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Abstract

Let R be a prime ring of characteristic not 2, U a nonzero square
closed Lie ideal of R and F,G be two generalized derivations of R with
associated derivations d and δ ofR respectively. In the present paper, we
study the situations (1) F (u)G(v) − uv ∈ Z(R), (2) F (u)G(v) + uv ∈
Z(R), (3) d(u)F (v) − vu ∈ Z(R), (4) d(u)F (v) + vu ∈ Z(R); for all
u, v ∈ U and show that if d 6= 0 and δ 6= 0, then U ⊆ Z(R).
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1. Introduction

Let R be a prime ring with center Z(R). For any pair of elements x, y ∈ R,
we shall write [x, y] for the commutator xy − yx. An additive subgroup U
of R is said to be a Lie ideal of R, if [U,R] ⊆ U . The centralizer of U
is denoted by CR(U) and defined by CR(U) = {x ∈ R | [x, U ] = 0}. An
additive mapping d : R → R is called a derivation, if d(xy) = d(x)y + xd(y)
holds for all x, y ∈ R. In [5], Brešar introduced the notion of generalized
derivations in rings. An additive mapping F : R→ R is said to be a generalized
derivation, if there exists a derivation d of R such that for all x, y ∈ R, F (xy) =
F (x)y + xd(y) holds ( d is called the derivation associated with F ). For
a, b ∈ R, F (x) = ax+ xb for all x ∈ R is a generalized derivation of R, which
is called as inner generalized derivation of R. Generalized derivations have
been primarily studied on operator algebras. Therefore any investigation from
the algebraic point of view might be interesting ( see for example [6], [10], [11]).
Moreover, several authors studied commutativity in prime and semiprime rings
admitting derivations and generalized derivations which satisfy appropriate
algebraic conditions on suitable subsets of the rings.

In [3], Ashraf and Rehman established that a prime ring R with a nonzero
ideal I must be commutative, if R admits a nonzero derivation d satisfying
d(xy) + xy ∈ Z(R) for all x, y ∈ I or d(xy) − xy ∈ Z(R) for all x, y ∈ I.
Recently in [1] Ashraf et al. studied the case replacing derivation d with a
generalized derivation F in a prime ring R. More precisely, they proved that
the prime ring R with a nonzero ideal I must be commutative, if R admits a
generalized derivation F associated with a nonzero derivation d satisfying any
one of the following situations: (i) F (xy)−xy ∈ Z(R), (ii) F (xy)+xy ∈ Z(R),
(iii) F (xy)− yx ∈ Z(R), (iv) F (xy) + yx ∈ Z(R), (v) F (x)F (y)− xy ∈ Z(R),
(vi) F (x)F (y) + xy ∈ Z(R); for all x, y ∈ I. Again, in [2] Ashraf et al.
considered the situations d(x)F (y)−xy ∈ Z(R) and d(x)F (y)+xy ∈ Z(R) for
all x, y in some appropriate subset of a prime ring R, where F is a generalized
derivation with associated derivation d of R. Further Golbasi and Koc [8]
studied all the cases (i) - (vi) in a square closed Lie ideal U in a 2-torsion
free prime ring R and obtained that if d 6= 0, then U ⊆ Z(R). From these
identities, it is natural to consider the situations (1) F (x)F (y)−yx ∈ Z(R) and
(2) F (x)F (y) + yx ∈ Z(R) for all x, y in some suitable subset of R. Recently
in [7] Dhara et al. studied these two identities in a square closed Lie ideal U
in a 2-torsion free prime ring R and obtained that if d 6= 0, then U ⊆ Z(R).
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In view of above results, it is natural to ask, what happen in cases: (1)
F (x)G(y)−xy ∈ Z(R), (2) F (x)G(y)+xy ∈ Z(R), (3) d(x)F (y)−yx ∈ Z(R),
(4) d(x)F (y) + yx ∈ Z(R) for all x, y in a square closed Lie ideal U of a prime
ring R, where F and G are two generalized derivations of R associated to the
derivations d and δ of R respectively.

