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Abstract

The object of the present paper is to study some classes of weakly
projective symmetric manifolds (WPS)n. At first some properties of
the 1-forms of (WPS)n(n > 2) have been studied. Next we consider
conformally flat (WPS)n(n > 2). Among others we obtain that, in
a (WPS)n the integral curves of the vector ρ3 defined by (1.3), are
geodesics under certain condition. Next we consider (WPS)4 perfect
fluid spacetime. Finally, we give an example of a (WPS)n.

Keywords and Phrases: Weakly symmetric manifolds, Weakly projective
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1. Introduction

As is well known, symmetric spaces play an important role in differential
geometry. The study of Riemannian symmetric spaces was initiated in the late
twenties by Cartan [3], who, in particular, obtained a classification of those
spaces. Let (Mn, g), (n = dimM) be a Riemannian manifold, i.e., a manifold
M with the Riemannian metric g, and let ∇ be the Levi-Civita connection of
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(Mn, g). A Riemannian manifold is called locally symmetric [3] if ∇R = 0,
where R is the Riemannian curvature tensor of (Mn, g). This condition of lo-
cal symmetry is equivalent to the fact that at every point P ∈ M , the local
geodesic symmetry F (P ) is an isometry [21] . The class of Riemannian sym-
metric manifolds is very natural generalization of the class of manifolds of
constant curvature. During the last six decades the notion of locally symmet-
ric manifolds have been weakened by many authors in several ways to different
extent such as conformally symmetric manifolds by Chaki and Gupta [5], re-
current manifolds introduced by Walker [30], conformally recurrent manifolds
by Adati and Miyazawa [1] , pseudo symmetric manifolds by Chaki [6], weakly
symmetric manifolds by Tamassy and Binh [28] etc.

A non-flat Riemannian manifold (Mn, g)(n > 2) is called weakly symmetric
[28] if the curvature tensor R of type (0,4) satisfies the condition

(∇XR)(Y, Z, U, V ) = A(X)R(Y, Z, U, V ) +B(Y )R(X,Z, U, V )

+C(Z)R(Y,X, U, V ) +D(U)R(Y, Z,X, V ) + E(V )R(Y, Z, U,X), (1.1)

where R(Y, Z, U, V ) = g(R(Y, Z)U, V ), R is the curvature tensor of type (1,3)
and A,B,C,D and E are 1-forms respectively which are non-zero simultane-
ously. Such a manifold is denoted by (WS)n. It was proved in [9] that the
1-forms must be related as follows

B = C and D = E.

That is, the weakly symmetric manifold is characterized by the condition

(∇XR)(Y, Z, U, V ) = A(X)R(Y, Z, U, V ) +B(Y )R(X,Z, U, V )

+B(Z)R(Y,X, U, V ) +D(U)R(Y, Z,X, V ) +D(V )R(Y, Z, U,X). (1.2)

The 1-forms A,B and D are called the associated 1-forms. If in (1.2) the
1-form A is replaced by 2A; B and D are replaced by A, then the manifold
(Mn, g) reduces to a pseudo symmetric manifold in the sense of Chaki [6].

Again if A = B = D = 0, the manifold defined by (1.2) reduces to a sym-
metric manifold in the sense of Cartan. The existence of a (WS)n was proved
by Prvanović [24] and a concrete example is given by De and Bandyopadhyay
([9],[10]).

Weakly symmetric manifolds have been studied by several authors ( [2],
[7], [8], [11], [12], [13], [14], [16], [17], [18], [22], [23]) and many others.

Let ρ1, ρ2 and ρ3 are the basic vectors corresponding to the 1-forms A, B
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and D respectively, that is

g(X, ρ1) = A(X), g(X, ρ2) = B(X)

and g(X, ρ3) = D(X) and g(X, ρ4) = E(X). (1.3)

In 1993 Tamássy and Binh [29] introduced the notion of weakly Ricci sym-
metric manifolds. A non-flat Riemannian manifold (Mn, g)(n > 2) is called
weakly Ricci symmetric if its Ricci tensor S of type (0,2) is not identically zero
and satisfies the condition

(∇XS)(Y, Z) = A(X)S(Y, Z) +B(Y )S(X,Z) + C(Z)(Y,X), (1.4)

where A,B,C are three non-zero 1-forms, and ∇ denotes the operator of co-
variant differentiation with respect to the metric g. Such an n-dimensional
manifold is denoted by (WRS)n.

