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Abstract

The object of the present paper is to study submanifolds satisfy-
ing Chen’s equality in a Fuclidean space. Also we study submanifolds
satisfying the condition C.C' = 0 and C.S = 0, where C denotes the
concircular curvature tensor.
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1. Introduction

One of the basic problems in submanifold theory is to find simple relationships
between the extrinsic and intrinsic invariants of a submanifold. In [1] and [4],
B.Y. Chen established inequalities in this respect, called Chen inequalities.
The main extrinsic invariant is the squared mean curvature and the main in-
trinsic invariants include the classical curvature invariants, namely the scalar
curvature and the Ricci curvature; and the well known modern curvature in-
variant, namely Chen invariant [2]. In 1993, Chen obtained an interesting
basic inequality for submanifolds in a real space form involving the squared
mean curvature and the Chen invariant and found several of its applications.
This inequality is now well known as Chen’s inequality; and in the equality
case it is known as Chen’s equality.

In [7], Dillen, Petrovic and Verstraelen studied Einstein, conformally flat and
semisymmetric submanifolds satisfying Chen’s equality in Euclidean spaces.
The hypersurfaces in E"™! satisfying Chen’s equality have been studied in [5]
and others. Recently Ozgiir and De [6] studied projectively semisymmetric
submanifolds satisfying Chen’s equality in a Fuclidean space and the subman-
ifold satisfying the condition P.P = 0, where P is the projective curvature
tensor. Motivated by the above studies in this paper, we study submanifolds
satisfying Chen’s equality and the conditions C.C' = 0 and C.S = 0 in a Eu-
clidean space.

The paper is organized as follows:

In Section 2, we give some idea about Riemannian submanifolds and Chen’s in-
equality. Section 3 deals with some priliminaries about Chen’s equality which
will be used in the next Sections. Section 4 is devoted to study submanifolds
satisfying the condition C.C' = 0. Finally, we study submanifolds satisfying
the condition C.S = 0.

2. Chen’s ineqality

Let M be an n-dimensional submanifold of an (n + m)-dimensional Euclidean
space E"*™. The Gauss and Weingarten formulas are given respectively by
VxY =VxY +o(X,Y) and VxN = —AyX + VLN

forall X, Y € T(M) and N € T+ M, where V, V and V= are respectively the
Riemannian, induced Riemannian and induced normal connections in M, M
and the normal bundle T'M of M respectively, and o is the second fundamental
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form related to the shape operator A by (o(X,Y),N) = (AyX,Y). The
equation of Gauss is given by

RX,Y,Z,W) = (o(X,W),0(Y, Z)) — (0(X, Z), o (Y, W)) (2.1)

forall X, Y, Z, W € TM, where R is the curvature tensor of M.

The mean curvature vector H is given by H = %tmce(a). The submanifold
M is totally geodesic in E™™" if ¢ = 0, and minimal if H = 0 [3]. Let
{e1, €9, ...,e,} be an orthonormal tangent frame field on M. For the plane
section e; A e; of the tangent bundle 7'M spanned by the vectors e; and e
(e; # ¢;) the scalar curvature of M is defined by v =Y/, K(e; A¢e;), where
K denotes the sectional curvature of M. Consider the real function inf K on
M™ defined for every x € M by

(inf K)(x) :=inf{ K(m)| 7 is plane in T,M"}.
Note that since the set of planes at a certain point is compact, this infimum
is actually a minimum.
Lemma 2.1. [1] Let M, n > 2, be any submanifold of E™™. Then
n?(n — 2)
n—1
FEquality holds in (2.2) at a point x if and only if with respect to suitable local

orthonormal frames ey ,es,...,e, € T,M™, the Weingarten maps A, with respect
to the normal sections & = epy, t = 1,2, ..., p are given by

1
inf K > §{m — |H|*}. (2.2)

[ 0 0 0 0
0b 0O --- 0
00 0 -+ 0
A=lo00pu - 0
(0000 o]
[ ¢, d, 0O 0 |
dt—CtO 0
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(t > 1), where i = a+ b for any such frame, inf K(x) is attained by the plane
€1 VAN €9.