2. Preliminaries

Let U be a Lie ideal of R such that u2 ∈ U for all u ∈ U . Then for all u, v ∈ U ,
we get uv + vu = (u + v)2 − u2 − v2 ∈ U . Again from definition of Lie ideal,
we have uv − vu ∈ U for all u, v ∈ U . Combining these two we get 2uv ∈ U
for all u, v ∈ U .

In all that follows, let R be a prime ring with center Z(R) and char (R) 6= 2.

Lemma 2.1. ([4, Lemma 2]) If U 6⊆ Z(R) is a Lie ideal of R, then CR(U) =
Z(R).

Lemma 2.2. ([4, Lemma 3]) If U is a Lie ideal of R, then CR([U,U ]) =
CR(U).

Lemma 2.3. ([4, Lemma 4]) If U 6⊆ Z(R) is a Lie ideal of R and aUb = 0,
then either a = 0 or b = 0.

Lemma 2.4. ([9, Theorem 5]) Let d be a nonzero derivation of R and U
a nonzero Lie ideal of R such that [u, d(u)] ∈ Z(R) for all u ∈ U . Then
U ⊆ Z(R).

Lemma 2.5. ([7, Lemma 2.5]) Let U be a nonzero Lie ideal of R and V =
{u ∈ U | d(u) ∈ U}. Then V is also a nonzero Lie ideal of R. Moreover, if U
is noncentral, then V is also noncentral.

3. Main Results

Theorem 3.1. Let R be a prime ring of characteristic not 2, U a nonzero
square closed Lie ideal of R and F,G be two generalized derivations of R
associated to the derivations d and δ of R respectively. If F (u)G(v) − uv ∈
Z(R) for all u, v ∈ U and if d 6= 0 and δ 6= 0, then U ⊆ Z(R).
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Proof. We assume on the contrary that U 6⊆ Z(R). By hypothesis we have

F (u)G(v)− uv ∈ Z(R) for all u, v ∈ U. (1)

If F (U) = 0 or G(U) = 0, then we have uv ∈ Z(R) for all u, v ∈ U . In-
terchanging v and u, we obtain vu ∈ Z(R). These two conditions yield
that [u, v] ∈ Z(R) for all u, v ∈ U , that is [U,U ] ⊆ Z(R). This implies
CR([U,U ]) = R and hence by Lemma 2.2 we get CR(U) = R. This gives by
Lemma 2.1 that U ⊆ Z(R), a contradiction.

Next we assume that F (U) 6= 0 and G(U) 6= 0. Replacing v by 2vw in (1)
we get 2(F (u)(G(v)w + vδ(w))− uvw) ∈ Z(R) for all u, v, w ∈ U . Since char
(R) 6= 2, this gives F (u)(G(v)w + vδ(w))− uvw ∈ Z(R) i.e.,

(F (u)G(v)− uv)w + F (u)vδ(w) ∈ Z(R) for all u, v, w ∈ U. (2)

Commuting both sides with w, we get

[(F (u)G(v)− uv)w,w] + [F (u)vδ(w), w] = 0 for all u, v, w ∈ U. (3)

Since F (u)G(v)− uv ∈ Z(R) for all u, v ∈ U , above relation reduces to

[F (u)vδ(w), w] = 0 for all u, v, w ∈ U. (4)

Now replacing u with 2uw in (4) and then using the restriction on character-
istic, we obtain

[(F (u)w + ud(w))vδ(w), w] = 0 for all u, v, w ∈ U. (5)

Again, putting v = 2wv in (4) we get

[F (u)wvδ(w), w] = 0 for all u, v, w ∈ U. (6)

Subtracting (6) from (5), we arrive at

[ud(w)vδ(w), w] = 0 for all u, v, w ∈ U. (7)

Replacing u by 2tu and using char (R) 6= 2, above relation gives

0 = [tud(w)vδ(w), w]