The projective curvature tensor is an important tensor from the differential
geometric point of view. Let M be an n-dimensional Riemannian manifold. If
there exists a one-to-one correspondence between each coordinate neighbour-
hood of M and a domain in Euclidean space, then M is said to be locally
projectively flat. For n ≥ 3, M is locally projectively flat if and only if the
well known projective curvature tensor P vanishes. Here P is defined by [26]

P(Y, Z)U = R(Y, Z)U − 1

n− 1
[S(Z,U)Y − S(Y, U)Z], (1.5)

for all Y, Z, U ∈ T (M), where R is the curvature tensor and S is the Ricci
tensor. In fact M is projectively flat if and only if it is a constant curvature
[32]. Thus the projective curvature tensor is the measure of the failure of a
Riemannian manifold to be of constant curvature.

Now (1.5) can be expressed as

P (Y, Z, U, V ) = R(Y, Z, U, V )− 1

n− 1
[S(Z,U)g(Y, V )− S(Y, U)g(Z, V )],

(1.6)
where P (Y, Z, U, V ) = g(P(Y, Z)U, V ). Since the projective curvature tensor
does not satisfy all the properties of Riemannian curvature tensor, therefore
weakly projective symmetric manifold is characterized by the condition

(∇XP )(Y, Z, U, V ) = A(X)P (Y, Z, U, V ) +B(Y )P (X,Z, U, V )

+C(Z)P (Y,X, U, V ) +D(U)P (Y, Z,X, V ) + E(V )P (Y, Z, U,X), (1.7)
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where the 1-forms A, B, C, D and E are not zero simultaneously. Such a
manifold is denoted by (WPS)n. In a recent paper Shaikh and Hui [25] proved
that in a (WPS)n, B = C. Hence (1.7) can be expressed as

(∇XP )(Y, Z, U, V ) = A(X)P (Y, Z, U, V ) +B(Y )P (X,Z, U, V )

+B(Z)P (Y,X, U, V ) +D(U)P (Y, Z,X, V ) + E(V )P (Y, Z, U,X). (1.8)

where P (Y, Z, U, V ) = g(P(Y, Z)U, V ).
Recently, Mantica and Molinari [16] have studied weakly-Z-symmetric man-

ifolds. On the otherhand, Mantica and Suh ([17], [19]) have studied pseudo-
Z-symmetric Riemannian manifolds with harmonic curvature tensors, pseudo-
Q-symmetric Riemannian manifolds. Moreover Mantica and Suh investigated
deeply pseudo-Z-symmetric spacetimes [20]. Motivated by the above studies
in the present paper we have studied a type of non-flat Riemannian manifold
defined by (1.7) and (1.8).

The paper is organized as follows:
After preliminaries, in Section 3, some properties of the 1-forms of a

(WPS)n have been studied. In Section 4, we study conformally flat (WPS)n.
Section 5 deals with the property of a (WPS)n, D = E and D(ρ3) 6= 0, with
ρ3 as a unit torse-forming vector field. Section 6 is devoted to the study of a
(WPS)4 perfect fluid spacetime. Finally, we give an example of a (WPS)n.

2. Preliminaries

Let S and r denote the Ricci tensor of type (0,2) and the scalar curvature
respectively and L denotes the symmetric endomorphism of the tangent space
at each point corresponding to the Ricci tensor S , that is ,

g(LX, Y ) = S(X, Y ). (2.1)

In this section, some formulas are derived, which will be useful to the study of
(WPS)n. Let {ei} be an orthonormal basis of the tangent space at each point
of the manifold where 1 ≤ i ≤ n.

