K m−
m
σ+ε n−

n
σ+ε .

From (3.1), we have

|pm,n(z1, z2)| ≤ K (m+ 1)1/2(n+ 1)1/2|ϕ′1(z1)||ϕ1(z1)|m|ϕ′2(z2)||ϕ2(z2)|n

and for all z1 ∈ E1 and z2 ∈ E2, we have
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|ϕ′1(z1)| ≤ K
′
, |ϕ′2(z2)| ≤ K”

where K
′
, K” are fixed positive constants, and

|ϕ1(z1)| ≤ |z1|
d1 − ε

, |ϕ2(z2)| ≤ |z2|
d2 − ε

for all z1, z2 with sufficiently large modulus. Hence

|f(z1, z2)| ≤ K
∞∑
m=0

∞∑
n=0

m−
m
σ+εn−

n
σ+ε (m+1)1/2(n+1)1/2

(
|z1|
d1 − ε

)m( |z2|
d2 − ε

)n

≤ K
∞∑
m=0

∞∑
n=0

m−
m

σ+2εn−
n

σ+2ε

(
|z1|
d1 − ε

)m( |z2|
d2 − ε

)n
.

To estimate the right hand side of above inequality, following the method
used in Theorem 1, we have

M(r1, r2) <
∑

1

+
∑

2

+
∑

3

+
∑

4

+0{e(
2r2
d2−ε

)σ+2ε

}+ 0{e(
2r1
d1−ε

)σ+2ε

}

≤ 0

{
e

(
2r1
d1−ε

)σ+2ε
+
(

2r2
d2−ε

)σ+2ε
}
≤ 0

{
e

(
4r1r2

(d1−ε)(d1−ε)

)σ+2ε
}
.

Now by applying limits, we obtain

ρ = lim sup
r1,r2→∞

ln lnM(r1, r2)

ln(r1r2)
≤ σ. (4.3)

From (4.2) and (4.3), we have

lim sup
m,n→∞

ln(mmnn)

− ln |bm,n|
= ρ.

By applying Lemma 1, we have

lim sup
m,n→∞

ln(mmnn)

− ln(E2
m,n)

= ρ. (4.4)

Now we consider the case for p > 2. Since
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E2
m,n ≤ Ep

m,n ≤ E∞m,n for2 ≤ p ≤ ∞, (4.5)

it is sufficient to consider the case p = ∞. Suppose f is an entire function of
order ρ. Then

E∞m,n ≤ max
z1,z2∈Γ

∣∣∣∣∣f(z1, z2)−
m∑
k=0

n∑
l=0

ak,l Fk,l(z1, z2)

∣∣∣∣∣
≤

m∑
k=0

∞∑
l=n+1

|ak,l| max
z1,z2∈Γ

|Fk,l(z1, z2)|+
∞∑

k=m+1

n∑
l=0

|ak,l| max
z1,z2∈Γ

|Fk,l(z1, z2)|

+
∞∑

k=m+1

∞∑
l=n+1

|ak,l| max
z1,z2∈Γ

|Fk,l(z1, z2)| . (4.6)

The first two summations in the above inequality (4.6) are bounded. It is
sufficient to estimate the last summation. Since f is an entire function of finite
order ρ, therefore by Theorem 1, we have
|am,n| ≤ K m−

m
ρ+εn−

n
ρ+ε and max

z1,z2∈Γ
|Fk,l(z1, z2)| ≤ (1 + ε)k+l.

Therefore the above inequality (4.6) becomes,

E∞m,n ≤
∞∑

k=m+1

∞∑
l=n+1

k−
k
ρ+ε l−

l
ρ+ε (1 + ε)k+l

≤ K
∞∑

k=m+1

∞∑
l=n+1

(
(1 + ε)ρ+ε

m+ 1

)k/(ρ+ε) (
(1 + ε)ρ+ε

n+ 1

)l/(ρ+ε)

≤ K

(
(1 + ε)ρ+ε

m

)m/(ρ+ε) (
(1 + ε)ρ+ε

n

)n/(ρ+ε)

⇒ ln(mmnn)

− ln(E∞m,n)
≤ ln(mmnn)

[1/(ρ+ ε)] ln(mmnn)− lnK − (m+ n) ln(1 + ε)
.

Proceeding to limits and since ε is arbitrary, we have

lim sup
m,n→∞

ln(mmnn)

− ln(E∞m,n)
≤ ρ.
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In view of inequalities(4.5) and the fact that (4.1) holds for p = 2, this
last inequality actually is an equality. Finally assuming (4.1) with p =∞, we
deduce from (4.5), that (4.1) will hold for p = 2 and hence that f is of order
ρ. This completes the proof of Theorem 3.

Theorem 4. Let 2 ≤ p ≤ ∞ . Then f is restriction to the domain D of an
entire function having finite order ρ of type τ if and only if

lim sup
m,n→∞

{
mmnn

(
Ep
m,n

dm1 d
n
2

)ρ} 1
m+n

= eρτ. (4.7)

Proof. We prove the theorem in two steps. First we consider the case p = 2.
Let us assume that f is an entire function having finite order ρ and finite type
τ . Then by Theorem 2, we have

|am,n| ≤ K m−(m/ρ) n−(n/ρ) dm1 dn2 (eρ(τ + ε))(m+n)/ρ.

