Majorization for Certain Classes of Analytic Functions of Complex Order Associated with the Dziok-Srivastava and the Srivastava-Wright Convolution Operators *

G. Murugusundaramoorthy ${ }^{\dagger}$ and K. Thilagavathi
School of advanced Sciences, VIT University
Vellore - 632014, India.
and
N. Magesh ${ }^{\ddagger}$
P. G. and Research Department of Matheamtics, Govt Arts College for Men, Krishnagiri-635001, Tamilnadu, India.

Received February 5, 2014, Accepted Jane 9, 2014.

Abstract

The main object of this present paper is to investigate the problem of majorization for certain classes of analytic functions of complex order associated associated with the Dziok-Srivastava and the SrivastavaWright convolution operators. Moreover we point out some new or known consequences of our main result.

Keywords and Phrases: Analytic functions, Starlike and convex functions of complex order, Qusai-subordination, Majorization problems, Hadamard product (convolution), Dziok-Srivastava operator, Srivastava-Wright convolution operator.

[^0]
1. Introduction

Let \mathcal{S} be the class of functions which are analytic in the open unit disk

$$
\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}
$$

of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

For given $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{S}$ the Hadamard product of f and g is denoted by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z) \tag{1.2}
\end{equation*}
$$

note that $f * g \in \mathcal{S}$ which are analytic in the open disc \mathbb{U}.
For two analytic functions $f, g \in \mathcal{S}$ we say that f is subordinate to g denoted by $f \prec g$ if there exists a Schwar'z function $\omega(z)$ which is analytic in \mathbb{U} with $\omega(0)=0$ and $|\omega(z)|<1$ for all $z \in \mathbb{U}$, such that $f(z)=g(\omega(z))$ and $z \in \mathbb{U}$.

Note that, if the function g is univalent in \mathbb{U}, due to Miller and Mocanu [13] we have

$$
f(z) \prec g(z) \Longleftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

If f and g are analytic functions in \mathbb{U}, following MacGregor [12], we say that f is majorized by g in \mathbb{U} that is $f(z) \ll g(z),(z \in \mathbb{U})$ if there exists a function $\phi(z)$, analytic in \mathbb{U}, such that

$$
|\phi(z)|<1 \text { and } f(z)=\phi(z) g(z), \quad z \in \mathbb{U} .
$$

It is interested to note that the notation of majorization is closely related to the concept of quasi-subordination between analytic functions.

Recently Dziok and Srivastava [4, 5] defined the linear operator of a function $f(z)$, denoted by $H_{m}^{l}\left[\alpha_{1}\right] f(z)$, is defined by

$$
H_{m}^{l}\left(\alpha_{1}, \ldots \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right): \mathcal{S} \rightarrow \mathcal{S}
$$

such that

$$
\begin{align*}
H_{m}^{l}\left[\alpha_{1}\right] f(z) & \equiv H\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right) f(z) \\
& =z_{l} F_{m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right) * f(z) \\
H_{m}^{l}\left[\alpha_{1}\right] f(z) & =z+\sum_{n=2}^{\infty} \Gamma(n) a_{n} z^{n}, \tag{1.3}
\end{align*}
$$

where

$$
\begin{equation*}
\Gamma(n)=\frac{\left(\alpha_{1}\right)_{n-1} \ldots\left(\alpha_{l}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1} \ldots\left(\beta_{m}\right)_{n-1}} \frac{1}{(n-1)!} \tag{1.4}
\end{equation*}
$$

It is easy to verify from (1.3) that

$$
\begin{equation*}
z\left(H_{m}^{l}\left[\alpha_{1}\right] f(z)\right)^{\prime}=\alpha_{1} H_{m}^{l}\left[\alpha_{1}+1\right] f(z)-\left(\alpha_{1}-1\right) H_{m}^{l}\left[\alpha_{1}\right] f(z) \tag{1.5}
\end{equation*}
$$

Note that if $l=2$ and $m=1$ with $\alpha_{1}=1 ; \alpha_{2}=1 ; \beta_{1}=1$ then $H\left[\alpha_{1}\right] f(z)=$ $f(z)$.

It is of interest to note that the following are the special cases of the DziokSrivastava linear operator.