From (1.5) we can easily verify that the tensor P satisfies the following
properties:

i)P(Y, Z)U = −P(Z, Y )U,



On Some Classes of Weakly Projective Symmetric Manifolds 461

ii)P(Y, Z)U + P(Z,U)Y + P(U, Y )Z = 0. (2.2)

Also from (1.6) we have

Σn
i=1P (Y, Z, ei, ei) = 0 = Σn

i=1P (ei, ei, U, V ) = Σn
i=1P (ei, Z, U, ei) (2.3)

and

Σn
i=1P (Y, ei, ei, V )

=
n

n− 1
[S(Y, V )− r

n
g(Y, V )], (2.4)

where r = Σn
i=1S(ei, ei) is the scalar curvature.

From (1.6) it follows that

(i) P (Y, Z, U, V ) = −P (Z, Y, U, V ),

(ii) P (Y, Z, U, V ) 6= −P (Y, Z, V, U),

(iii) P (Y, Z, U, V ) 6= P (U, V, Y, Z),

(iv) P (X, Y, Z, U) + P (Y, Z,X, U) + P (Z,X, Y, U) = 0. (2.5)

3. Some properties of the 1-forms of a

(WPS)n(n > 2)

Let (Mn, g) be a (WPS)n. Using (1.6) in (1.8) we get

(∇XR)(Y, Z, U, V )− 1

n− 1
[(∇XS)(Z,U)g(Y, V )− (∇XS)(Y, U)g(Z, V )]

= A(X)[R(Y, Z, U, V )− 1

n− 1
{S(Z,U)g(Y, V )− S(Y, U)g(Z, V )}]

+B(Y )[R(X,Z, U, V )− 1

n− 1
{S(Z,U)g(X, V )− S(X,U)g(Z, V )}]

+B(Z)[R(Y,X, U, V )− 1

n− 1
{S(X,U)g(Y, V )− S(Y, U)g(X, V )}]

+D(U)[R(Y, Z,X, V )− 1

n− 1
{S(Z,X)g(Y, V )− S(Y,X)g(Z, V )}]

+E(V )[R(Y, Z, U,X)− 1

n− 1
{S(Z,U)g(Y,X)− S(Y, U)g(Z,X)}].(3.1)
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Contracting (3.1) over Y and V we get

(∇XS)(Z,U)− 1

n− 1
[(n− 1)(∇XS)(Z,U)]

= A(X)[S(Z,U)− S(Z,U)] +B(R(X,Z)U)

− 1

n− 1
{B(X)S(Z,U)−B(Z)S(X,U)}

+B(Z)[S(X,U)− S(X,U)] +D(U)[S(X,Z)− S(X,Z)]

−E(R(U,X)Z)− 1

n− 1
{E(X)S(Z,U)− E(LU)g(Z,X)}.

or,

B(R(X,Z)U)− 1

n− 1
{B(X)S(Z,U)−B(Z)S(X,U)}

−E(R(U,X)Z)− 1

n− 1
{E(X)S(Z,U)− E(LU)g(X,Z)} = 0. (3.2)

Contracting (3.2) over X and U we get

B(LZ) =
r

n
B(Z). (3.3)

Replaceing Z by X in (3.3) we get

B(LX) =
r

n
B(X), (3.4)

which can be written as

S(X, ρ2) =
r

n
g(X, ρ2). (3.5)

Hence we have the following theorem:

Theorem 3.1. In a (WPS)n,
r
n

is an eigen value of the Ricci tensor S cor-
responding to the eigenvector ρ2 by (1.3).

In a recent paper Shaikh and Hui [25] proved that

(B + E)(LX) =
r

n
(B + E)(X). (3.6)

From (3.4) and (3.6) we can conclude that

E(LX) =
r

n
E(X), (3.7)
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which can be written as

S(X, ρ4) =
r

n
g(X, ρ4). (3.8)

Hence we have the following theorem:

Theorem 3.2. In a (WPS)n,
r
n

is an eigenvalue of the Ricci tensor S corre-
spnding to the eigenvector ρ4 defined by (1.3).

