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Abstract

The object of the present paper is to study weakly symmetric,
weakly Ricci symmetric, generalized recurrent and generalized Ricci
recurrent LP-Sasakian manifolds admitting a quarter symmetric non
metric connection V.
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1. Introduction

The idea of metric connection with torsion tensor in a Riemannian manifold
was introduced by Hayden [19]. Later, Yano [11] studied some properties
of semi symmetric metric connection on a Riemannian manifold. The semi
symmetric metric connection has important physical application such as the
displacement on the earth surface following a fixed point is metric and semi-
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symmetric. Golab [1] introduced and studied quarter symmetric connection in
a Riemannian manifold with an affine connection, which generalizes the idea
of semi symmetric connection. After Golab, Rastogi ([6], [7]) continued the
systematic study of quarter symmetric metric connection. Pandey and Mishra
2], studied quarter symmetric metric connection in a Riemannian, Kahlerian
and Sasakian manifolds. It is also studied by many geometers like as Yano et
al. [12], De and Biswas [8], jaiswal [20], Mukhopadhya [9], Mondal et al. [3]
and many others.

On the other hand Matsumoto [18] introduced the notion of LP-Sasakian
manifold.Then Mihai and Rosoca [10] introduced the same notion indepen-

dently and obtained several results on this manifold. LP-Sasakian manifolds
are also studied by De et al. [4], Mihai [10] , Singh [21] and others.

The notion of weakly symmetric and weakly Ricci symmetric Riemannian
manifolds were introduced by Tamassay ([15], [16]). Sular [13] investigated
some properties of generalized recurrent, weakly symmetric and weakly Ricci
symmetric Kenmotsu manifolds admitting a semi symmetric metric connec-
tion. In the present paper we discuss a quarter symmetric non metric connec-
tion in a LP-Sasakian manifolds. In Section 2, we give a brief introduction
of LP-Sasakian manifolds and quarter symmetric non metric connection. In
Section 3 and 4 it is shown that there is no weakly symmetric and weakly Ricci
symmetric LP-Sasakian manifolds admitting a quarter symmetric non metric
connection, unless a + ¢ + d or A\ + u + v vanishes everywhere respectively.
In the last Section, it is proved that B + 2 A = 0 on generalized recurrent
and generalized Ricci recurrent LP-Sasakian manifolds admitting a quarter
symmetric non metric connection.

2. Preliminaries

An n-dimensional differentiable manifolds M" is a Lorentzian Para-Sasakian
manifolds(briefly LP-Sasakian manifolds) if it admits a (1,1) tensor field ¢,
contravariant vector field £, a covariant vector field 7, and a Lorentzian metric
g, which satisfy

¢*X = X +n(X)E, (2.1)
P =0, (2.2)
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90X, 9Y) = g(X,Y)+n(X)n(Y), (2.3)
9(X.§) = n(X), (2.4)

(Dxd)Y = g(X,Y)E+n(Y)X +2n(X)n(Y)E, (2.5)
Dxé = 6X, (2.6)

(a) n(&) =—1 (b) n(¢X) =0, (2.7)
rank(s) = (n — 1), (2.8)

(Dxm)(Y) = g(¢X,Y) = g(¢Y, X), (2.9)

for any vector fields X and Y,where D denotes covariant differentiation with
respect to g ([10], [18]).

In an LP-Sasakian manifold M™ with the structure (¢,&,n,g) following
conditions hold:

R(X,Y)Z = g(Y, Z2)X — g(X, Z)Y, (2.10)
R(X,Y)§ =n(Y)X = n(X)Y, (2.11)
S(X,€) = (n— n(X), (2.12)

R(§, X)Y = g(X,Y)§ —n(Y)X, (2.13)
R(X, QY =n(Y)X — g(X,Y)E, (2.14)

for any vector fields X,Y,Z, where R and S are the Riemannian curvature
tensor and Ricci tensor of the manifolds respectively ([10], [18]).
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Here we consider a quarter symmetric non metric connection V on LP-
Sasakian manifolds

VY = DyY — 5(X)oY (2.15)
given by Mishra and Pandey [2] which satisfies
(Vxg)(Y, Z) = 2n(X) g(¢Y, Z). (2.16)

The curvature tensor R with respect to a quarter symmetric non metric con-
nection V and the curvature tensor R with respect to Riemannian connection
D in LP-Sasakian manifolds are related as

R(X,Y)Z = R(X,Y)Z+g(Y,Z) n(X)§ - g(X, Z) n(Y)¢
+ n(X)n(2)Y —n(Y)n(2)X. (2.17)
Contracting (2.17) with respect to X we get

SY,2)=5Y.Z)—g(Y,Z) —nn(Y)n(Z), (2.18)

where S is Ricci tensor of M™ with respect to quarter symmetric non metric
connection .

