Some Properties of LP-Sasakian Manifolds Admitting a Quarter Symmetric Non Metric Connection *

Jay Prakash Singh ${ }^{\dagger}$
Department of Mathematics, Mizoram University
Tanhril, Aizawl-796004, India

Received April 4, 2014, Accepted June 4, 2014.

Abstract

The object of the present paper is to study weakly symmetric, weakly Ricci symmetric, generalized recurrent and generalized Ricci recurrent LP-Sasakian manifolds admitting a quarter symmetric non metric connection ∇.

Keywords and Phrases: Quarter-symmetric non metric connection, LPSasakian manifolds, Weakly symmetric, Weakly Ricci symmetric, Generalized recurrent, Generalized Ricci recurrent.

1. Introduction

The idea of metric connection with torsion tensor in a Riemannian manifold was introduced by Hayden [19]. Later, Yano [11] studied some properties of semi symmetric metric connection on a Riemannian manifold. The semi symmetric metric connection has important physical application such as the displacement on the earth surface following a fixed point is metric and semi-

[^0]symmetric. Golab [1] introduced and studied quarter symmetric connection in a Riemannian manifold with an affine connection, which generalizes the idea of semi symmetric connection. After Golab, Rastogi ([6], [7]) continued the systematic study of quarter symmetric metric connection. Pandey and Mishra [2], studied quarter symmetric metric connection in a Riemannian, Kahlerian and Sasakian manifolds. It is also studied by many geometers like as Yano et al. [12], De and Biswas [8], jaiswal [20], Mukhopadhya [9], Mondal et al. [3] and many others.

On the other hand Matsumoto [18] introduced the notion of LP-Sasakian manifold.Then Mihai and Rosoca [10] introduced the same notion independently and obtained several results on this manifold. LP-Sasakian manifolds are also studied by De et al. [4], Mihai [10], Singh [21] and others.

The notion of weakly symmetric and weakly Ricci symmetric Riemannian manifolds were introduced by Tamassay ([15], [16]). Sular [13] investigated some properties of generalized recurrent, weakly symmetric and weakly Ricci symmetric Kenmotsu manifolds admitting a semi symmetric metric connection. In the present paper we discuss a quarter symmetric non metric connection in a LP-Sasakian manifolds. In Section 2, we give a brief introduction of LP-Sasakian manifolds and quarter symmetric non metric connection. In Section 3 and 4 it is shown that there is no weakly symmetric and weakly Ricci symmetric LP-Sasakian manifolds admitting a quarter symmetric non metric connection, unless $a+c+d$ or $\lambda+\mu+\nu$ vanishes everywhere respectively. In the last Section, it is proved that $B+2 A=0$ on generalized recurrent and generalized Ricci recurrent LP-Sasakian manifolds admitting a quarter symmetric non metric connection.

2. Preliminaries

An n-dimensional differentiable manifolds M^{n} is a Lorentzian Para-Sasakian manifolds(briefly LP-Sasakian manifolds) if it admits a $(1,1)$ tensor field ϕ, contravariant vector field ξ, a covariant vector field η, and a Lorentzian metric g, which satisfy

$$
\begin{gather*}
\phi^{2} X=X+\eta(X) \xi, \tag{2.1}\\
\phi \xi=0 \tag{2.2}
\end{gather*}
$$

$$
\begin{gather*}
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{2.3}\\
g(X, \xi)=\eta(X) \tag{2.4}\\
\left(D_{X} \phi\right) Y=g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{2.5}\\
D_{X} \xi=\phi X \tag{2.6}\\
(a) \eta(\xi)=-1 \quad(b) \quad \eta(\phi X)=0 \tag{2.7}\\
\operatorname{rank}(\phi)=(n-1) \tag{2.8}\\
\left(D_{X} \eta\right)(Y)=g(\phi X, Y)=g(\phi Y, X) \tag{2.9}
\end{gather*}
$$

for any vector fields X and Y , where D denotes covariant differentiation with respect to $g([10],[18])$.