Now contracting (3.1) over U and V we get

D(R(Y, Z)X)− 1

n− 1
{D(Y )S(X,Z)−D(Z)S(X, Y )}

−E(R(Y, Z)X)− 1

n− 1
{E(LZ)g(X, Y )− E(LY )g(X,Z)} = 0. (3.9)

Again contracting (3.9) over X and Z we get

D(LY ) =
r

n
D(Y ). (3.10)

Replacing Y by X from (3.10) we get

D(LX) =
r

n
D(X). (3.11)

or,

S(X, ρ3) =
r

n
g(X, ρ3). (3.12)

Thus we have the following theorem:

Theorem 3.3. In a (WPS)n,
r
n

is an eigenvalue of the Ricci tensor S corre-
sponding to the eigenvector ρ3 defined by (1.3).

If possible we assume that in a (WPS)n D = E. Then from (3.9) we get

−D(Y )S(X,Z) +D(Z)S(X, Y )

−D(LZ)g(X, Y ) +D(LY )g(X,Z) = 0. (3.13)

Now using (3.11) in (3.13) we get

D(Y )S(X,Z)−D(Z)S(X, Y )

+
r

n
D(Z)g(X, Y )− r

n
D(Y )g(X,Z) = 0.
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or,

D(Y )[S(X,Z)− r

n
g(X,Z)]

−D(Z)[S(X, Y )− r

n
g(X, Y )] = 0. (3.14)

Putting Y = ρ3 in (3.14) we get

D(ρ3)[S(X,Z)− r

n
g(X,Z)]

−D(Z)D(LX) +
r

n
D(X)D(Z) = 0. (3.15)

Again using (3.11) in (3.15) we get

D(ρ3)[S(X,Z)− r

n
g(X,Z)] = 0. (3.16)

Now let D(ρ3) 6= 0 then from (3.16) we get

S(X,Z) =
r

n
g(X,Z). (3.17)

Hence in this case the (WPS)n is an Einstein manifold. Thus we can state
the following theorem:

Theorem 3.4. If in a (WPS)n, D = E and D(ρ3) 6= 0, then the manifold
reduces to an Einstein manifold.

Contracting (3.1) over Z and U we get

n

n− 1
(∇XS)(Y, V )− dr(X)

n− 1
g(Y, V )

= A(X)[S(Y, V )− 1

n− 1
{rg(Y, V )− S(Y, V )}]

+B(Y )[S(X, V )− 1

n− 1
{rg(X, V )− S(X, V )}]

+B(R(Y,X)V )− 1

n− 1
{B(LX)g(Y, V )−B(LY )g(X, V )}

+D(R(X, V )Y )− 1

n− 1
D(LX)g(Y, V ) +

1

n− 1
D(V )S(X, Y )

+E(V )S(X, Y )− E(V )

n− 1
{rg(X, Y )− S(X, Y )}.
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or,

(∇XS)(Y, V ) =
1

n
dr(X)g(Y, V ) + A(X)S(Y, V )

− r
n
A(X)g(Y, V ) +B(Y )S(X, V )− r

n
B(Y )g(X, V )

−B(R(Y,X)V )− 1

n
{B(LX)g(Y, V )−B(LY )g(X, V )}

+D(R(X, V )Y )− 1

n
{D(LX)g(Y, V )−D(V )S(X, Y )}

+E(V )S(X, Y )− r

n
E(V )g(X, Y ). (3.18)

Let in this (WPS)n r is a non-zero constant and the manifold is (WRS)n with
the same 1-forms A, B and E then from (3.18) we get

− r
n
A(X)g(Y, V )− r

n
B(Y )g(X, V )−B(R(Y,X)V )

− 1

n
{B(LX)g(Y, V )−B(LY )g(X, V )}+D(R(X, V )Y )

− 1

n
{D(LX)g(Y, V )−D(V )S(X, Y )} − r

n
E(V )g(X, Y ) = 0. (3.19)

Again contracting (3.19) over Y and V we get

−rA(X)− r

n
B(X) +

1

n
B(LX)

+
1

n
D(LX)− r

n
E(X) = 0. (3.20)

Using (3.4) and (3.11) in (3.20) we get

n2A(X) + (n− 1)B(X)−D(X) + nE(X) = 0. (3.21)

Thus we have the following theorem:

Theorem 3.5. If a (WPS)n with non-zero constant scalar curvature is also
(WRS)n with the same 1-forms A, B and E then n2A(X) + (n − 1)B(X) −
D(X) + nE(X) = 0 holds for all X.
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4. Conformally flat (WPS)n(n > 3)