Remark 1. For $f \in \mathcal{S}, H_{1}^{2}(a, 1 ; c) f(z)=\mathcal{L}(a, c) f(z)=z+\sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(c)_{n-1}} a_{n} z^{n}$ was considered by Carlson and Shaffer [3].

Remark 2. By using the Gaussian hypergeometric function given by

$$
{ }_{l} F_{m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right)
$$

Hohlov [8] introduced a generalized convolution operator $H_{a, b, c}$ as

$$
H_{a, b, c} f(z)=z_{2} F_{1}(a, b, c ; z) * f(z),
$$

contains as special cases most of the known linear integral or differential operators.

Remark 3. For $f \in \mathcal{S}, H_{1}^{2}(\delta+1,1 ; 1) f(z)=\frac{z}{(1-z)^{\delta+1}} * f(z)=\mathcal{D}^{\delta} f(z),(\delta>-1)$ the $\mathcal{D}^{\delta} f^{\prime}(z)=z+\sum_{n=2}^{\infty}\binom{\delta+n-1}{n-1} a_{n} z^{n}$, was introduced by Ruscheweyh [18].

Remark 4. For $f \in \mathcal{S}, H_{1}^{2}(c+1,1 ; c+2) f(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t=\mathcal{J}_{c} f(z)$ where $c>-1$. The operator \mathcal{J}_{c} was introduced by Bernardi [2]. In particular, the operator \mathcal{J}_{1} was studied earlier by Libera [10] and Livingston [11].

Remark 5. For $f \in \mathcal{S}, H_{1}^{2}(2,1 ; 2-\lambda) f(z)=\Gamma(2-\lambda) z^{\lambda} \mathcal{D}_{z}^{\lambda} f(z)=\Omega^{\lambda} f(z), \quad \lambda \notin$ $\mathbb{N} \backslash\{1\}$. The operator Ω^{λ} was introduced by Srivastava-Owa [19] and Ω^{λ} is also called Srivastava-Owa fractional derivative operator, where $\mathcal{D}_{z}^{\lambda} f(z)$ denotes the fractional derivative of $f(z)$ of order λ, studied by Owa [17].

Geometric Function Theory also contains systematic investigations of various analytic function classes associated with a further generalization of the Dziok-Srivastava convolution operator, which is popularly known as the WrightSrivastava convolution operator defined by using the Fox-Wright generalized hypergeometric function (see, for details, [9] and [20]; see also [23] and the references cited in each of these recent works including [9] and [20]). Following Dziok and Srivastava [4], using Wright's generalized hypergeometric function [21], Dziok and Raina [6] defined another linear operator given by

$$
\begin{equation*}
\mathcal{W}\left[\alpha_{1}\right] f(z)=z+\sum_{n=2}^{\infty} \sigma_{n} a_{n} z^{n}, \quad z \in \mathbb{U} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{n}\left(\alpha_{1}\right)=\frac{\Theta \Gamma\left(\alpha_{1}+A_{1}(n-1)\right) \ldots \Gamma\left(\alpha_{l}+A_{l}(n-1)\right)}{(n-1)!\Gamma\left(\beta_{1}+B_{1}(n-1)\right) \ldots \Gamma\left(\beta_{m}+B_{m}(n-1)\right)} \tag{1.7}
\end{equation*}
$$

and Θ is given by $\Theta=\left(\prod_{t=0}^{l} \Gamma\left(\alpha_{t}\right)\right)^{-1}\left(\prod_{t=0}^{m} \Gamma\left(\beta_{t}\right)\right)$. Here, presumably, $\Gamma(a)$ denotes a value of the gamma function. It is easy to verify from (1.6) that

$$
\begin{equation*}
z A_{1}\left(\mathcal{W}\left[\alpha_{1}\right] f(z)\right)^{\prime}=\alpha_{1} \mathcal{W}\left[\alpha_{1}+1\right] f(z)-\left(\alpha_{1}-A_{1}\right) \mathcal{W}\left[\alpha_{1}\right] f(z) \tag{1.8}
\end{equation*}
$$

For $A_{l}=B_{m}=1$, the Dziok-Raina operator $\mathcal{W}\left[\alpha_{1}\right] f(z)$ yields the DziokSrivastava operator [6], and for the suitable choices of l, m in turn it includes various operators defined by Hohlov [8], Ruscheweyh [18], Carlson and Shaffer [3] and the integral operators introduced by Bernardi [2] and Libera [10] as mentioned in Remarks 1 to 5.

