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1. Introduction

In 1989, Matsumoto [11] introduced the notion of LP -Sasakian manifolds.
Then Mihai and Rosca [8] introduced the same notion independently and they
obtained several results in this manifold. LP -Sasakian manifolds have been
studied by several authors ([1],[20],[12]). In a recent paper De, Shaikh and Sen-
gupta [17]introduced the notion of LP -Sasakian manifolds with a coefficient
α which generalizes the notion of LP -Sasakian manifolds. Lorentzian para-
Sasakian manifold with a coefficient α have been studied by De et al ([19],[18]).
In [17] it is shown that if a Lorentzian manifold admits a unit torse-forming
vector field, then the manifold becomes an LP -Sasakian manifold with a co-
efficient α where α is a non-zero smooth function. Recently, T.Ikawa and his
coauthors ([15],[16]) studied Sasakian manifolds with Lorentzian metric and
obtained several results in this manifold. Motivated by the above studies we
like to generalize LP -Sasakian manifold which is called an LP -Sasakian man-
ifold with a coefficient α.

In general, a geodesic circle (a curve whose first curvature is constant and
second curvature is identically zero) does not transform into a geodesic circle
by the conformal transformation

g̃ij = ψ2gij, (1.1)

of the fundamental tensor gij, where ψ is a smooth function on the mani-
fold. The transformation which preserves geodesic circles was first introduced
by Yano [13].The conformal transformation satisfying the partial differential
equation

ψ;i;j = φgij, (1.2)

changes a geodesic circle into a geodesic circle, where φ is a smooth function
on the manifold. Such a transformation is known as the concircular transfor-
mation and the geometry which deals with such transformation is called the
concircular geometry [13].

Let (M, g) be an n-dimensional Riemannian manifold. Then the concircu-
lar curvature tensor C̃ and the Weyl conformal curvature tensor C are defined
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by [14]

C̃(X, Y )U = R(X, Y )U − r

n(n− 1)
(g(Y, U)X − g(X,U)Y ), (1.3)

C(X, Y )U = R(X, Y )U − 1

n− 2
{S(Y, U)X − S(X,U)Y + g(Y, U)QX

− g(X,U)QY }+
r

(n− 1)(n− 2)
{g(Y, U)X − g(X,U)Y }(1.4)

for all X, Y, U ∈ TM respectively, where r is the scalar curvature of M and
Q is the symmetric endomorphism of the tangent space at each point corre-
sponding to the Ricci tensor S.

The importance of concircular transformation and concircular curvature
tensor is very well known in the differential geometry of certain F -structure
such as complex, almost complex, Kahler, almost Kahler, contact and al-
most contact structure etc. ([4],[21],[14]). In a recent paper Z.Ahsan and
S.A.Siddiqui [22] studied the application of concircular curvature tensor in
fluid space time.

Let M be an almost contact metric manifold equipped with an almost
contact metric structure (φ, ξ, η, g). At each point p ∈ M , decompose the
tangent space TpM into direct sum TpM = φ(TpM)⊕L(ξp), where L(ξp) is the
1-dimensional linear subspace of TpM generated by {ξp}. Thus the conformal
curvature tensor C is a map

C : TpM × TpM × TpM −→ φ(TpM)⊕ L(ξp), p ∈M. (1.5)

It may be natural to consider the following particular cases:
(1) C : Tp(M) × Tp(M) × Tp(M) −→ L(ξp), that is, the projection of the
image of C in φ(Tp(M)) is zero.
(2) C : Tp(M) × Tp(M) × Tp(M) −→ φ(Tp(M)), that is, the projection of
the image of C in L(ξp) is zero. This condition is equivalent to

C(X, Y )ξ = 0, for all X, Y,∈ Tp(M). (1.6)

(3) C : φ(Tp(M)) × φ(Tp(M)) × φ(Tp(M)) −→ L(ξp), that is, when C is
restricted to φ(Tp(M)) × φ(Tp(M)) × φ(Tp(M)), the projection of the image
of C in φ(Tp(M)) is zero. This condition is equivalent to