In this section we assume that the manifold (WPS)n is conformally flat. Then
divC = 0 where C denotes the Weyl’s conformal curvature tensor and ′div′

denotes divergence. Hence we have [15]

(∇XS)(Y, Z)− (∇ZS)(X, Y )

=
1

2(n− 1)
[g(Y, Z)dr(X)− g(X, Y )dr(Z)]. (4.1)

Now replacing V by Z in (3.18) we get

(∇XS)(Y, Z) =
1

n
dr(X)g(Y, Z)

+A(X)S(Y, Z)− r

n
A(X)g(Y, Z)

+B(Y )S(X,Z)− r

n
B(Y )g(X,Z)

−(n− 1)

n
B(R(X, Y )Z)− 1

n
{B(LX)g(Y, Z)

−B(LY )g(X,Z)}+
(n− 1)

n
D(R(X,Z)Y )

− 1

n
{D(LX)g(Y, Z)−D(Z)S(X, Y )}

+E(Z)S(X, Y )− r

n
E(Z)g(X, Y ). (4.2)

Contracting (4.2) over X and Z we get

(
n− 2

2n
)dr(Y ) = A(LY )

− r
n
A(Y ) + E(LY )− r

n
E(Y ). (4.3)

Replacing Y by X in (4.3) we get

(A+ E)(LX)− r

n
(A+ E)(X) =

(n− 2)

2n
dr(X). (4.4)
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Again using (4.2) in (4.1) we get

A(X){S(Y, Z)− r

n
g(Y, Z)}

−A(Z){S(X, Y )− r

n
g(X, Y )}

−(n− 1)

n
{B(R(Y,X)Z)−B(R(Y, Z)X)}

− 1

n
{B(LX)g(Y, Z)−B(LZ)g(X, Y )}

+
2(n− 1)

n
D(R(X,Z)Y )− 1

n
[D(LX)g(Y, Z)

−D(Z)S(X, Y )−D(LZ)g(X, Y )

+D(X)S(Y, Z)] + E(Z)S(X, Y )

−E(X)S(Y, Z)− r

n
{E(Z)g(X, Y )

−E(X)g(Y, Z)} = − (n− 2)

2n(n− 1)
[dr(X)g(Y, Z)− dr(Z)g(X, Y )]. (4.5)

Contracting (4.5) over Y and Z we get

(A−D − E)(LX)− r

n
(A−D − E)(X) =

n− 2

2n
dr(X). (4.6)

From (4.4) and (4.6) we get

(D + 2E)(LX) =
r

n
(D + 2E)(X). (4.7)

Now (4.7) can be rewritten as

S(X, ρ3 + 2ρ4) =
r

n
g(X, ρ3 + 2ρ4), (4.8)

where ρ3 and ρ4 defined by (1.3). Also (4.7) can be rewritten as

S(X, ρ5) =
r

n
g(X, ρ5), (4.9)

where we assume that
ρ5 = ρ3 + ρ4. (4.10)

Thus we have the following theorem:
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Theorem 4.1. In a conformally flat (WPS)n(n > 3), r
n

is an eigen value of
the Ricci tensor S corresponding to the eigen vector ρ5 defined by (4.10).

Let (Mn, g) be a conformally flat (WPS)n(n > 3). Now using (3.7) and
(3.11) in (4.6) we get

A(LX)− r

n
A(X) =

n− 2

2n
dr(X). (4.11)

Again if in the (WPS)n the scalar curvature r is constant then from (4.11) we
get

A(LX) =
r

n
A(X), (4.12)

which can be written as

S(X, ρ1) =
r

n
g(X, ρ1), (4.13)

where ρ1 is defined by (1.3). Thus we have the following theorem:

Theorem 4.2. In a conformally flat (WPS)n(n > 3), if the scalar curvature
r is constant then r

n
is an eigenvalue of the Ricci tensor S corresponding to

the eigen vector ρ1 defined by (1.3).

Also for a conformally flat (WPS)n(n > 3) if (4.12) holds then from (4.11)
we can conclude that r = constant. Hence we have the following theorem:

Corollary 4.1. In a conformally flat (WPS)n(n > 3), the scalar curvature r
is constant if and only if (4.12) holds.