In an LP-Sasakian manifold M^{n} with the structure (ϕ, ξ, η, g) following conditions hold:

$$
\begin{gather*}
R(X, Y) Z=g(Y, Z) X-g(X, Z) Y \tag{2.10}\\
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{2.11}\\
S(X, \xi)=(n-1) \eta(X) \tag{2.12}\\
R(\xi, X) Y=g(X, Y) \xi-\eta(Y) X \tag{2.13}\\
R(X, \xi) Y=\eta(Y) X-g(X, Y) \xi \tag{2.14}
\end{gather*}
$$

for any vector fields X, Y, Z, where R and S are the Riemannian curvature tensor and Ricci tensor of the manifolds respectively ([10], [18]).

Here we consider a quarter symmetric non metric connection ∇ on LPSasakian manifolds

$$
\begin{equation*}
\nabla_{X} Y=D_{X} Y-\eta(X) \phi Y \tag{2.15}
\end{equation*}
$$

given by Mishra and Pandey [2] which satisfies

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=2 \eta(X) g(\phi Y, Z) \tag{2.16}
\end{equation*}
$$

The curvature tensor \bar{R} with respect to a quarter symmetric non metric connection ∇ and the curvature tensor R with respect to Riemannian connection D in LP-Sasakian manifolds are related as

$$
\begin{align*}
\bar{R}(X, Y) Z & =R(X, Y) Z+g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi \\
& +\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \tag{2.17}
\end{align*}
$$

Contracting (2.17) with respect to X we get

$$
\begin{equation*}
\bar{S}(Y, Z)=S(Y, Z)-g(Y, Z)-n \eta(Y) \eta(Z) \tag{2.18}
\end{equation*}
$$

where \bar{S} is Ricci tensor of M^{n} with respect to quarter symmetric non metric connection.

Lemma 1. In an LP-Sasakian manifold admitting a quarter symmetric non metric connection, we have

$$
\begin{gather*}
\bar{R}(X, Y) \xi=2 R(X, Y) \xi \tag{2.19}\\
\bar{S}(X, \xi)=2 S(X, \xi)=2(n-1) \eta(X) \tag{2.20}
\end{gather*}
$$

3. Weakly symmetric LP-Sasakian manifolds admitting a quarter symmetric non metric connection ∇

A non flat Riemannian manifold $M^{n}(n>3)$ is called weakly symmetric if there exist 1-forms a, b, c, d and the Riemannian curvature tensor R satisfies the condition ([15], [16])

$$
\begin{align*}
\left(D_{X} R\right)(Y, Z) U & =a(X) R(Y, Z) U+b(Y) R(X, Z) U+c(Z) R(Y, X) U \\
& +d(U) R(Y, Z) X+g(R(Y, Z) U, X) \rho \tag{3.1}
\end{align*}
$$

for vector fields X, Y, Z, U, where a, b, c, d and ρ are not simultaneously zero.

Now the weakly symmetric of a non flat Riemannian manifold M^{n} ($n>$ 3) with respect to a quarter symmetric non metric connection is given as

$$
\begin{align*}
\left(\nabla_{X} \bar{R}\right)(Y, Z) U & =a(X) \bar{R}(Y, Z) U+b(Y) \bar{R}(X, Z) U+c(Z) \bar{R}(Y, X) U \\
& +d(U) \bar{R}(Y, Z) X+g(\bar{R}(Y, Z) U, X) \rho \tag{3.2}
\end{align*}
$$

for vector fields X, Y, Z, U, where a, b, c, d and ρ are not simultaneously zero . Contracting the above equation with respect to Y, we obtain

$$
\begin{align*}
\left(\nabla_{X} \bar{S}\right)(Z, U) & =a(X) \bar{S}(Z, U)+b(\bar{R}(X, Z) U)+c(Z) \bar{S}(X, U) \\
& +d(U) \bar{S}(X, Z)+e(\bar{R}(X, U) Z)) \tag{3.3}
\end{align*}
$$

where $e(X)=g(X, \rho)$.
Replacing U with ξ in (3.3) we get

$$
\begin{aligned}
\left(\nabla_{X} \bar{S}\right)(Z, \xi) & =a(X) \bar{S}(Z, \xi)+b(\bar{R}(X, Z) \xi)+c(Z) \bar{S}(X, \xi) \\
& +d(\xi) \bar{S}(X, Z)+e(\bar{R}(X, \xi) Z)
\end{aligned}
$$