φ2C(φX, φY )φZ = 0, for all X, Y, Z ∈ Tp(M). (1.7)
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An almost contact metric manifold satisfying (1.6) and (1.7) are called ξ-
conformally flat and φ-conformally flat respectively. An almost contact metric
manifold satisfying the cases (1), (2) and (3) are considered in [5], [6] and
[9] respectively. Furthermore in [10] and [3] the case (3) was considered in a
(k, µ)- contact metric manifold and an LP -Sasakian manifold respectively. In
an analogous way we define the following:

Definition 1.1. An n-dimensional LP -Sasakian manifold with a coefficient α
is said to be ξ-concircularly flat if

C̃(X, Y )ξ = 0, for any X, Y ∈ TM. (1.8)

Definition 1.2. An n-dimensional LP -Sasakian manifold with a coefficient α
is said to be φ-concircularly flat if

g(C̃(φX, φY )φZ, φW ) = 0, for any X, Y, Z ∈ TM. (1.9)

In the coordinate free method of differential geometry the spacetime of gen-
eral relativity is regarded as a connected four dimensional semi-Riemannian
manifold (M4, g) with Lorentz metric g with signature (−,+,+,+). The ge-
ometry of Lorentz manifold begins with the study of the causal character of
vectors of the manifold. It is due to this causality that the Lorentz manifold
becomes a convenient choice for the study of general relativity. A non-zero
vector v ε TpM is said to be timelike (resp; non-spacelike, null, spacelike) if it
satisfies g(v, v) < 0 (resp; ≤ 0. = 0, > 0) [2].
Here we consider a special type of spacetime which is called Lorentzian para-
Sasakian type spacetime.

The present paper is organized as follows:
After preliminaries in section 3, we give some examples of LP -Sasakian mani-
folds with a coefficient α. In section 4, we find necessary and sufficient condi-
tions for LP -Sasakian manifolds with a coefficient α satisfying the curvature
conditions like C̃(ξ,X) · C̃ = 0, C̃(ξ,X) · S = 0 and C̃(ξ,X) · C = 0. Next
we study ξ-concircularly flat LP -Sasakian manifolds with a coefficient α and
prove that an n-dimensional, n ≥ 1, LP -Sasakian manifold with a coefficient
α is ξ-concircularly flat if and only if r = (α2 − σ)n(n − 1). Section 6 deals
with the study of φ-concircularly flat LP -Sasakian manifolds with a coefficient
α. Finally, we study Lorentzian para-Sasakian type spacetime.
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2. Lorentzian Para-Sasakian Manifolds with a

coefficient α

Let Mn be an n-dimensional differentiable manifold endowed with a (1, 1)
tensor field φ, a contravariant vector field ξ, a covariant vector field η and a
Lorentzian metric g of type (0, 2) such that for each point p ∈ M , the tensor
gp:TpM × TpM → R is an inner product of signature (−,+,+, .....,+), where
TpM denotes the tangent vector space of M at p and R is the real number
space which satisfies

φ2(X) = X + η(X)ξ, η(ξ) = −1, (2.1)

g(X, ξ) = η(X), g(φX, φY ) = g(X, Y ) + η(X)η(Y ) (2.2)

for all vector fields X, Y . Then such a structure (φ, ξ, η, g) is termed as
Lorentzian almost paracontact structure and the manifold Mn with the struc-
ture (φ, ξ, η, g) is called Lorentzian almost paracontact manifold [11]. In the
Lorentzian almost paracontact manifold Mn, the following relations hold [11]
:

φξ = 0, η(φX) = 0, (2.3)

Ω(X, Y ) = Ω(Y,X), (2.4)

where Ω(X, Y ) = g(X,φY ).
In the Lorentzian almost paracontact manifold Mn, if the relations

(∇ZΩ)(X, Y ) = α[(g(X,Z) + η(X)η(Z)) η(Y )

+(g(Y, Z) + η(Y )η(Z))η(X)], (2.5)

Ω(X, Y ) =
1

α
(∇Xη)(Y ), (2.6)

hold where ∇ denotes the operator of covariant differentiation with respect to
the Lorentzian metric g and α is a non-zero scalar function, then Mn is called
an LP -Sasakian manifold with a coefficient α [17]. An LP -Sasakian manifold
with a coefficient 1 is an LP -Sasakian manifold [11].
If a vector field V satisfies the equation of the following form:

∇XV = αX + A(X)V, (2.7)

where α is a non-zero scalar function and A is a non-zero 1-form, then V is
called a torse-forming vector field [14].
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In the Lorentzian manifold Mn, let us assume that ξ is a unit torse-forming
vector field. Then we have

∇Xξ = αX + A(X)ξ. (2.8)

Now g(ξ, ξ) = −1, which implies that g(∇Xξ, ξ) = 0. Then using the equation
(2.8) we get

A(X) = αη(X). (2.9)

Now

(∇Xη)(Y ) = ∇Xη(Y )− η(∇XY )

= g(Y,∇Xξ). (2.10)

Using (2.7) and (2.9) in (2.10) yields

(∇Xη)(Y ) = α[g(X, Y ) + η(X)η(Y )]. (2.11)

Especially, if η satisfies

(∇Xη)(Y ) = ε[g(X, Y ) + η(X)η(Y )], ε2 = 1 (2.12)

then Mn is called an LSP -Sasakian manifold[11]. In particular, if α satisfies
(2.11) and the equation of the following form:

∇Xα = dα(X) = ση(X), (2.13)

where σ is a smooth function and η is the 1-form, then ξ is called a concircular
vector field.
Let us consider an LP -Sasakian manifold Mn (φ, ξ, η, g) with a coefficient α.
Then we have the following relations [17]:

η(R(X, Y )Z) = (α2 − σ)[g(Y, Z)η(X)− g(X,Z)η(Y )], (2.14)

S(X, ξ) = (n− 1)(α2 − σ)η(X), (2.15)

R(X, Y )ξ = (α2 − σ)[η(Y )X − η(X)Y ], (2.16)

R(ξ, Y )X = (α2 − σ)[g(X, Y )ξ − η(X)Y ], (2.17)

(∇Xφ)(Y ) = α[g(X, Y )ξ + 2η(X)η(Y )ξ + η(Y )X], (2.18)

S(φX, φY ) = S(X, Y ) + (n− 1)(α2 − σ)g(X, Y ), (2.19)
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for all vector fields X, Y, Z, where R, S denote respectively the curvature tensor
and the Ricci tensor of the manifold (M, g).
An n-dimensional LP -Sasakian manifold is said to be Einstein if S(X, Y ) =
λg(X, Y ), where λ is a constant and η-Einstein if the Ricci tensor S satisfies

S = ag + bη ⊗ η,

where a and b are smooth functions on the manifold .

3. Examples of LP -Sasakian manifolds with a

coefficient α

We now give some examples of LP -Sasakian manifolds with a coefficient α
both in odd and even dimensions.
Example 3.1: We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3},
where (x, y, z) are standard coordinates of R3.
The vector fields

e1 = e−z(
∂

∂x
+ y

∂

∂y
), e2 = e−z

∂

∂y
, e3 = e−2z

∂

∂z

are linearly independent at each point of M.
Let g be the Lorentzian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = 1,

g(e3, e3) = −1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M), where
χ(M) is the set of all smooth vector fields on M . Let φ be the (1, 1) tensor
field defined by

φ(e1) = e1, φ(e2) = e2, φ(e3) = 0.

Then using the linearity of φ and g, we have

η(e3) = −1,

φ2Z = Z + η(Z)e3,
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g(φZ, φW ) = g(Z,W ) + η(Z)η(W ),

for any Z,W ∈ χ(M).
Then for e3 = ξ , the structure (φ, ξ, η, g) defines a Lorentzian paracontact
structure on M .
Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g
. Then we have

[e1, e2] = −e−ze2 , [e1, e3] = e−2ze1 and [e2, e3] = e−2ze2.

Taking e3 = ξ and using Koszul’s formula [14] for the Lorentzian metric g, we
can easily calculate

∇e1e3 = e−2ze1, ∇e1e2 = 0, ∇e1e1 = e−2ze3,

∇e2e3 = e−2ze2, ∇e2e2 = e−2ze3 − e−ze1, ∇e2e1 = e−2ze2,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

From the above it can be easily seen that M3(φ, ξ, η, g) is an LP -Sasakian
manifold with α = e−2z 6= 0.

Example 3.2: We consider the 4-dimensional manifold M = {(x, y, z, w) ∈
R4 | w 6= 0}, where (x, y, z, w) are standard coordinates of R4.