Using the Wright hypergeometric linear operator given by (1.6), we now introduce the following new subclass of \mathcal{S}.

Definition 1. A function $f(z) \in \mathcal{S}$ is said to in the class $\mathcal{S}_{m}^{l}\left(\left[\alpha_{1}\right] ; A, B ; \gamma\right)$, if and only if

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[\frac{z\left(\mathcal{W}\left[\alpha_{1}\right] f(z)\right)^{\prime}}{\mathcal{W}\left[\alpha_{1}\right] f(z)}-1\right] \prec \frac{1+A z}{1+B z} \tag{1.9}
\end{equation*}
$$

where $z \in \mathbb{U},-1 \leq B<A \leq 1$, and $\gamma \in \mathbb{C} \backslash\{0\}$.
For simplicity, we put

$$
\mathcal{S}_{m}^{l}\left(\left[\alpha_{1}\right] ; A, B ; \gamma\right)=\mathcal{S}_{m}^{l}\left(\left[\alpha_{1}\right] ; 1,-1 ; \gamma\right)
$$

where $\mathcal{S}_{m}^{l}\left(\left[\alpha_{1}\right] ; 1,-1 ; \gamma\right)$ denote the class of functions $f \in \mathcal{S}$ satisfying the following inequality:

$$
\begin{equation*}
\Re\left(1+\frac{1}{\gamma}\left[\frac{z\left(\mathcal{W}\left[\alpha_{1}\right] f(z)\right)^{\prime}}{\mathcal{W}\left[\alpha_{1}\right] f(z)}-1\right]\right)>0 \tag{1.10}
\end{equation*}
$$

Clearly, we have the following relationships:

1. For $A_{i}=B_{j}=1(i=\overline{1, l} ; j=\overline{1, m}), \mathcal{S}_{m}^{l}\left(\left[\alpha_{1}\right] ; 1,-1 ; \gamma\right): \equiv \mathcal{H}_{m}^{l}\left(\left[\alpha_{1}\right] ; \gamma\right)$ $(\gamma \in \mathbb{C} \backslash\{0\})[14]$.
2. For $l=2, m=1$, and $A_{i}=B_{j}=1(i=\overline{1, l} ; j=\overline{1, m}), \mathcal{S}_{1}^{2}\left(\alpha_{1}=\beta_{1} ; \alpha_{2}=\right.$ $1 ; 1,-1 ; \gamma): \equiv S(\gamma)(\gamma \in \mathbb{C} \backslash\{0\})[16]$.
3. For $l=2, m=1$, and $A_{i}=B_{j}=1(i=\overline{1, l} ; j=\overline{1, m}), \mathcal{S}_{1}^{2}\left(\alpha_{1}=2 ; \beta_{1}=\right.$ $\left.1 ; \alpha_{2}=1 ; 1,-1 ; \gamma\right): \equiv K(\gamma)(\gamma \in \mathbb{C} \backslash\{0\})[22]$.
4. For $l=2, m=1$, and $A_{i}=B_{j}=1(i=\overline{1, l} ; j=\overline{1, m}), \mathcal{S}_{1}^{2}\left(\alpha_{1}=\beta_{1} ; \alpha_{2}=\right.$ $1 ; 1,-1 ; 1-\alpha): \equiv S^{*}(\alpha),(0 \leq \alpha<1)$.

Moreover $S^{*}(\alpha)$, denotes the class of starlike functions of order α in \mathbb{U}. Majorization problems for the class $S^{*}=S^{*}(0)$ had been investigated by MacGregor [12], recently Altintas et al. [1] investigated a majorization problem for the class $S(\gamma)$. Very recently Goyal and Goswami [7] generalized these results for the fractional operator. In this paper we investigated a majorization problem for the class $\mathcal{S}_{m}^{l}\left(\left[\alpha_{1}\right] ; A, B ; \gamma\right)$, and give some special cases of our result.