By the virtue of (2.19), (2.20),(2.12) and (2.13), the above equation becomes

$$
\begin{align*}
\left(\nabla_{X} \bar{S}\right)(Z, \xi) & =2(n-1) a(X) \eta(Z)+2 b(X) \eta(Z)-2 b(Z) \eta(X) \\
& +d(\xi)\{S(X, Z)-g(X, Z)-n \eta(X) \eta(Z)\} \\
& +2 e(X) \eta(Z)+2 e(\xi) \eta(X) \eta(Z) \\
& +2(n-1) c(Z) \eta(X) \tag{3.4}
\end{align*}
$$

Now, we know that

$$
\begin{equation*}
\left(\nabla_{X} \bar{S}\right)(Z, U)=\nabla_{X} \cdot \bar{S}(Z, U)-\bar{S}\left(\left(\nabla_{X} Z, U\right)-\bar{S}\left(\nabla_{X} Z, U\right)\right. \tag{3.5}
\end{equation*}
$$

Putting $U=\xi$ and taking account of (2.6) in (3.5), we get

$$
\begin{align*}
\left(\nabla_{X} \bar{S}\right)(Z, \xi) & =\nabla_{X} \cdot \bar{S}(Z, \xi)-\bar{S}\left(\left(\nabla_{X} Z, \xi\right)-\bar{S}\left(\nabla_{X} Z, \xi\right)\right. \\
& =(2 n-1) g(X, \phi Z)-S(X, \phi Z) \tag{3.6}
\end{align*}
$$

From (3.4) and (3.6), we have

$$
\begin{aligned}
2(n-1) a(X) \eta(Z) & +2 b(X) \eta(Z)-2 b(Z) \eta(X) \\
& +d(\xi)\{S(X, Z)-g(X, Z)-n \eta(X) \eta(Z)\} \\
& +2 e(X) \eta(Z)+2 e(\xi) \eta(X) \eta(Z) \\
& +2(n-1) c(Z) \eta(X) \\
& =(2 n-1) g(X, \phi Z)-S(X, \phi Z) .
\end{aligned}
$$

Putting $X=Z=\xi$ and using (2.7) in the above equation, we obtain

$$
2(n-1)\{a(\xi)+c(\xi)+d(\xi)\}=0
$$

which gives $(n>3)$

$$
\begin{equation*}
a(\xi)+c(\xi)+d(\xi)=0 \tag{3.7}
\end{equation*}
$$

Again replacing Z with ξ in (3.3) we get

$$
\begin{aligned}
\left(\nabla_{X} \bar{S}\right)(\xi, U) & =a(X) \bar{S}(\xi, U)+b(Y) \bar{R}(X, \xi) U)+c(\xi) \bar{S}(X, U) \\
& +d(U) \bar{S}(X, \xi)+e(\bar{R}(X, U) \xi))
\end{aligned}
$$

Now, by the virtue of (2.19),(2.20),(2.12) and (2.13), the above equation becomes

$$
\begin{align*}
\left(\nabla_{X} \bar{S}\right)(\xi, U) & =2(n-1) a(X) \eta(U)+2 b(X) \eta(U)-2 b(\xi) \eta(X) \eta(U) \\
& +c(\xi)\{S(X, U)-g(X, U)-n \eta(X) \eta(U)\} \\
& +2(n-1) d(U) \eta(X)+2 e(X) \eta(U) \\
& -2 e(U) \eta(X) \tag{3.8}
\end{align*}
$$