Lemma 1. In an LP-Sasakian manifold admitting a quarter symmetric non
metric connection, we have

R(X,Y) € =2R(X,Y) & (2.19)

S(X,€) =25(X,€) =2(n—1) n(X). (2.20)

3. Weakly symmetric LP-Sasakian manifolds
admitting a quarter symmetric non metric
connection V

A non flat Riemannian manifold M™ (n > 3) is called weakly symmetric if
there exist 1-forms a, b, ¢,d and the Riemannian curvature tensor R satisfies
the condition ([15], [16])

(DxR)(Y, Z)U = a(X)R(Y,Z)U +b(Y)R(X, Z)U + ¢(Z)R(Y, X)U
+ d(U)R(Y, Z)X + g(R(Y, Z)U, X)p, (3.1)
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for vector fields X, Y, Z, U, where a,b, c,d and p are not simultaneously zero.

Now the weakly symmetric of a non flat Riemannian manifold M™ (n >
3) with respect to a quarter symmetric non metric connection is given as

(VxR)(Y,2)U = a(X) R(Y,Z)U +b(Y) R(X,2)U +c(Z) R(Y,X)U
+ d(U) R(Y,Z)X + g(R(Y, Z)U, X) p, (3.2)

for vector fields X,Y, Z, U,where a,b, c,d and p are not simultaneously zero .
Contracting the above equation with respect to Y, we obtain

(VxS)(Z,U) = a(X)S(Z,U)+b(R(X,2)U)+c(Z) S(X,U)
+ d(U) S(X,Z)+e(R(X,U)Z2)), (3.3)
where e(X) = g(X, p).
Replacing U with £ in (3.3) we get
(VxS)(Z,€§) = a(X)S(Z,€) +b(R(X, 2)§) + ¢(Z)S(X,€)
+ d(§)S(X,Z) +e(R(X,€)Z).
By the virtue of (2.19),(2.20),(2.12) and (2.13), the above equation becomes

(Vx8)(Z,§) = 2(n—1) a(X)n(Z) +2b(X) n(Z) — 2b(Z) n(X)
+ d(§) {5(X, 2) — g(X, 2) = nn(X)n(2)}
+ 2e(X) 0(2) + 2e(§) n(X)n(Z)
+ 2(n—1)c(Z) n(X). (3.4)

Now, we know that
(VxS)(Z,U) = Vx.S(Z,U)—-S(VxZ,U)—-S(VxZ,U). (3.5)
Putting U = ¢ and taking account of (2.6) in (3.5), we get
(VxS)(Z,€) = Vx.5(2,8) = S((VxZ.€) - S(VxZ,¢)
= (2n—1) g(X,9Z2) — S(X,9Z2). (3.6)
From (3.4) and (3.6), we have
2(n—1) a(X)n(2) + 2b(X)n(2) —2b(2) n(X)
(5) {S(X,2) —9(X, Z) = nn(X)n(Z)}
2 e(X) n(Z) + 2e(§) n(X)n(2)
2(n — 1) ¢(2) n(X)
(20— 1) 4(X,67) — S(X,67).

+ o+ o+
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Putting X = Z = ¢ and using (2.7) in the above equation, we obtain
2(n —1) {a(§) + c(§) +d(§)} = 0,

which gives (n > 3)

a(§) + ¢(§) + d(&) = 0. (3.7)
Again replacing Z with £ in (3.3) we get
(VxS)(&, U) = a(X) S(&U) +b(Y)R(X,§)U) + ¢ (§) S(X,U)
d(U) S(X,€) + e(R(X,U)E))

Now, by the virtue of (2.19),(2.20),(2.12) and (2.13), the above equation be-
comes

(VxS)(EU) = 2(n—1) a(X)n(U) + 2b(X) n(U) — 2b(¢) n(X)n(U)