5. The vector field ρ3 as a torse-forming vector

field

In this section we suppose that ρ3 is a unit torse-forming vector field [31]
defined by (1.3) and given by

∇Xρ3 = λX + ω(X)ρ3, (5.1)

where λ is a non-zero scalar and ω is a non-zero 1-form, called respectively the
scalar and 1-form of the vector field ρ3.
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Now if in a (WPS)n D = E and D(ρ3) 6= 0 then from Theorem 3.4 we can
conclude that the manifold is Einstein and so we can use (3.17). Hence from
(3.17) we get

(∇XS)(Y, ρ3) = 0. (5.2)

But
(∇XS)(Y, ρ3) = ∇XS(Y, ρ3)− S(∇XY, ρ3)− S(Y,∇Xρ3).

Therefore, using (3.17) we obtain

r

n
(∇XD)(Y ) + S(Y,∇Xρ3) = 0. (5.3)

By virtue of (5.1) we get from (5.3)

r

n
(∇XD)(Y ) + S(Y, λX + ω(X)ρ3) = 0.

or,
r

n
(∇XD)(Y ) + λS(Y,X) + ω(X)S(Y, ρ3) = 0. (5.4)

Using (3.16) in (5.4) we get

r

n
(∇XD)(Y ) + λS(Y,X) +

r

n
ω(X)D(Y ) = 0. (5.5)

Putting Y = ρ3 in (5.5) we get

(∇XD)(ρ3) + λD(X) + ω(X) = 0, (5.6)

since ρ3 is a unit vector.
But

(∇XD)(ρ3) = D(∇Xρ3), (5.7)

since ρ3 is a unit vector.
Hence using (5.1) in (5.7) we get

(∇XD)(ρ3) = λD(X) + ω(X). (5.8)

From (5.8) and (5.6) we get

ω(X) = −λD(X). (5.9)

or,
λ = −ω(ρ3). (5.10)
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Hence (5.1) can be rewritten using (5.10) as

∇Xρ3 = −ω(ρ3)X + ω(X)ρ3.

Therefore ∇ρ3ρ3 = 0. Thus we have the following:

Theorem 5.1. If in a (WPS)n, D = E and D(ρ3) 6= 0, the vector field ρ3 is
a unit torse-forming vector field, then the integral curves of the vector ρ3 are
geodesics.

6. Application of (WPS)4) perfect fluid space-

time with D = E and D(ρ3) 6= 0

A semi-Riemannian four-dimensional manifold (M4, g) with Lorentzian metric
g with signature (-,+,+,+) is called weakly projective symmetric spacetime if
its projective curvature tensor satisfies (1.7) and (1.8), where the vector field ρ3
is related by g(X, ρ3) = D(X) and also D = E and D(ρ3) 6= 0. In this section
we consider (WPS)4 relativistic spacetime that is, a 4-dimensional (WPS)4
Lorentzian manifold as a perfect fluid spacetime with cosmological constant λ
in which the associated vector field ρ3 is the velocity vector field of the fluid.

For a perfect fluid spacetime, we have the Einstein’s equation with cosmo-
logical constant [27] as

S(X, Y )− r

2
g(X, Y ) + λg(X, Y ) = kT (X, Y ), (6.1)

where k is the Einstein’s gravitational constant, T is the energy momentum
tensor of type (0,2) given by

T (X, Y ) = (σ + p)D(X)D(Y ) + pg(X, Y ), (6.2)

where σ and p as the energy density and isotropic pressure of the fluid respec-
tively and D being given by g(X, ρ3) = D(X) for all X, ρ3 is the flow
vector field of the fluid such that g(ρ3, ρ3) = −1. Using (6.2) in (6.1) we get

S(X, Y )− r

2
g(X, Y ) + λg(X, Y ) = k[(σ + p)D(X)D(Y ) + pg(X, Y )]. (6.3)

Putting Y = ρ3 in (6.3) and using (3.17) we have

σ =
r − 4λ

4k
. (6.4)
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Taking a frame field and contracting (6.3) over X and Y we get

−r + 4λ = k(3p− σ). (6.5)