The vector fields

e1 = w(
∂

∂x
+ y

∂

∂y
), e2 = w

∂

∂y
, e3 = w(

∂

∂y
+

∂

∂z
), e4 = (w)3

∂

∂w

are linearly independent at each point of M.
Let g be the Lorentzian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e4, e4) = −1.

g(ei, ej) = 0 for i 6= j, i, j = 1, 2, 3, 4.
Let η be the 1-form defined by η(Z) = g(Z, e4) for any Z ∈ χ(M).
Let φ be the (1, 1) tensor field defined by

φ(e1) = e1, φ(e2) = e2, φ(e3) = e3, φ(e4) = 0.
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Then using the linearity of φ and g, we have

η(e4) = −1,

φ2Z = Z + η(Z)e4,

g(φZ, φW ) = g(Z,W ) + η(Z)η(W ),

for any Z,W ∈ χ(M).
Then for e4 = ξ , the structure (φ, ξ, η, g) defines a Lorentzian paracontact
structure on M .
Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g.
Then we have

[e1, e2] = −we2 , [e1, e4] = −(w)2e1 ,

[e2, e4] = −(w)2e2 and [e3, e4] = −(w)2e3.

Taking e4 = ξ and using Koszul’s formula for the Lorentzian metric g, we can
easily calculate

∇e1e4 = −(w)2e1, ∇e2e1 = we2, ∇e1e1 = −(w)2e4,

∇e2e4 = −(w)2e2, ∇e3e4 = −(w)2e3,

∇e3e3 = −(w)2e4, ∇e2e2 = −(w)2e4 − we1.

From the above it can be easily seen that M4(φ, ξ, η, g) is an LP -Sasakian
manifold with α = −(w)2 6= 0.

4. main result

In this section we obtain necessary and sufficient conditions for LP -Sasakian
manifolds with a coefficient α satisfying the derivation conditions C̃(ξ,X)·C̃ =
0, C̃(ξ,X)·S = 0 and C̃(ξ,X)·C = 0, where C̃(X, Y ) is treated as a derivation
of the tensor algebra for any tangent vectors X, Y . That is, C̃(ξ,X) · C̃ = 0,
C̃(ξ,X) · S = 0 and C̃(ξ,X) · C = 0 mean C̃ operating on C̃, S and C
respectively.
In an LP -Sasakian manifold with a coefficient α , we have

C̃(X, Y )ξ = ((α2 − σ)− r

n(n− 1)
){η(Y )X − η(X)Y }, (4.1)
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C̃(ξ,X)Y = ((α2 − σ)− r

n(n− 1)
){g(X, Y )ξ − η(Y )X}. (4.2)

Let us consider the condition C̃(ξ, U) · C̃ = 0, which implies that

C̃(ξ, U)C̃(X, Y )W − C̃(C̃(ξ, U)X, Y )W − C̃(X, C̃(ξ, U)Y )W

− C̃(X, Y )C̃(ξ, U)W = 0. (4.3)

Putting W = ξ in (4.3) we have

C̃(ξ, U)C̃(X, Y )ξ − C̃(C̃(ξ, U)X, Y )ξ − C̃(X, C̃(ξ, U)Y )ξ

− C̃(X, Y )C̃(ξ, U)ξ = 0, (4.4)

which in view of (4.2) and (4.1) gives

((α2−σ)− r

n(n− 1)
){C̃(X, Y )U+((α2−σ)− r

n(n− 1)
)(g(X,U)Y−g(Y, U)X)} = 0.

Therefore, either the scalar curvature r = n(n− 1)(α2 − σ) or,

C̃(X, Y )U + ((α2 − σ)− r

2n(2n+ 1)
){g(X,U)Y − g(Y, U)X} = 0,

which in view of (1.3) gives

R(X, Y )U = (α2 − σ)(g(Y, U)X − g(X,U)Y ). (4.5)

Using Bianchi 2nd identity the above equation implies that the manifold is of
constant curvature (α2 − σ).
Conversely, if the manifold has the scalar curvature r = n(n−1)(α2−σ), then
from (4.2) it follows that C̃(ξ,X) = 0. Similarly, in the second case, since the
manifold under consideration is of constant curvature, therefore we again get
C̃(ξ,X) = 0. Therefore we state the following:

Theorem 4.1. An n-dimensional LP -Sasakian manifold satisfies

C̃(ξ,X) · C̃ = 0

if and only if either the scalar curvature of the manifold is r = n(n−1)(α2−σ)
or, the manifold is of constant curvature (α2 − σ).
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We also consider the condition C̃(ξ,X) · S = 0, which implies that

S(C̃(ξ,X)Y, ξ) + S(Y, C̃(ξ,X)ξ) = 0,

which in view of (4.2) gives

((α2 − σ)− r

n(n− 1)
){g(X, Y )S(ξ, ξ)− S(X, Y )} = 0.