= t[ud(w)vδ(w), w] + [t, w]ud(w)vδ(w) for all u, v, w, t ∈ U. (8)
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Using (7), (8) yields

0 = [t, w]ud(w)vδ(w) for all u, v, w, t ∈ U. (9)

By Lemma 2.3, for each w ∈ U , either [t, w] = 0 for all t ∈ U or d(w) = 0
or δ(w) = 0. Let T1 = {w ∈ U |[U,w] = 0}, T2 = {w ∈ U |d(w) = 0} and
T3 = {w ∈ U |δ(w) = 0}. Then T1, T2 and T3 are three additive subgroups of
U such that T1 ∪ T2 ∪ T3 = U . Let w ∈ T3. Then δ(w) = 0. Hence from (2)
we have (F (u)G(v)− uv)w ∈ Z(R) for all u, v ∈ U . This implies

[(F (u)G(v)− uv)w, r] = 0 for all u, v ∈ U and for all r ∈ R. (10)

Since F (u)G(v)− uv ∈ Z(R), we get from above

(F (u)G(v)− uv)[w, r] = 0 for all u, v ∈ U and for all r ∈ R. (11)

Since center of prime ring contains no divisor of zero, we have either F (u)G(v)−
uv = 0 for all u, v ∈ U or w ∈ Z(R). In case F (u)G(v)−uv = 0 for all u, v ∈ U ,
replacing v with 2vt, where t ∈ U we have that

0 = 2(F (u)G(vt)− uvt) = 2(F (u)G(v)− uv)t+ 2F (u)vδ(t) = 2F (u)vδ(t).

Since char (R) 6= 2, F (u)vδ(t) = 0 for all u, v, t ∈ U . By Lemma 2.3, either
F (U) = 0 or δ(U) = 0. Since F (U) 6= 0, we have δ(U) = 0. This implies
U ⊆ Z(R), by Lemma 2.4, a contradiction. Hence, we have w ∈ Z(R). Then
[U,w] = 0, i.e., w ∈ T1. Thus T3 ⊆ T1. Therefore, T1 ∪ T2 = U . Since a group
can not be union of its two proper subgroups, either T1 = U or T2 = U . Now
T1 = U implies U ⊆ Z(R) by Lemma 2.1, a contradiction. T2 = U implies
d(U) = 0, implying U ⊆ Z(R) by Lemma 2.4, again a contradiction.

Theorem 3.2. Let R be a prime ring of characteristic not 2, U a nonzero
square closed Lie ideal of R and F,G be two generalized derivations of R with
associated derivations d and δ of R respectively. If F (u)G(v) + uv ∈ Z(R) for
all u, v ∈ U and if d 6= 0 and δ 6= 0, then U ⊆ Z(R).

Proof. We note that −F and −G are two generalized derivations of R with
associated derivations −d and −δ respectively. Hence Replacing F by −F
in Theorem 3.1, we have (−F )(u)G(v) − uv ∈ Z(R) for all u, v ∈ U , that is
F (u)G(v) + uv ∈ Z(R) for all u, v ∈ U implies U ⊆ Z(R).
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Corollary 3.3. Let R be a prime ring of characteristic not 2 and U a nonzero
Lie ideal of R such that u2 ∈ U for all u ∈ U . If d and δ are two derivations
of R such that d(u)δ(v)± uv ∈ Z(R) for all u, v ∈ U , then U ⊆ Z(R).

Theorem 3.4. Let R be a prime ring of characteristic not 2, U a nonzero
square closed Lie ideal of R and F be a generalized derivation of R associated
to the derivation d of R. If d(u)F (v) − vu ∈ Z(R) for all u, v ∈ U , then
U ⊆ Z(R).