On the other hand we get

$$
\begin{align*}
\left(\nabla_{X} \bar{S}\right)(\xi, U) & =\nabla_{X} \cdot \bar{S}(\xi, U)-\bar{S}\left(\left(\nabla_{X} \xi, U\right)-\bar{S}\left(\nabla_{X} \xi, U\right)\right. \\
& =2(n-1)\left(\nabla_{X} \eta\right)(U)-\bar{S}(X, \phi U) \\
& =(2 n-1) g(\phi X, U)-S(\phi X, U) \tag{3.9}
\end{align*}
$$

Equating the right hand sides of (3.8) and (3.9) we get

$$
\begin{align*}
(2 n-1) g(\phi X, U) & -S(\phi X, U) \\
& =2(n-1) a(X) \eta(U)+2 b(X) \eta(U)-2 b(\xi) \eta(X) \eta(U) \\
& +c(\xi)\{S(X, U)-g(X, U)-n \eta(X) \eta(U)\} \\
& +2(n-1) d(U) \eta(X)+2 e(X) \eta(U) \\
& -2 e(U) \eta(X) \tag{3.10}
\end{align*}
$$

Taking $U=\xi$ and taking account of (2.7) and (2.12) the above equation assumes the form

$$
\begin{align*}
& -2(n-1) a(X)-2 b(X)-b(\xi) \eta(X)+2(n-1) c(\xi) \eta(X) \\
& +2(n-1) d(\xi) \eta(X)-2 e(X)-2 e(\xi) \eta(X)=0 \tag{3.11}
\end{align*}
$$

Again taking $X=\xi$ in (3.10), we obtain

$$
\begin{align*}
2(n-1) a(\xi) \eta(U) & +2(n-1) c(\xi) \eta(U)-2(n-1) d(U) \\
& +2 e(U)+2 e(\xi) \eta(U)=0 \tag{3.12}
\end{align*}
$$

Replacing U with X in (3.12) we get

$$
\begin{align*}
2(n-1) a(\xi) \eta(X) & +2(n-1) c(\xi) \eta(X)-2(n-1) d(X) \\
& +2 e(X)+2 e(\xi) \eta(X)=0 . \tag{3.13}
\end{align*}
$$

Adding (3.11) and (3.13) and taking account of (3.7) we get

$$
\begin{align*}
-2(n-1) a(X) & -2 b(X)-2 b(\xi) \eta(X) \\
& +2(n-1) c(\xi) \eta(X)-2(n-1) d(X)=0 \tag{3.14}
\end{align*}
$$

Now, taking $X=\xi$ in (3.6) we get

$$
\begin{align*}
2(n-1) a(\xi) \eta(Z) & +2 b(\xi) \eta(Z)+2 b(Z)-2(n-1) c(Z) \\
& +2 d(\xi) \eta(Z)=0 \tag{3.15}
\end{align*}
$$

Replacing Z by X in (3.15) we get

$$
\begin{align*}
2(n-1) a(\xi) \eta(X) & +2 b(\xi) \eta(X)+2 b(Z)-2(n-1) c(X) \\
& +2 d(\xi) \eta(X)=0 . \tag{3.16}
\end{align*}
$$

Finally adding (3.14) and (3.16) and taking account of (3.7) we get

$$
2(n-1)\{a(X)+c(X)+d(X)\}=0
$$

which implies that $(n>3)$

$$
a(X)+c(X)+d(X)=0
$$

for any vector field X. Thus we can state that:
Theorem 1. There is no weakly symmetric LP-Sasakian manifolds M^{n} admitting a quarter symmetric non metric connection, unless $a+c+d$ vanishes everywhere.