So by use of (2.14) and (2.1) we have

((α2 − σ)− r

n(n− 1)
){−2ng(X, Y )− S(X, Y )} = 0.

Therefore either the scalar curvature of (M, g) is r = n(n− 1)(α2−σ) or, S =
−2ng which implies that the LP -Sasakian manifold is an Einstein manifold.
The converse is trivial. So we can state the following:

Theorem 4.2. An n-dimensional LP -Sasakian manifold with a coefficient
α satisfies C̃(ξ,X) · S = 0 if and only if either the manifold has the scalar
curvature r = n(n− 1)(α2 − σ) or, the manifold is an Einstein manifold.

Next, we consider an n-dimensional LP -Sasakian manifold with a coeffi-
cient α satisfying C̃(ξ,X) · C = 0, which implies that

C̃(ξ, U)C(X, Y )W − C(C̃(ξ, U)X, Y )W − C(X, C̃(ξ, U)Y )W

− C(X, Y )C̃(ξ, U)W = 0, (4.6)

which in view of (4.2) we have

((α2 − σ) − r

n(n− 1)
){C(X, Y,W,U)ξ − η(C(X, Y )W )U

− g(U,W )C(X, Y )ξ + η(W )C(X, Y )U − g(U,X)C(ξ, Y )W

+ η(X)C(U, Y )W − g(U, Y )C(X, ξ)W + η(Y )C(X,U)W} = 0,

where C(X, Y,W,U) = g(C(X, Y )W,U).
So either the scalar curvature of (M, g) is r = n(n−1)(α2−σ) or, the equation

C(X, Y,W,U)ξ − η(C(X, Y )W )U − g(U,W )C(X, Y )ξ + η(W )C(X, Y )U

− g(U,X)C(ξ, Y )W + η(X)C(U, Y )W − g(U, Y )C(X, ξ)W

+ η(Y )C(X,U)W ) = 0
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holds on the manifold.
Taking the inner product of the last equation with ξ we get

−C(X, Y,W,U) − η(C(X, Y )W )η(U)− g(U,W )η(C(X, Y )ξ)

+ η(W )η(C(X, Y )U)− g(U,X)η(C(ξ, Y )W )

+ η(X)η(C(U, Y )W )− g(U, Y )η(C(X, ξ)W )

+ η(Y )η(C(X,U)W ) = 0. (4.7)

Hence using (2.14) and (1.4)in the equation (4.7)and by a suitable contraction
we get

S(Y,W ) = (
r

n− 1
− (α2−σ))g(Y,W ) + (

r

n− 1
−n(α2−σ))η(Y )η(W ), (4.8)

which implies that the LP -Sasakian manifold is an η-Einstein manifold.
Now from (1.4) we obtain

η(C(X, Y )W ) = η(R(X, Y )W )− 1

n− 2
{S(Y,W )η(X)− S(X,W )η(Y )

+ g(Y,W )S(X, ξ)− g(X,W )S(Y, ξ)}
+

r

(n− 1)(n− 2)
{g(Y,W )η(X)− g(X,W )η(Y )}. (4.9)

Using (2.14) and (4.8), (4.9) reduces to η(C(X, Y )W ) = 0. Hence from (4.7)
we have C = 0, that is, the manifold is conformally flat. Also the converse is
trivial.
So we can state the following:

Theorem 4.3. An n-dimensional LP -Sasakian manifold with a coefficient
α satisfies C̃(ξ,X) · C = 0 if and only if either the manifold has the scalar
curvature r = n(n− 1)(α2 − σ) or, the manifold is conformally flat