Now proceeding on the lines of Theorem 3, we have

|bm,n| ≤ K
∞∑

k=m+1

∞∑
l=n+1

k−(k/ρ) l−(l/ρ) dk1 d
l
2 (eρ(τ + ε))(k+l)/ρ(1 + ε)(k+l)

≤ Km−(m/ρ) n−(n/ρ) dm1 dn2 (eρ(τ + ε))(m+n)/ρ(1 + ε)(m+n)

for all sufficiently large m and n. Therefore, we have

mmnn|bm,n|ρ ≤ K(dm1 dn2 )ρ (eρ(τ + ε))(m+n).

By applying limits, we have

lim sup
m,n→∞

{
mmnn

(
|bm,n|
dm1 d

n
2

)ρ} 1
m+n

≤ eρτ. (4.8)

Conversely ,let

lim sup
m,n→∞

1

eρ

{
mmnn

(
|bm,n|
dm1 d

n
2

)ρ} 1
m+n

= σ.
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Suppose σ < ∞. Then for each ε > 0, ∃ H(ε), G(ε) such that for all
m > H and n > G, we have

|bm,n| ≤ L m−(m/ρ) n−(n/ρ) dm1 d
n
2 (eρ(σ + ε))(m+n)/ρ.

For sufficiently large r1, r2,

|f(z1, z2)|

≤ L
∞∑
m=0

∞∑
n=0

g−(g/ρ) dm1 d
n
2 (eρ(σ + ε))(m+n)/ρ(s+ 1)1/2

(
|z1|
d1 − ε

)m( |z2|
d2 − ε

)n
≤ L

∞∑
m=0

∞∑
n=0

g−(g/ρ) (eρ(σ + 2ε))(m+n)/ρ

(
d1|z1|
d1 − ε

)m(
d2|z2|
d2 − ε

)n
≤ L

∞∑
m=0

∞∑
n=0

g−(g/ρ) (eρ(σ + 2ε))(m+n)/ρ rm1 rn2

where g−(g/ρ) = m−(m/ρ) n−(n/ρ) and (s + 1)1/2 = (m + 1)1/2(n + 1)1/2. To
estimate the right hand side of above inequality we follow the same method
as of Bose and Sharma [1, Theorem V, p 224], and we obtain

|f(z1, z2)| ≤ 0{e(σ+ε)(rρ1+rρ2)}.
Hence

M(r1, r2) ≤ 0{e(σ+ε)(rρ1+rρ2)}.
Now by applying limits, we have

τ = lim sup
r1,r2→∞

lnM(r1, r2)

rρ1 + rρ2
≤ σ. (4.9)

From (4.8) and (4.9), we have

lim sup
m,n→∞

{
mmnn

(
|bm,n|
dm1 d

n
2

)ρ} 1
m+n

= eρτ.

By applying above Lemma 2, we have

lim sup
m,n→∞

{
mmnn

(
E2
m,n

dm1 d
n
2

)ρ} 1
m+n

= eρτ.
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Now we consider the case for p > 2. From (4.5), it is sufficient to consider
the case p = ∞. Suppose f is an entire function having finite order ρ and of
type τ . Then from (4.6), the first two summations of the above inequality are
bounded. It is sufficient to estimate the last summation. Since f is an entire
function of finite type τ , therefore by Theorem 2, we have

|am,n| ≤ K m−(m/ρ) n−(n/ρ) dm1 dn2 (eρ(τ + ε))(m+n)/ρ.

By using above inequality and from (4.6), we have

E∞m,n ≤ K

∞∑
k=m+1

∞∑
l=n+1

k−(k/ρ) l−(l/ρ) dk1 d
l
2 (eρ(τ + ε))(k+l)/ρ (1 + ε)k+l

≤ K
∞∑

k=m+1

∞∑
l=n+1

(
(1 + ε)ρ

m+ 1

)k/ρ (
(1 + ε)ρ

n+ 1

)l/ρ
dk1 d

l
2 (eρ(τ + ε))k+l

≤ K

(
(1 + ε)ρ

m+ 1

)m/ρ (
(1 + ε)ρ

n+ 1

)n/ρ
dm1 dn2 (eρ(τ + ε))m+n

⇒
(
mmnn

(
E∞m,n
dm1 d

n
2

)ρ)1/(m+n)

≤ (1 + ε) (eρ(τ + ε))

Hence lim sup
m,n→∞

{
mmnn

(
E∞m,n
dm1 d

n
2

)ρ} 1
m+n ≤ eρτ.

In view of inequalities(4.5) and the fact that (4.7) holds for p = 2, this
last inequality actually is an equality. Finally assuming (4.7) with p =∞, we
deduce from (4.5), that (4.7) will hold for p = 2 and hence that f is of type
τ . This completes the proof of Theorem 4.
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