4. Weakly Ricci symmetric LP-Sasakian manifolds admitting a quarter symmetric non metric connection

A non flat Riemannian manifold M^{n} is called weakly Ricci symmetric if there exist 1-forms λ, μ and ν and Ricci tensor S satisfies the condition [16]

$$
\begin{equation*}
\left(D_{X} S\right)(Y, Z)=\lambda(X) S(Y, Z)+\mu(Y) S(X, Z)+\nu(Z) S(Y, X) \tag{4.1}
\end{equation*}
$$

for all vector fields X, Y, Z, where λ, μ and ν are not simultaneously zero. We give the following definition: A non flat Riemannian manifold M^{n} is called weakly Ricci symmetric with respect to a quarter symmetric non metric connection ∇ if there exist 1-forms λ, μ and ν and Ricci tensor \bar{S} satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} \bar{S}\right)(Y, Z)=\lambda(X) \bar{S}(Y, Z)+\mu(Y) \bar{S}(X, Z)+\nu(Z) \bar{S}(Y, X) \tag{4.2}
\end{equation*}
$$

for all vector fields X, Y, Z.
Let us assume that M^{n} be a weakly Ricci symmetric LP-Sasakian manifold admitting a quarter symmetric non metric connection ∇. So the equation (4.2) take place. Taking $Z=\xi$ in (4.2) we get

$$
\begin{align*}
\left(\nabla_{X} \bar{S}\right)(Y, \xi) & =\lambda(X) \bar{S}(Y, \xi)+\mu(Y) \bar{S}(X, \xi) \\
& +\nu(\xi) \bar{S}(Y, X) \tag{4.3}
\end{align*}
$$

By the virtue of (3.6) the above equation gives

$$
\begin{align*}
\lambda(X) \bar{S}(Y, \xi) & +\mu(Y) \bar{S}(X, \xi)+\nu(\xi) \bar{S}(Y, X) \\
& =(2 n-1) g(\phi X, \phi Y)-S(\phi X, Y) \tag{4.4}
\end{align*}
$$

Setting $X=Y=\xi$ in above equation, we obtain

$$
-(2 n-1)\{\lambda(\xi)+\mu(\xi)+\nu(\xi)\}=0
$$

which implies that

$$
\begin{equation*}
\lambda(\xi)+\mu(\xi)+\nu(\xi)=0 \tag{4.5}
\end{equation*}
$$

Putting $X=\xi$ in (4.4) we get

$$
\begin{equation*}
\mu(Y)=-\mu(\xi) \eta(Y) \tag{4.6}
\end{equation*}
$$

Again taking $Y=\xi$ in (4.4), we obtain

$$
\begin{equation*}
\lambda(X)=-\lambda(\xi) \eta(X) \tag{4.7}
\end{equation*}
$$

Since $\left(\nabla_{\xi} \bar{S}\right)(\xi, X)=0$, then from (4.2), it can be shown that

$$
\begin{equation*}
\nu(X)=-\nu(\xi) \eta(X) \tag{4.8}
\end{equation*}
$$

Replacing Y by X in (4.6), we get

$$
\begin{equation*}
\mu(X)=-\mu(\xi) \eta(X) \tag{4.9}
\end{equation*}
$$

Adding (4.7), (4.8) and (4.9), we get

$$
\begin{equation*}
\lambda(X)+\mu(X)+\nu(X)=0, \tag{4.10}
\end{equation*}
$$

for any vector field X on M^{n}.
This leads to the following;
Theorem 2. There is no weakly Ricci symmetric LP-Sasakian manifolds M^{n} admitting a quarter symmetric non metric connection ∇, unless $\lambda+\mu+\nu$ vanishes everywhere.

5. Generalized recurrent LP-Sasakian manifolds admitting a quarter symmetric non metric connection ∇

A non flat n-dimensional differentiable manifold M^{n} is called generalized recurrent [5] if curvature tensor R satisfies the condition

$$
\begin{equation*}
\left(D_{X} R\right)(Y, Z) U=A(X) R(Y, Z) U+B(X)\{g(Z, U) Y-g(Y, U) Z\} \tag{5.1}
\end{equation*}
$$

where A, B are two 1 -forms, $(B \neq 0)$ defined by

$$
\begin{equation*}
A(X)=g\left(X, \rho_{1}\right), \quad B(X)=g\left(X, \rho_{2}\right) \tag{5.2}
\end{equation*}
$$

and $\rho_{1}, \quad \rho_{2}$ are vector fields related with 1-forms A, B respectively. Now, we give the following definition. A non flat n-dimensional differentiable manifold M^{n} is called generalized recurrent with respect to a quarter symmetric non metric connection ∇ if curvature tensor \bar{R} satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} \bar{R}\right)(Y, Z) U=A(X) \bar{R}(Y, Z) U+B(X)\{g(Z, U) Y-g(Y, U) Z\} \tag{5.3}
\end{equation*}
$$