2 A MAJORIZATION PROBLEM FOR THE CLASS $\mathcal{S}_{m}^{l}\left(\left[\alpha_{1}\right] ; A,-B ; \gamma\right)$

Theorem 1. Let the function $f(z) \in \mathcal{S}$, and suppose that $g(z) \in \mathcal{S}_{m}^{l}\left(\left[\alpha_{1}\right] ; A, B ; \gamma\right)$. If $\mathcal{W}\left[\alpha_{1}\right] f(z)$ is majorized by $\mathcal{W}\left[\alpha_{1}\right] g(z)$ in \mathbb{U} then

$$
\begin{equation*}
\left|\mathcal{W}\left[\alpha_{1}+1\right] f(z)\right| \leq\left|\mathcal{W}\left[\alpha_{1}+1\right] g(z)\right|, \quad|z| \leq r_{1} \tag{2.1}
\end{equation*}
$$

where r_{1} is smallest the positive root of the equation
$\left|A_{1} \gamma(A-B)+\alpha_{1} B\right| r^{3}-\left[\left|\alpha_{1}\right|+2\left|A_{1}\right||B|\right] r^{2}-\left[\left|A_{1} \gamma(A-B)+\alpha_{1} B\right|+2\left|A_{1}\right|\right] r\left|\alpha_{1}\right|=0$,
where $-1 \leq B<A \leq 1,\left|\alpha_{1}\right| \geq\left|A_{1} \gamma(A-B)+\alpha_{1} B\right|$ and $\gamma \in \mathbb{C} \backslash\{0\}$.
Proof. Since $g \in \mathcal{S}_{m}^{l}\left(\left[\alpha_{1}\right] ; A, B ; \gamma\right)$, we find from (1.10 that

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z\left(\mathcal{W}\left[\alpha_{1}\right] g(z)\right)^{\prime}}{\mathcal{W}\left[\alpha_{1}\right] g(z)}-1\right)=\frac{1+A w(z)}{1+B w(z)} \tag{2.3}
\end{equation*}
$$

where w is analytic in \mathbb{U}, with $w(0)$ and $|w(z)|<1$ for all $z \in \mathbb{U}$. From (2.3), we get

$$
\begin{equation*}
\frac{z\left(\mathcal{W}\left[\alpha_{1}\right] g(z)\right)^{\prime}}{\mathcal{W}\left[\alpha_{1}\right] g(z)}=\frac{1+[\gamma(A-B)+B] w(z)}{1+B w(z)} \tag{2.4}
\end{equation*}
$$

Now, by applying the relation (1.8), in (2.4) we get

$$
\begin{equation*}
\frac{\mathcal{W}\left[\alpha_{1}+1\right] g(z)}{\mathcal{W}\left[\alpha_{1}\right] g(z)}=\frac{\alpha_{1}+\left[A_{1} \gamma(A-B)+\alpha_{1} B\right] w(z)}{\alpha_{1}[1+B w(z)]} \tag{2.5}
\end{equation*}
$$

which yields that,

$$
\begin{equation*}
\left|\mathcal{W}\left[\alpha_{1}\right] g(z)\right|=\frac{\left|\alpha_{1}\right|[1+|B| z \mid]}{\left.\left|\alpha_{1}\right|-\mid A_{1} \gamma(A-B)+\alpha_{1} B\right]| | z \mid}\left|\mathcal{W}\left[\alpha_{1}+1\right] g(z)\right| . \tag{2.6}
\end{equation*}
$$

Since $\mathcal{W}\left[\alpha_{1}\right] f(z)$ is majorized by $\mathcal{W}\left[\alpha_{1}\right] g(z)$ in \mathbb{U} then $\mathcal{W}\left[\alpha_{1}\right] f(z)=$ $\phi(z) \mathcal{W}\left[\alpha_{1}\right] g(z)$ and differentiating with respect to z we get

$$
\begin{equation*}
z\left(\mathcal{W}\left[\alpha_{1}\right] f(z)\right)^{\prime}=z \phi^{\prime}(z) \mathcal{W}\left[\alpha_{1}\right] g(z)+z \phi(z)\left(\mathcal{W}\left[\alpha_{1}\right] g(z)\right)^{\prime} . \tag{2.7}
\end{equation*}
$$