The inequality (2.2) is well known as Chen’s inequality. In case of equality,
it is known as Chen’s equality. For dimension n = 2, the Chen’s equality is
always true.

3. Preliminaries

Let M be an n-dimensional (n > 3) submanifold of a Euclidean space E"™™
satisfying Chen’s equality. Then, from Lemma 2.1 we immediately have the
following

m

K =ab—Y (¢} +d2), (3.1)
Ky = ap, (3.2)

Ky = by, (3.3)

Ky = 1%, (3.4)

S(er, er) = Kia + (n — 2)ap, (3.5)
S(ea, e2) = Ko + (n — 2)bp, (3.6)
S(ei,e) = (n— 2)u, (3.7)
r=2Ks+ (n—1)(n—2)u? (3.8)

where i, j > 2. Furthermore, R(e;, e;)e,, = 0if 4, j and k are mutually different
[7].

A transformation of an n-dimensional Riemannian manifold M, which trans-
forms every geodesic circle of M into a geodesic circle, is called a concircular
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transformation ([9],[11]). A concircular tranformation is always a conformal
transformation [9]. Here geodesic circle means a curve in M whose first cur-
vature is constant and whose second curvature is identically zero. Thus the
geometry of concircular transformations, i.e., the concircular geometry, is gen-
eralization of inversive geometry in the sense that the change of metric is
more general than that induced by a circle preserving diffeomorphism . An in-
teresing invariant of a concircular transformation is the concircular curvature
tensor C. It is defned by ([10], [11])

%[g(y, 2)X — g(X, Z)Y]. (3.9)

n(n —1)

C(X,Y)Z =R(X,Y)Z —

where X, Y, Z € T(M) and r is the scalar curvature. Riemannian manifolds
with vanishing concircular curvature tensor are of constant curvature. Thus
the concircular curvature tensor is a measure of the failure of a Riemannian
manifold to be of constant curvature.

Using (3.1)-(3.7) in (3.8), we have the following:

Proposition 3.1. Let M be an n-dimensional (n > 3) submanifold in a Eu-
clidean space satisfying Chen’s equality, then

Chon = {K1s — m}el, (3.10)
Chgs = {ap — m}el, (3.11)
Chan = {—ap + e )}eg, (3.12)
Coss = {bp — i )}ez, (3.13)
Coyy = {Kyp — n(n;_m}ez, (3.14)
Chgo = {—bp + ———}es, (3.15)

( 1)
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and
Cijk =0 (3.16)
if i, 7, k are mutually different.

In [7] Dillen, Petrovic and Verstraelen proved the following:

Theorem 3.1. [7]Let M be an n-dimensional (n > 3) submanifold of an Eu-
clidean space E™™™ satisfying Chen’s equality. Then M is semisymmetric if
and only if M is minimal submanifold (in which case M is (n — 2)-ruled), or
M is a round hypercone in some totally geodesic subspace E"T1 of Entm,

Remark 3.1. For a concircular curvature tensor C' an important observation
is that R.R = R.C' in Riemannian manifolds. Therefore the above Theorem
(3.1) s true for concircularly semisymmetric (RC’ = 0) submanifolds of an
Euclidean space E"™ satisfying Chen’s equality.

4. C.C' =0 in submanifolds of A Euclidean space
E"™ satisfying Chen’s equality

Since the condition C.C' = 0 holds on M, we have

(é(€1,€3).é)(62,63)€1 == ?(61,63)0(62,63)61—0(0(61763)62,63)61 (41)
C

(62, C(@l, 63)63)61 — 0(62, 63)0(61, 63)61 =0

and

(C‘(eg,eg).é’)(el,eg)@ = Cleq,e3)C(e1,e3)ea — C(Cleq,e3)er,e3)es  (4.2)

0(617 0(62, 63)63)62 - 0(617 63)0(62, 63)62 = 0.

Using (3.1)-(3.8) and (3.10)-(3.16) we have

{ap — m}(Klz —bpu) =0 (4.3)
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and

{or — m}(Klz —ap) = 0. (4.4)

Case 1 (K3 —ap) =0, (K2 — bu) = 0.