Again if we use (6.4) in (6.5) for (WPS)4 perfect fluid spacetime, we get

p =
−r + 4λ

4k
. (6.6)

Since a (WPS)n with D = E and D(ρ3) 6= 0 is an Einstein manifold so for
n > 2 the scalar curvature r of the manifold will be constant. Then from
(6.4) and (6.6) we can conclude that p and σ are constants. Also from (6.4)
and (6.6) we get σ + ρ = 0, which means the fluid behaves as a cosmological
constant [27]. This is also termed as phantom barrier [4]. Now in a cosmology
we know such a choice σ = −p lead to rapid expansion of the spacetime which
is now termed as inflation. Thus we have the follwing:

Theorem 6.1. In a (WPS)n spacetime with the condition D = E and D(ρ3) 6=
0, the matter distribution is perfect fluid whose velocity vector field is ρ3 de-
fined by (1.3), then the spacetime represents inflation. In this case the isotropic
pressure p and the energy density σ are constant. Also the fluid behaves as a
cosmological constant. This is also termed as a phantom barrier.

7. Example of a (WPS)4

In this section we give an example of (WPS)n, with the non-zero scalar cur-
vature.

Example 7.1. Let (R4, g) be a 4-dimensional Riemannian manifold endowed
with the Riemannian metric g given by

ds2 = gijdx
idxj = x2[(dx1)2 + (dx2)2] + (dx3)2 + x1(dx4)2, (7.1)

where (i, j = 1, 2, 3, 4), x1 and x2 are non-zero. Here the only non-vanishing
components of the Christoffel symbols and the curvature tensors are respectively
:

Γ2
11 = − 1

x2
, Γ1

12 = Γ2
22 =

1

2x2
, Γ1

44 = −Γ4
14 = − 1

2x2
,

R1221 = − 1

2x2
, R1441 = − 1

4x1
, R1442 = − 1

4x2
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and the components obtained by the symmetry properties. The non-vanishing
components of the Ricci tensors are:

R11 =
1

2(x2)2
− 1

4(x1)2
, R22 = − 1

2(x2)2
, R44 = R12 = − 1

4x1x2
,

It can be easily shown that the scalar curvature r of this (R4, g) is − 1
2(x1)2x2

6= 0,
which is non-vanishing and non-constant. Therefore the non-vanishing com-
ponents of the projective curvature tensor and their covariant derivatives are
respectively:

P1221 = − 1

3x2
, P1441 = − 1

6x1
, P1442 = − 1

4x2
;

P1221,2 =
1

3(x2)2
, P1441,1 =

1

6(x1)2
, , P1442,2 =

1

4(x2)2
.

Let us choose the associated 1-forms as follows:

Ai(x) =


− 2
x1

for i=1

− 2
x2

for i=2

0 otherwise,

(7.2)

Bi(x) =



1
2x1

for i=1

1
2x2

for i=2

0 otherwise,

(7.3)

Di(x) =


1

2x2
for i=2

0 otherwise,
(7.4)

Ei(x) =



1
2x1

for i=1

1
x2

for i=2

0 otherwise,

(7.5)
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at any point x ∈ R4. Now the equation (1.8) reduces to the equations

P1221,2 = A2P1221 +B1P2221 +B2P1221 +D2P1221 + E1P1222, (7.6)

P1441,1 = A1P1441 +B1P1441 +B4P1141 +D4P1411 + E1P1441, (7.7)

P1442,2 = A2P1442 +B1P2442 +B4P1242 +D4P1422 + E2P1442, (7.8)

since, for the other cases (1.8) holds trivially.
By (7.2), (7.3), (7.4) and (7.5) we get the following relation for the right

hand side(R.H.S.) and the left hand side(L.H.S.) of (7.6)

R.H.S. of (7.6) = A2P1221 +B1P2221 +B2P1221 +D2P1221 + E1P1222

= [A2 +B2 +D2]P1221

= {− 1

x2
}{− 1

3x2
}

=
1

3(x2)2

= P1221,2

= L.H.S. of (7.6).