5. ξ-concircularly flat LP -Sasakian manifolds

with a coefficient α

In this section we study ξ-concircularly flat LP -Sasakian manifolds with a
coefficient α. Let M be an n-dimensional, n ≥ 3, ξ-concircularly flat LP -
Sasakian manifolds with a coefficient α. Putting U = ξ in (1.3) and applying
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(1.7) and g(X, ξ) = η(X), we have

R(X, Y )ξ =
r

n(n− 1)
[η(Y )X − η(X)Y ]. (5.1)

Using (2.16) in (5.1), we obtain

((α2 − σ)− r

n(n− 1)
)[η(Y )X − η(X)Y ] = 0. (5.2)

Now [η(Y )X − η(X)Y ] 6= 0 in a paracontact metric manifold, in general.
Therefore (5.2) gives

r = (α2 − σ)n(n− 1). (5.3)

Now, we consider an n-dimensional LP -Sasakian manifold with a coefficient
α with r = (α2 − σ)n(n− 1). Then using (1.3) and (2.16) we easily obtain

C̃(X, Y )ξ = 0. (5.4)

In view of above discussions we state the following:

Theorem 5.1. An n-dimensional LP -Sasakian manifold with a coefficient α
is ξ-concircularly flat if and only if r = (α2 − σ)n(n− 1).

6. φ-concircularly flat LP -Sasakian manifolds

with a coefficient α

This section is devoted to study φ-concircularly flat LP -Sasakian manifolds
with a coefficient α. Let M be an n-dimensional φ-concircularly flat LP -
Sasakian manifold with a coefficient α.
Using (1.8) in (1.3) we obtain

g(R(φX, φY )φW, φV ) =
r

n(n− 1)
[g(φY, φW )g(φX, φV ) (6.1)

−g(φX, φW )g(φY, φV )].

Let {e1, e2, ..., en−1, ξ} be a local orthonormal basis of vector fields in Mn.
Using that {φe1, φe2, ..., φen−1, ξ} is also a local orthonormal basis, if we put
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X = V = ei in (6.1) and sum up with respect to i, then

n−1∑
i=1

g(R(φei, φY )φW, φei) =
n−1∑
i=1

r

n(n− 1)
[g(φY, φW )g(φei, φei) (6.2)

−g(φei, φW )g(φY, φei)].

It can be easily verified that

n−1∑
i=1

g(R(φei, φY )φW, φei) = S(φY, φW ) + g(φY, φW ), (6.3)

n−1∑
i=1

g(φei, φei) = n+ 1 (6.4)

and
n−1∑
i=1

g(φei, φW )g(φY, φei) = g(φY, φW ). (6.5)

So by virtue of (6.3)-(6.5) the equation (6.2) can be written as

S(φY, φW ) = [
r

(n− 1)
− 1]g(φY, φW ). (6.6)

Then by making use of (2.2) and (2.19), the equation (6.6) takes the form

S(Y,W ) = [
r

n− 1
−1−(n−1)(α2−σ)]g(Y,W )+[

r

n− 1
−1]η(Y )η(W ). (6.7)

In view of the equation (6.7) we state the following:

Theorem 6.1. An n-dimensional φ-concircularly flat LP -Sasakian manifold
with a coefficient α is an η-Einstein manifold.

7. Lorentzian para-Sasakian type spacetime

In this section we study Lorentzian para-Sasakian type spacetime which is a
4- dimensional LP -Sasakian manifold with a constant coefficient α. Since α is
a constant, we have from (2.13), σ = 0 and the equation (2.15) reduces to

S(X, ξ) = 3α2η(X). (7.1)
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Einstein’s Field equation with cosmological constant λ is given by

S(X, Y )− r

2
g(X, Y ) + λg(X, Y ) = kT (X, Y ) (7.2)

for all vector fields X, Y where S is the Ricci tensor of the type (0, 2), r is the
scalar curvature, k is the gravitational constant and T is the energy momentum
tensor of type (0, 2).
The energy momentum tensor T is said to describe a perfect fluid [2] if

T (X, Y ) = (ρ+ p)A(X)A(Y ) + pg(X, Y ) (7.3)

where ρ is the energy density function, p is the isotropic pressure function of
the fluid, A is a non-zero 1-form such that g(X,U) = A(X) for all X, U being
the flow vector field of the fluid.
In a Lorentzian para- Sasakian type spacetime by considering the characteristic
vector field ξ as the flow vector field of the fluid, the energy momentum tensor
takes the form