Proof. We assume on the contrary that U 6⊆ Z(R).
If d = 0 or F = 0, then uv ∈ Z(R) for all u, v ∈ U . Then by same argument

of Theorem 3.1, we obtain U ⊆ Z(R), a contradiction.
Let d 6= 0 and F 6= 0. We have

d(u)F (v)− vu ∈ Z(R) for all u, v ∈ U. (12)

Replacing v with 2vu in (12) we get 2(d(u)(F (v)u+ vd(u))− vu2) ∈ Z(R) for
all u, v ∈ U. Since char (R) 6= 2, this gives d(u)(F (v)u+ vd(u))− vu2 ∈ Z(R)
i.e. (d(u)F (v) − vu)u + d(u)vd(u) ∈ Z(R) for all u, v ∈ U . Commuting both
sides with u, we get [(d(u)F (v)− vu)u, u] + [d(u)vd(u), u] = 0 for all u, v ∈ U .
Since d(u)F (v)− vu ∈ Z(R) for all u, v ∈ U , above relation reduces to

[d(u)vd(u), u] = 0 for all u, v ∈ U. (13)

Set V = {u ∈ U/d(u) ∈ U}. Then by Lemma 2.5, V is a noncentral nonzero
Lie ideal of R. Since V ⊆ U , it follows from (13) that [d(u)vd(u), u] = 0 i.e.

d(u)vd(u)u− ud(u)vd(u) = 0 for all u ∈ V and v ∈ U. (14)

Thus 2d(u)v ∈ U for all v ∈ U and u ∈ V and hence 4wd(u)v ∈ U for all
w, v ∈ U and u ∈ V . Now we substitute 4vd(u)w for v in (14), where w ∈ U
and u ∈ V , and then obtain by using char (R) 6= 2 that

d(u)vd(u)wd(u)u− ud(u)vd(u)wd(u) = 0 for all v, w ∈ U and u ∈ V. (15)

Using (14), this can be written as d(u)vud(u)wd(u) − d(u)vd(u)uwd(u) = 0
i.e. d(u)v[d(u), u]wd(u) = 0 for all v, w ∈ U and u ∈ V . By Lemma 2.3, above
relation yields either d(u) = 0 or [d(u), u] = 0. In any case, it follows that
[d(u), u] = 0 for all u ∈ V . By Lemma 2.4, we have V ⊆ Z(R). By Lemma
2.5, it leads a contradiction.

By using the same technique of the proof of Theorem 3.4, we have the
following:
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Theorem 3.5. Let R be a prime ring of characteristic not 2, U a nonzero
square closed Lie ideal of R and F be a generalized derivation of R associated
to the derivation d of R. If d(u)F (v) + vu ∈ Z(R) for all u, v ∈ U , then
U ⊆ Z(R).

Corollary 3.6. Let R be a prime ring of characteristic not 2 and U a nonzero
Lie ideal of R such that u2 ∈ U for all u ∈ U . If d is a derivation of R such
that d(u)d(v)± vu ∈ Z(R) for all u, v ∈ U , then U ⊆ Z(R).

The following example illustrates that R to be prime and char (R) 6= 2 in
the hypothesis of the above theorems are not superfluous.

Example: Let R =

{(
a b
0 c

)
| a, b, c ∈ Z2

}
and U =

{(
0 b
0 0

)
|

b ∈ Z2

}
. Then U is a nonzero square closed Lie ideal of R. Note that R

is not prime for

(
0 1
0 0

)
R

(
1 1
0 0

)
= 0. Define map F : R −→ R by

F

(
a b
0 c

)
=

(
a 0
0 0

)
. Then F is a generalized derivation with associated

derivation d given by d

(
a b
0 c

)
=

(
0 b
0 0

)
satisfying F (u)F (v)±uv ∈ Z(R)

and d(u)F (v)± vu ∈ Z(R) for all u, v ∈ U , but U is not central.

4. Conjecture

Let R be a prime ring of characteristic not 2, U a nonzero square closed Lie
ideal of R and F,G be two generalized derivations of R associated to the
nonzero derivations d and δ of R respectively.

(1) Does F (u)G(v)− vu ∈ Z(R) for all u, v ∈ U implies U ⊆ Z(R);

(2) Does F (u)G(v) + vu ∈ Z(R) for all u, v ∈ U implies U ⊆ Z(R).
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