+ () {SX,U) —g(X,U) =nn(X)n(U)}

+ 2(n—1) d(U) n(X) + 2¢(X) n(U)

— 2e(U) n(X). (3.8)

On the other hand we get
(VxS)(EU) = Vx.S(&U) = S(Vx&,U) = S(Vx&,U)

= 2(n—1)(Vxn)(U) - S(X, ¢U)
= (2n—1)g(eX,U) — S(pX,U). (3.9)

Equating the right hand sides of (3.8) and (3.9) we get

(2n —1)g(¢X,U) — S(¢X,U)

2(n = 1) a(X)n(U) + 2b(X) n(U) = 2b(§) n(X)n(U)
(&) {S(X,U) —g(X, U) = nn(X)n(U)}

2(n = 1) d(U) n(X) + 2¢(X) n(U)

2e(U) n(X). (3.10)

I+ +

Taking U = £ and taking account of (2.7) and (2.12) the above equation
assumes the form

= 2(n—1) a(X) = 26(X) - b(¢) (X) +2(n — 1) ¢(§) n(X)

£ 2(n— 1) d(€) 7(X) — 2e(X) — 2 e(€) 7(X) = 0. (3.11)
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Again taking X = ¢ in (3.10), we obtain

2(n = 1) a(§) n(U) + 2(n—1)c(§) n(U) —2(n—1) d(U)
+ 2e(U)+2e()nU)=0. (3.12)

Replacing U with X in (3.12) we get

1) d(X)

2(n — 1) a(§) n(X) + 2(n—1) c(§) n(X) —2(n —
= 0. (3.13)

£ 2e(X)+2e(6) n(X)
Adding (3.11) and (3.13) and taking account of (3.7) we get

—2(n—1)a(X) — 2b(X)—2b(£) n(X)
+ 2 —1) c(€) n(X) — 2 (n— 1) d(X) = 0. (3.14)

Now, taking X = ¢ in (3.6) we get

2(n = 1) a(§) n(Z) + 2b(&)n(Z)+2b(Z) -2 (n—1)c(2)
+ 2d(&) n(Z) =0. (3.15)

Replacing Z by X in (3.15) we get

2(n=1) a(€) n(X) + 2§ n(X)+20(Z) -2 (n—1)¢(X)
+ 2d(€) n(X) = 0. (3.16)

Finally adding (3.14) and (3.16) and taking account of (3.7) we get
2(n — D{a(X) +c(X) +d(X)} =0,
which implies that (n > 3)
a(X) +ce(X)+d(X) =0,
for any vector field X. Thus we can state that:

Theorem 1. There is no weakly symmetric LP-Sasakian manifolds M" ad-
mitting a quarter symmetric non metric connection, unless a + ¢ + d vanishes
everywhere.
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4. Weakly Ricci symmetric LP-Sasakian man-
ifolds admitting a quarter symmetric non
metric connection

A non flat Riemannian manifold M" is called weakly Ricci symmetric if there
exist 1-forms A, p and v and Ricci tensor S satisfies the condition [16]

(DxS)(Y, Z) = MX)S(Y, Z) + u(Y)S(X, Z) + v(Z)S(Y, X), (4.1)

for all vector fields X,Y, Z, where A\, p and v are not simultaneously zero. We
give the following definition: A non flat Riemannian manifold M™ is called
weakly Ricci symmetric with respect to a quarter symmetric non metric con-
nection V if there exist 1-forms A, p and v and Ricci tensor S satisfies the
condition

(VxS)(Y,Z) = X(X)S(Y, Z) + n(Y)S(X, Z) + v(Z2)S(Y, X), (4.2)
for all vector fields X,Y, Z.

Let us assume that M" be a weakly Ricci symmetric LP-Sasakian manifold
admitting a quarter symmetric non metric connection V. So the equation (4.2)
take place. Taking Z = ¢ in (4.2) we get

(Vx9)(Y.€) = MX)S(Y,€) +u(Y)S(X,€)
+ v(©)S(Y, X). (4.3)

By the virtue of (3.6) the above equation gives

AMX)S(Y.€) + wY)S(X,€) +v(€)S(Y,X)
= (2n—1) g(¢X,0Y) — S(¢X,Y). (4.4)