Noting that the Schwarz function $\phi(z)$ satisfies (cf. [15])

$$
\begin{equation*}
\left|\phi^{\prime}(z)\right| \leq \frac{1-|\phi(z)|^{2}}{1-|z|^{2}} \tag{2.8}
\end{equation*}
$$

and using (1.8), (2.6) and (2.8) in (2.7), we have

$$
\begin{align*}
\left|\mathcal{W}\left[\alpha_{1}+1\right] f(z)\right| \leq & \left(|\phi(z)|+\left(\frac{1-|\phi(z)|^{2}}{1-|z|^{2}}\right) \frac{\left|A_{1}\right|[1+|B||z|]|z|}{\left|\alpha_{1}\right|-\left|A_{1} \gamma(A-B)+\alpha_{1} B\right||z|}\right) \\
& \left|\mathcal{W}\left[\alpha_{1}+1\right] g(z)\right| . \tag{2.9}
\end{align*}
$$

Setting $|z|=r$ and $|\phi(z)|=\rho, 0 \leq \rho \leq 1$ leads us to the inequality

$$
\begin{equation*}
\left|\mathcal{W}\left[\alpha_{1}+1\right] f(z)\right| \leq \frac{\Phi(\rho)}{\left(1-r^{2}\right)\left[\left|\alpha_{1}\right|-\left|A_{1} \gamma(A-B)+\alpha_{1} B\right| r\right]}\left|\mathcal{W}\left[\alpha_{1}+1\right] g(z)\right| \tag{2.10}
\end{equation*}
$$

where the function $\Phi(\rho)$ defined by
$\Phi(\rho)=-\left|A_{1}\right| r[1+|B| r] \rho^{2}+\left(1-r^{2}\right)\left[\left|\alpha_{1}\right|-\left|A_{1} \gamma(A-B)+\alpha_{1} B\right| r\right] \rho+\left|A_{1}\right| r[1+|B| r]$
takes its maximum value at $\rho=1$ with with $r=r_{1}(\gamma, A, B)$, the smallest positive root of the equation (2.2).

Furthermore, if $0 \leq \sigma \leq r_{1}$, then the function $\varphi(\rho)$ defined by
$\varphi(\rho)=-\left|A_{1}\right| \sigma[1+|B| \sigma] \rho^{2}+\left(1-\sigma^{2}\right)\left[\left|\alpha_{1}\right|-\left|A_{1} \gamma(A-B)+\alpha_{1} B\right| \sigma\right] \rho+\left|A_{1}\right| \sigma[1+|B| \sigma]$
is an increasing function on $(0 \leq \rho \leq 1)$ so that

$$
\varphi(\rho)=\left(1-\sigma^{2}\right)\left[\left|\alpha_{1}\right|-\left|A_{1} \gamma(A-B)+\alpha_{1} B\right| \sigma\right]+\left|A_{1}\right| \sigma[1+|B| \sigma],
$$

$0 \leq \rho \leq 1,0 \leq \sigma \leq r_{1}$. Therefore, from this fact, (2.10) gives the inequality (2.1).

Putting $A=1, B=-1, \gamma=(1-\alpha) \cos \lambda e^{-i \lambda},|\lambda|<\frac{\pi}{2} ;(0 \leq \alpha \leq 1)$, with $l=2, m=1, A_{t}=B_{t}=1$ and $\alpha_{1}=\alpha_{2}=1 ; \beta_{1}=1$ in Theorem 1, we have the following corollary:

Corollary 1. Let the function $f(z) \in A$ and $g(z) \in S(\gamma)\left(\gamma=(1-\alpha) \cos \lambda e^{-i \lambda}\right.$, $|\lambda|<\frac{\pi}{2} ; 0 \leq \alpha \leq 1$). If

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq\left|g^{\prime}(z)\right|,|z| \leq r_{2} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{2}=\frac{\delta-\sqrt{\delta^{2}-4\left|2(1-\alpha) \cos \lambda e^{-i \lambda}-1\right|}}{2\left|2(1-\alpha) \cos \lambda e^{-i \lambda}-1\right|} \tag{2.12}
\end{equation*}
$$

and

$$
\delta=\left|2(1-\alpha) \cos \lambda e^{-i \lambda}-1\right|+3
$$

Further taking $A=1, B=-1, l=2, m=1, A_{t}=B_{t}=1$ and $\alpha_{1}=\alpha_{2}=1$; $\beta_{1}=1$ in Theorem 1 , we have the following corollary