T (X, Y ) = (ρ+ p)η(X)η(Y ) + pg(X, Y ). (7.4)

Let us consider Einstein’s Field equation with cosmological constant. Then
putting Y = ξ in (7.2) we have

S(X, ξ)− r

2
g(X, ξ) + λg(X, ξ) = k[(ρ+ p)η(X)η(ξ) + pg(X, ξ)]

or, 3α2η(X)− r

2
η(X) + λη(X) = k[−(ρ+ p)η(X) + pη(X)]

or, 3α2 − r

2
+ λ = −kρ

or, ρ =
r − 6α2 − 2λ

2k
. (7.5)

Again contracting (7.2) we get

r − 2r + 4λ = k(3p− ρ)

or, −r + 4λ = 3kp− r

2
+ 3α2 + λ

or, p =
−r − 6α2 + 6λ

6k
. (7.6)
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If r is constant, then it follows from (7.5) and (7.6) that ρ and p are constant.
Since ρ > 0, from (7.5) we have

λ <
r − 6α2

2
. (7.7)

Since p > 0, we have from (7.6)

λ >
r + 6α2

6
. (7.8)

From (7.7) and (7.8) we obtain

r + 6α2

6
< λ <

r − 6α2

2
. (7.9)

Since div T = 0, we get the energy and force equations as follows [2]:

ξ.ρ = −(ρ+ p)div ξ [Energy equation] (7.10)

(ρ+ p)∇ξξ = −grad p− (ξp)ξ [Force equation] . (7.11)

Since ρ is constant, it follows from (7.10) that div ξ = 0, because (ρ+ p) 6= 0.
Again since p is constant, it follows from (7.11) that ∇ξξ = 0. It is known
that div ξ represents the expansion scalar and ∇ξξ represents the acceleration
vector. Thus in this case both the expansion scalar and the acceleration vector
are zero. Hence we can state the following:

Theorem 7.1. If in a Lorentzian para-Sasakian type spacetime of non-zero
constant scalar curvature the matter distribution is perfect fluid whose veloc-
ity vector field is the characteristic vector field ξ of the spacetime, then the
acceleration vector of the fluid must be zero and the expansion scalar also so.
Moreover the cosmological constant λ satisfies the relation r+6α2

6
< λ < r−6α2

2
.

Next we take Einstein’s field equation without cosmological constant. Then
(7.2) can be written as

S(X, Y )− r

2
g(X, Y ) = kT (X, Y ) (7.12)

From (7.12) and (7.4) we have

S(X, Y )− r

2
g(X, Y ) = k[(ρ+ p)η(X)η(Y ) + pg(X, Y )]. (7.13)
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Taking a frame field and contracting (7.13) over X and Y we obtain

r = k(ρ− 3p). (7.14)

In view of (7.14), (7.13) yields

S(X, Y ) = k[(ρ+ p)η(X)η(Y ) +
1

2
(ρ− p)g(X, Y )]. (7.15)

Let Q be the Ricci operator, that is, g(QX, Y ) = S(X, Y ). Then setting
X = QX in (7.15) we get

S(QX, Y ) = k[(ρ+ p)η(QX)η(Y ) +
1

2
(ρ− p)S(X, Y )]. (7.16)

Contracting (7.16) over X and Y we have

‖ Q ‖2= k[(ρ+ p)S(ξ, ξ) +
1

2
(ρ− p)r]. (7.17)

Using (7.1) and (7.14) in (7.17) we obtain

‖ Q ‖2= k[(ρ+ p)(−3α2) +
1

2
(ρ− p)(ρ− 3p)]. (7.18)

Again setting X = Y = ξ in (7.15) we get

−3α2 =
k

2
(ρ+ 3p). (7.19)

By virtue of (7.19) we obtain from (7.18) that

‖ Q ‖2= k2(ρ2 + 3p2). (7.20)

We now suppose that the length of the Ricci operator of the perfect fluid
Lorentzian para-Sasakian type spacetime is 1

3
r2, where r is the scalar curvature

of the spacetime. Then from (7.20) we have

1

3
r2 = k2(ρ2 + 3p2),

which yields by virtue of (7.14) that k2ρ(ρ + 3p) = 0. Since k 6= 0, either
ρ = 0 or ρ+ 3p = 0. If possible let ρ+ 3p = 0, then from (7.19) it follows that
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α = 0 which is not possible. Then ρ = 0 which is not possible as when the
pure matter exists, ρ is always greater than zero. Hence the spacetime under
consideration cannot contain pure matter.