Let the manifold M^{n} is generalized recurrent LP-Sasakian manifold admitting a quarter symmetric non metric connection ∇. Then from above equation holds. Setting $Y=Z=\xi$ in (5.3) we get

$$
\begin{align*}
\left(\nabla_{X} \bar{R}\right)(\xi, Z) \xi & =A(X) \bar{R}(\xi, Z) \xi+B(X)\{\eta(Z) \xi+Z\} . \\
& =[B(X)+2 A(X)]\{\eta(Z) \xi+Z\} . \tag{5.4}
\end{align*}
$$

On the other hand it is obvious that

$$
\begin{align*}
\left(\nabla_{X} \bar{R}\right)(\xi, Z) \xi & =\nabla_{X} \cdot \bar{R}(\xi, Z) \xi-\bar{R}\left(\nabla_{X} \xi, Z\right) \xi \\
& -\bar{R}\left(\xi, \nabla_{X} Z\right) \xi-\bar{R}(\xi, Z) \nabla_{X} \xi \tag{5.5}
\end{align*}
$$

In view of (2.19), (2.13) and (2.6) the above equation gives

$$
\begin{equation*}
\left(\nabla_{X} \bar{R}\right)(\xi, Z) \xi=0 \tag{5.6}
\end{equation*}
$$

Hence we obtain

$$
\begin{equation*}
[B(X)+2 A(X)]\{\eta(Z) \xi+Z\}=0 \tag{5.7}
\end{equation*}
$$

which implies that $B(X)+2 A(X)=0$ for any vector field X. This leads to the following:

Theorem 3. If a generalized recurrent LP-Sasakian manifolds M^{n} admits a quarter symmetric non metric connection ∇, then $B+2 A=0$ holds on M^{n}.

A non flat n-dimensional differentiable manifold M^{n} is called generalized Ricci recurrent [5] if its Ricci tensor S satisfies the condition

$$
\begin{equation*}
\left(D_{X} S\right)(Y, Z)=A(X) S(Y, Z)+(n-1) B(X) g(Y, Z) \tag{5.8}
\end{equation*}
$$

where A, B are are given by [5.2]. Analogous to above definition a non flat n-dimensional differentiable manifold M^{n} is called generalized Ricci recurrent
$\frac{\text { with respect to a quarter symmetric non metric connection } \nabla \text { if its Ricci tensor }}{\bar{S}}$ \bar{S} satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} \bar{S}\right)(Y, Z)=A(X) \bar{S}(Y, Z)+(n-1) B(X) g(Y, Z) \tag{5.9}
\end{equation*}
$$

Putting $Z=\xi$ in above equation we obtain

$$
\begin{align*}
\left(\nabla_{X} \bar{S}\right)(Y, \xi) & =A(X) \bar{S}(Y, \xi)+(n-1) B(X) g(Y, \xi) \\
& =(n-1)[B(X)+2 A(X)] \eta(Y) \tag{5.10}
\end{align*}
$$

On the other hand by virtue of (3.6) we have

$$
\begin{equation*}
\left(\nabla_{X} \bar{S}\right)(Y, \xi)=(2 n-1) g(\phi X, Y)-S(\phi X, Y) \tag{5.11}
\end{equation*}
$$

Comparing equations (5.10) and (5.11), we obtain

$$
\begin{align*}
(n-1)[B(X) & +2 A(X)] \eta(Y) \\
& =(2 n-1) g(\phi X, Y)-S(\phi X, Y) \tag{5.12}
\end{align*}
$$

Taking $Y=\xi$ in above equation we get

$$
(n-1)[B(X)+2 A(X)]=0
$$

which implies that

$$
\begin{equation*}
B(X)+2 A(X)=0 \tag{5.13}
\end{equation*}
$$

for all vector field X. Thus we can state that:
Theorem 4. Let M^{n} be a generalized Ricci recurrent LP-Sasakian manifolds admitting a quarter symmetric non metric connection ∇. Then $B+2 A=0$ holds on M^{n}.