By similar argument it can be shown that (7.7) and (7.8) are true. So, R4

is a (WPS)n whose scalar curvature is non-zero and non-constant and the
manifold (R4, g) is neither projectively flat nor projectively symmetric.
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References

[1] Adati, T. and Miyazawa, T., On a Riemannian space with recurrent con-
formal curvature, Tensor(N.S.), 18 (1967), 348-354.



474 Prajjwal Pal

[2] Binh, T. Q., On weakly symmetric Riemannian spaces, Publ. Math. De-
brecen, 42 (1993), 103-107.

[3] Cartan, E., Sur une classes remarquable d’espaces de Riemannian, Bull.
Soc. Math. France, 54 (1926), 214-264.

[4] Chakraborty, S., Mazumder, N. , and Biswas, R. , Cosmological Evolu-
tion Acroos Phantom Crossing and the Nature of the Horizon, Astrophys.
Space Sci., 334 nl (2011), 183-186.

[5] Chaki, M. C. and Gupta, B., On conformally symmetric spaces, Indian
J. Math., 5 (1963), 113-295.

[6] Chaki, M. C., On pseudo symmetric manifolds, Ann. St. Univ. “Al I
Cuza” Iasi, 33 (1987), 53-58.

[7] De, U. C., On weakly symmetric structures on Riemannian manifolds,
Facta Univ. Ser. Mech. Automat. Control Robot., 3 no. 14 (2003), 805-
819.

[8] De, U. C., On weakly conformally symmetric Ricci-recurrent spaces, Publ.
Math. Debrecen, 62 (2003), 379-386.

[9] De, U. C. and Bandyopadhyay, S., On weakly symmetric spaces, Publ.
Math. Debrecen, 54 (1999), 377-381.

[10] De, U. C. and Bandyopadhyay, S., On weakly symmetric spaces, Acta
Math. Hungarica, 83 (2000), 205-212.

[11] De, U. C. and Bandyopadhyay, S., On weakly conformally symmetric
spaces, Publ. Math. Debrecen, 57 (2000), 71-78.

[12] De, U. C. and Ghosh, S. K., On weakly Ricci symmetric spaces, Publ.
Math. Debrecen, 60 (2002), 201-208.

[13] De, U. C. and Mallick, S., On weakly symmetric spacetimes, Kragujevac
J. Math., 36 (2012), 299-308.

[14] De, U. C. and Sengupta, J., On a weakly symmetric Riemannian manifold
admitting a special type of semi-symmetric metric connection, Novi Sad.
J. Math., 29 (1999), 89-95.



On Some Classes of Weakly Projective Symmetric Manifolds 475

[15] Eisenhart, L. P., Riemannian Geometry, Princeton University Press,
1949.

[16] Mantica, C. A. and Molinari, L. G., Weakly Z-Symmetric manifolds, Acta
Math. Hungarica, 135 no. 1-2 (2012), 80-96.

[17] Mantica, C. A. and Y. J. Suh, Pseudo-Z-symmetric Riemannian manifolds
with harmonic curvature tensors, Int. J. Geom. Meth. Mod. Phys., 9 no.
1 (2012), 1250004(21 pages).

[18] Mantica, C. A. and Y. J. Suh, Recurrent Z forms on Riemannian and
Kaehler manifolds, Int. J. Geom. Meth. Mod. Phys., 9 no. 7 (2012),
1250059(26 pages).

[19] Mantica, C. A. and Y. J. Suh, Pseudo-Q-symmetric Riemannian mani-
folds, Int. J. Geom. Meth. Mod. Phys., 10(5) (2013), 1350013(25 pages).

[20] Mantica, C. A. and Suh, Y. J., Pseudo-Z-symmetric space-times, Journal
of Math Phys, 55 n4, (2014), 042502(12 pages).

[21] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity,
Academic Press, New York-London, 1983.

[22] Ozen, F. and Altay, S., Weakly and pseudo-symmetric Riemannian
spaces, Indian J. Pure appl. Math., 33 no. 10 (2002), 1477-1488.

[23] Ozen, F. and Altay, S., On weakly and pseudo-concircular symmetric
structures on a Riemannian manifold, Acta Univ. Palack. Olomuc., Fac.
Rerum. natur. Math., 47 (2008), 129-138.
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