Now we determine the sign of pressure in such a spacetime without pure
matter. Hence for ρ = 0, (7.14) implies that

p = − r

3k
. (7.21)

Again for ρ = 0, (7.5) yields r = 6α2. Therefore (7.21) reduces to

p = −2α2

k
.

Thus we can state the following:

Theorem 7.2. If a perfect fluid Lorentzian para-Sasakian type spacetime obey-
ing Einstein’s equation without cosmological constant and the square of the
length of the Ricci operator is 1

3
r2, then the spacetime can not contain pure

matter. Moreover in such a spacetime without pure matter the pressure of the
fluid is always negative.

Next, we consider a conformally flat perfect fluid Lorentzian para-Sasakian
type spacetime obeying Einstein equation without cosmological constant. Hence
using (7.5) and (7.6) in (7.13) we have

S(X, Y ) = (
r

3
− α2)g(X, Y ) + (

r

3
− 4α2)η(X)η(Y ). (7.22)

which implies

QX = (
r

3
− α2)X + (

r

3
− 4α2)η(X)ξ, (7.23)

where Q is the symmetric endomorphism given by S(X, Y ) = g(QX, Y ). Since
the spacetime is assumed to be conformally flat, we have [14]

R(X, Y )Z =
1

2
[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

− r

6
[g(Y, Z)X − g(X,Z)Y ]. (7.24)
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Using (7.22) and (7.23) in (7.24), we have

R(X, Y )Z = (
r

6
− α2)[g(Y, Z)X − g(X,Z)Y ]

+
1

2
(
r

3
− 4α2)[η(Y )η(Z)X − η(X)η(Z)Y ]

+
1

2
(
r

3
− 4α2)[g(Y, Z)η(X)− g(X,Z)η(Y )]ξ. (7.25)

Let ξ⊥ denote the 3−dimensional distribution in Lorentzian para-Sasakian
type spacetime orthogonal to ξ, then

R(X, Y )Z = (
r

6
− α2)[g(Y, Z)X − g(X,Z)Y ] for all X, Y, Z ∈ ξ⊥ (7.26)

and

R(X, ξ)ξ = −(
r

6
− α2)X for every X ∈ ξ⊥. (7.27)

Let X, Y ∈ ξ⊥, K1 denote sectional curvature of the plane determined by
X, Y and K2 denote the sectional curvature determined by X, ξ . Then

K1 =
g(R(X, Y )Y,X)

g(X,X)g(Y, Y )− {g(X, Y )}2

= (
r

6
− α2).

Again

K2 =
g(R(X, ξ)ξ,X)

g(X,X)g(ξ, ξ)− {g(X, ξ)}2

= −(
r

6
− α2).

Summing up we can state the following theorem:

Theorem 7.3. A conformally flat perfect fluid Lorentzian para-Sasakian type
spacetime obeying the Einstein equation without cosmological constant and hav-
ing the characteristic vector field ξ as the velocity vector field has the following
property:
All planes perpendicular to ξ have sectional curvature ( r

6
− α2) and all planes

containing ξ have sectional curvature −( r
6
− α2).
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By Karcher [7] a Lorentz manifold is called infinitesimally spatially isotropic
relative to a timelike unit vector field ξ if its Riemannian curvature R satisfies
the relations

R(X, Y )Z = l[g(Y, Z)X − g(X,Z)Y ] forX, Y, Z ∈ ξ⊥

and

R(X, ξ)ξ = mX forX ∈ ξ⊥

where l,m are real valued functions on the manifold. By virtue of (7.26) and
(7.27) we can state the following:

Theorem 7.4. A conformally flat perfect fluid Lorentzian para-Sasakian type
spacetime obeying the Einstein equation without cosmological constant and hav-
ing the characteristic vector field as the velocity vector field of the fluid is
infinitesimally spatially isotropic relative to the velocity vector field.
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