Setting X =Y = £ in above equation, we obtain

—(2n = DIAE) + u(&) + (&)} =0,

which implies that

AE) + u(&) +v(§) = 0. (4.5)
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Putting X = ¢ in (4.4) we get

p(Y) = — pu(&) n(Y) (4.6)
Again taking Y = ¢ in (4.4), we obtain

AX) = = A(§) n(X). (4.7)
Since (VeS)(€, X) = 0, then from (4.2), it can be shown that

v(X) = —v(§) n(X) (4.8)
Replacing Y by X in (4.6), we get

u(X) = = (&) n(X). (4.9)

Adding (4.7), (4.8) and (4.9), we get
AMX) +p(X)+v(X) =0, (4.10)

for any vector field X on M".
This leads to the following;

Theorem 2. There is no weakly Ricci symmetric LP-Sasakian manifolds M™
admitting a quarter symmetric non metric connection V, unless A + pu + v
vanishes everywhere.

5.Generalized recurrent LP-Sasakian manifolds
admitting a quarter symmetric non metric
connection V

A non flat n-dimensional differentiable manifold M™ is called generalized re-
current [5] if curvature tensor R satisfies the condition

(DxR)(Y, Z)U = A(X) R(Y, Z)U + B(X) {g(Z,U)Y — g(¥,U)Z}, (5.1)
where A, B are two 1-forms, (B # 0) defined by

A(X) =g(X,p),  B(X) = g(X, p2) (5.2)
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and py, py are vector fields related with 1-forms A, B respectively. Now, we
give the following definition. A non flat n-dimensional differentiable manifold
M™ is called generalized recurrent with respect to a quarter symmetric non
metric connection V if curvature tensor R satisfies the condition

(VxR)(Y,Z)U = A(X) R(Y,Z)U + B(X) {g(Z,U)Y —g(Y,U)Z}. (5.3)

Let the manifold M™ is generalized recurrent LP-Sasakian manifold admitting
a quarter symmetric non metric connection V. Then from above equation
holds. Setting Y = Z = ¢ in (5.3) we get

(VxR)(§ 2)s = A(X) R(& 2)¢ + B(X) {n(2)§ + Z}.
= [BX)+2 AX){n(2)E + 2} (5.4)

On the other hand it is obvious that

(VxR)(§,2)¢ = Vx.R(§ 2)§ — R(VxE Z)¢
R(§,VxZ)§ — R(&, )fo (5.5)

In view of (2.19), (2.13) and (2.6) the above equation gives
(VxR)(€,2)¢ = 0. (5.6)
Hence we obtain
[B(X) +2 AX){n(2)§ + 2} =0, (5.7)

which implies that B(X) 4+ 2 A(X) = 0 for any vector field X. This leads to
the following;:

Theorem 3. If a generalized recurrent LP-Sasakian manifolds M™ admits a
quarter symmetric non metric connection V, then B+ 2 A =0 holds on M™.

A non flat n-dimensional differentiable manifold M™ is called generalized
Ricci recurrent [5] if its Ricci tensor S satisfies the condition

(DxS)(Y, Z) = A(X) S(Y,Z) + (n— 1)B(X) g(Y, Z), (5.8)

where A, B are are given by [5.2]. Analogous to above definition a non flat
n-dimensional differentiable manifold M™ is called generalized Ricci recurrent
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with respect to a quarter symmetric non metric connection V if its Ricci tensor
S satisfies the condition

(VxS)(Y,Z2) = A(X) S(Y,Z) + (n - 1)B(X) g(Y. Z). (5.9)
Putting Z = £ in above equation we obtain

(Vx9)(Y.€) = AX)S(Y.€) + (n—1)B(X) g(Y,€)
= (n—D[B(X)+2 AX)] n(Y). (5.10)

On the other hand by virtue of (3.6) we have
(VB)(¥,€) = (2n — 1) g(6X,Y) — S(6X,Y). (5.11)
Comparing equations (5.10) and (5.11), we obtain

(n=1[BX) + 2AX)]n()
= (2n—1) g(6X,Y) — S(6X,Y). (5.12)

Taking Y = £ in above equation we get
(n—1[B(X) + 2A(X)] =0,
which implies that
B(X) + 2A(X)=0, (5.13)
for all vector field X. Thus we can state that:

Theorem 4. Let M™ be a generalized Ricci recurrent LP-Sasakian manifolds

admitting a quarter symmetric non metric connection V. Then B+2 A =0
holds on M™.
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