By subtracting we have either a = b, or u = 0.
Sub Case 1 If = 0, then M is minimal.
Sub Case 2 If a = b, then p = 2a = 20,

then K5 —ap = 0 and (3.1) yields

A+ cd+d=0.

r=1

Hence a = 0, ¢, = d, = 0. Since a = b, we get b = 0 also. Thus in this case
a=0,b=0,pu=0and ¢, =d, =0. So M is totally geodesic.

Case 2 (ap — n(nT—l)) =0and Ky —ap = 0.

Here, K15 — ap = 0 implies that

A+ ¢ +d=0.
r=1

Therefore a = 0, ¢, = d, = 0 and hence from (3.1) K5 = 0. Thus from (ap —
win) = 0 we obtain 7 = 0. Also we know that r = 2K12 + (n —1)(n — 2) 1%,
therefore we have p = 0 and hence M is totally geodesic.

Case 3 (bu — ﬁ) =0 and K5 — by = 0.

Similar to Case 2

Case 4 ap = ﬁ and by = ———~. In this case we obtain y = 0, or a = b.

(n—

For 4 = 0, M is minimal. In view of the above cases we can state the following:

Theorem 4.1. Let M be an n-dimensional (n > 3) submanifold of an Eu-
clidean space E"t™ satisfying Chen’s equality. If the condition C.C' = 0 holds
on M, then

(i) M is minimal, or

(i) M s totally geodesic, or

(ii) inf K =0, or

(iv) a =b.
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5. C.S = 0 in submanifolds of A Euclidean space
E"™ satisfying Chen’s equality
Since the condition C.S = 0 holds on M, we have
(Cleire;).S)(ei,ej) = S(Clese;)er e;) + S(es, Cles, Cles,ej)e;) = 0,(5.1)
for all i # j (1 <4,j <n). Using (3.9) in (5.1) we obtain
S(R(es e;)er ;) + S(es Ries, e5)e;) = 0. (5.2)

Thus, we have the following three equations:

S(R(e1,ez)er, ea) + S(ey, R(er, ex)es) =0, (5.3)
S(R(Bl, 63)61, 63) + 5(61, R(Gh 63)63) = 0, (54)
S(R(eg, 63)62, 63) + S<€2, R(GQ, 63)63) = O (55)
Again using (3.10) — (3.16) in (3.9), we get
R(el, 6’2)61 = — K6y, R(eb 62)62 Kizeq
R(eq,e3)er = —apes, R(ey,e3)es = apey (5.6)
R(e, e3)ex = —bues, R(e, e3)e3 = buey

Therefore substituting (5.6) in (5.3), (5.4) and (5.5) respectively we have the
following equations:

u(n—2)(a —b)K1z =0, (5.7)
ap[Kio + (n — 2)ap — (n — 2)pu?] = 0, (5.8
bl s + (n — 2 — (n — 2)pi2) = (59)

Case 1 If 4 = 0, then M is minimal.
Case 2 n#0,a#0,b# 0.
Therefore, from (5.6) we have K5 =0, i. e., infK = 0. Also from (5.7) and
(5.8), we get
(a—b)*(n—2)u* = 0.
Since p # 0 and n > 3, we have a = b.
Case 3  # 0 and a # 0.
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Therefore, from (5.6) we have either K5 = 0 or, a = b.

Subcase 1 If K15 =0 (i.e.,a #b),

then, from (5.7) we have a = gy = a + b. This implies b = 0. Again K5 =0
yields ab — > (¢2 + d2) = 0 which gives us ¢, = d, =0 (as b = 0). So, by
8], M is a round hypercone in some totally geodesic subspace E"*1 of E"t™,
Case 4 ;1 # 0 and b # 0.

Similar to Case 3.
In view of the above cases we can state the following:

Theorem 5.1. Let M be an n-dimensional (n > 3) submanifold of an Eu-
clidean space E"™ satisfying Chen’s equality. If the condition C.S = 0 holds
on M, then

(i) M is minimal, or

(11) M is a round hypercone in some totally geodesic subspace E"1 of Er+™
or

(#i) inf K =0, or

(iv) a =b.
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