Corollary 2. Let the function $f(z) \in \mathcal{S}$ be analytic and univalent in the open unit disk \mathbb{U} and suppose that $g(z) \in S(\gamma)$. If $f(z)$ is majorized by $g(z)$ in \mathbb{U}, then

$$
\left|f^{\prime}(z)\right| \leq\left|g^{\prime}(z)\right|,|z| \leq r_{3}
$$

where

$$
r_{3}:=\frac{3+|2 \gamma-1|-\sqrt{9+2|2 \gamma-1|+|2 \gamma-1|^{2}}}{2|2 \gamma-1|}
$$

For $\gamma=1$, Corollary 2 reduces to the following result:
Corollary 3. [12] Let the function $f(z) \in \mathcal{S}$ be analytic and univalent in the open unit disk \mathbb{U} and suppose that $g(z) \in S^{*}=S^{*}(0)$. If $f(z)$ is majorized by $g(z)$ in \mathbb{U}, then

$$
\left|f^{\prime}(z)\right| \leq\left|g^{\prime}(z)\right|,|z| \leq r_{4}
$$

where $r_{4}:=2-\sqrt{3}$.
Concluding Remarks: Further specializing the parameters l, m one can define the various other interesting subclasses of $\mathcal{S}_{m}^{l}\left(\left[\alpha_{1}\right] ; A, B ; \gamma\right)$, involving the differential operators as stated in Remarks 1 to 5 , and the result as in Theorem 1 and the corresponding corollaries as mentioned above can be derived easily. The details involved may be left as an exercise for the interested reader.

Acknowledgement: The authors thank the referee for his insightful suggestions to improve this paper in the present form.

References

[1] O. Altintaş, Ö. Özkan and H. M. Srivastava, Majorization by starlike functions of complex order, Complex Variables Theory Appl. Vol. 46 (2001), no. 3, 207-218.
[2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
[3] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. Vol. 15 (1984), no. 4, 737-745.
[4] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. Vol. 14 (2003), no. 1, 7-18.
[5] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.
[6] J. Dziok and R. K. Raina, Families of analytic functions associated with the Wright generalized hypergeometric function, Demonstratio Math. Vol. 37 (2004), no. 3, 533-542.
[7] S. P. Goyal and P. Goswami, Majorization for certain classes of analytic functions defined by fractional derivatives, Appl. Math. Lett. Vol. 22 (2009), no. 12, 1855-1858.
[8] Y. E. Hohlov, Convolution operators that preserve univalent functions, Ukrain. Mat. Zh. 37 (1985), 220-226.
[9] V. Kiryakova, Criteria for univalence of the Dziok-Srivastava and the Srivastava-Wright operators in the class \mathcal{A}, Appl. Math. Comput. 218 (2011), 883-892.
[10] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
[11] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966), 352-357.
[12] T. H. MacGregor, Majorization by univalent functions, Duke Math. J. 34 (1967),95-102.
[13] S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
[14] G. Murugusundaramoorthy and N. Magesh, Starlike and convex functions of complex order involving the Dziok-Srivastava operator, Integral Transforms Spec. Funct. Vol. 18 (2007), no. 5-6, 419-425.
[15] Z.Nahari, Conformal mapping,MacGra-Hill Book Company, New York; Toronto and London, 1952.
[16] M.A. Nasr, M.K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25 (1) (1985) 1-12.
[17] S. Owa, On the distortion theorems. I, Kyungpook Math. J. Vol. 18 (1978), no. 1, 53-59.
[18] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[19] H. M. Srivastava and S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math. J. 106 (1987), 1-28.
[20] H. M. Srivastava, Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators, Appl. Anal. Discrete Math. 1 (1) (2007), 56-71.
[21] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, Proc. London Math. Soc. (2) 46 (1940), 389-408.
[22] P. Wiatrowski, On the coefficients of some family of holomorphic functions, Zeszyry Nauk. Univ. Lodz. Nauk.Mat.-Przyrod. Ser. II 39 (1970) 75-85.
[23] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, Some applications of differential subordination and the Dziok-Srivastava convolution operator, Appl. Math. Comput. 230 (2014), 496-508.

[^0]: *2010 Mathematics Subject Classification: 30C45.
 ${ }^{\dagger}$ Corresponding author. E-mail: gmsmoorthy@yahoo.com
 ${ }^{\ddagger}$ E-mail: nmagi_2000@yahoo.co.in