References

[1] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor N. S., 29 (1975), 249-254.
[2] R. S. Mishra, and S. N. Pandey, On quarter-symmetric metric Fconnections, Tensor, N. S., 34 (1980), 1-7.
[3] A. K. Mondal, and U. C. De, Some properties of a quarter-symmetric metric connection on a Sasakian manifold, Bulletin of Mathematical Analysis and Applications, Vol. 1 Issue 3 (2009), 99-108.
[4] U. C. De, and K. De, On three dimensional Kenmotsu manifolds admitting a quarter-symmetric metric connection, Azerbaijan J. Math., 1 (2011), 132-142.
[5] U. C. De, and N. Guha, On generalised recurrent manifolds, Proc. Math. Soc., 7 (1991), 7-11.
[6] S. C. Rastogi, On quarter-symmetric metric connection, Tensor N. S., 44 no. 2 (1987), 133-141.
[7] S. C. Rastogi, On quarter-symmetric metric connection, C.R. Acad. Sci. Bulgr., 31 (1978), 811-814.
[8] S. C. Biswas, and U. C. De, Quarter-symmetric metric connection in an SP-Sasakian manifold, Commun. Fac. Sci. Univ. Ank., Series 46 (1997), 49-56.
[9] A. K. Mukhopadhyay, and B. Barua, Some properties of a quartersymmetric metric connection on a Riemannian manifold, Soochow J. Math., 17 (1991), 205-211.
[10] I. Mihai and R. Rosoca, On LP-Sasakian manifolds, Classical Analysis , world scientific publ., (1972), 155-169.
[11] K. Yano, On semi symmetric connection, Rev. Roumaine Math. Pure Appl. Math., 15 (1970), 1579-1586.
[12] K. Yano and T. Imai, Quarter-symmetric metric connections and their curvature tensors, Tensor, N. S., 38 (1982), 13-18.
[13] S. Sular, Some properties of a Kenmotsu manifold with a semi symmetric metric connection, Int. Electronic J. of Geometry, 3 (2010), 24-34.
[14] S. Sular, C. Ozgur and U. C. De, Quarter symmetric metric connection in a Kenmotsu manifold, S. T. U. J. Math., 44 (2008), 297-308.
[15] L Tamassy and T. Q. Binh, On weakly symmetric and Weakly projective symmetric Riemannian manifolds, Colloq. Math. Soc. J. Bolyai, 56 (1992), 663-670.
[16] L Tamassy and T. Q. Binh, On weak symmetry of Einstein and Sasakian manifolds, Tensor N. S., 53 (1993), 140-148.
[17] A. K. Mondal and U. C. De, Some properties of a quarter symmetric metric connection on a Sasakian manifold, Bull. Math. Analysis Appl., 1 (2009), 99-108.
[18] K. Matsumoto, On Lorentzian Para-contact manifold,Bull of Yamagata, Univ. Nat. Sci., 12 (1989), 1-7.
[19] H. A. Hayden, Subspaces of a space with torsion tensor, Proc. London Math. Soc., 34 (1932), 27-50.
[20] J. P. Jaiswal, The existence of weakly symmetric and weakly Ricci symmetric Sasakian manifold admitting a quarter symmetric metric connection, Acta Math. Hungar., 132(4) (2011), 358-366.
[21] J. P. Singh, M-projective curvature tensor on LP-Sasakian manifolds, J. of Progressive Science, 3,(2012), 73-76.

[^0]: *2010 Mathematics Subject Classification. Primary 53C15, 53B05, 53D15.
 ${ }^{\dagger}$ E-mail: jpsmaths@gmail.com

