Subordination and Superordination for Multivalent Functions Defined by Linear Operators *

S. Sivaprasad Kumar[†]

Department of Applied Mathematics, Delhi Technological University (Formerly Delhi College of Engineering), Bawana Road, Delhi—110042, India

Virendra Kumar[‡]

Department of Applied Mathematics, Delhi Technological University (Formerly Delhi College of Engineering), Bawana Road, Delhi—110042, India

and

V. Ravichandran[§] Department of Mathematics, University of Delhi, Delhi—110007, India

Received June 13, 2013, Accepted July 22, 2013.

Abstract

Numerous linear operators were introduced in geometric function theory and the properties of functions defined by them were derived using a recurrence relation satisfied by them. All these linear operators are unified in this paper and subordination and superordination

^{*2010} Mathematics Subject Classification. Primary 30C80, Secondary 30C45.

[†]Corresponding author. E-mail: spkumar@dce.ac.in

[‡]E-mail: vktmaths@yahoo.in

[§]E-mail: vravi@maths.du.ac.in

properties of *p*-valent analytic functions defined using the general linear operator as well as a related integral transform are investigated. Some applications to univalent functions are also provided.

Keywords and Phrases: *p*-valent function, Linear operator, Starlike function, Strongly starlike function.

1. Introduction

Let \mathcal{H} be the class of functions analytic in the unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ and $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} , which contains functions of the form f(z) = $a + a_n z^n + a_{n+1} z^{n+1} + \cdots$. Let \mathcal{A}_p denote the class of all analytic functions of the form $f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k$ $(z \in \mathbb{D})$ and let $\mathcal{A}_1 := \mathcal{A}$. For two functions $f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k$ and $g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k$, the Hadamard product (or convolution) of f and g is defined by $(f * g)(z) := z^p + \sum_{k=p+1}^{\infty} a_k b_k z^k$. For two analytic functions f and g, we say that f is subordinate to g or g superordinate to f, denoted by $f \prec g$, if there is a Schwarz function w with $|w(z)| \leq |z|$ such that f(z) = g(w(z)). If g is univalent, then $f \prec g$ if and only if f(0) = g(0) and $f(\mathbb{D}) \subseteq g(\mathbb{D})$. The class $\mathcal{T}(\alpha)$ is defined to be the class of all functions $f \in \mathcal{A}$ satisfying $\operatorname{Re}(f(z)/z) > \alpha, 0 \leq \alpha < 1$, $z \in \mathbb{D}$ and let $\mathcal{T} := \mathcal{T}(0)$. For an analytic function φ with $\varphi(0) = 1$, let $\mathcal{S}^*(\varphi)$ denote the class of all $f \in \mathcal{A}$ satisfying $zf'(z)/f(z) \prec \varphi(z)$. Several special choices of φ reduce to well-known classes. For $-1 \leq B < A \leq 1$, $\mathcal{S}^*[A, B] := \mathcal{S}^*((1 + Az)/(1 + Bz))$ is the Janowski starlike functions [13] (see [28]) and $\mathcal{S}^*[1-2\alpha,-1]$ is the class $\mathcal{S}^*(\alpha)$ of starlike functions of order α and $\mathcal{S}^* := \mathcal{S}^*(0)$ is the class of starlike functions. For $0 < \eta < 1$, the class $\mathcal{S}^*(((1+z)/(1-z))^{\eta})$ is the class $\mathcal{SS}^*(\eta)$ of strongly starlike function of order η . For $\eta > 0$, the class $\mathcal{S}^*((1+z)^{\eta})$ is the class $\mathcal{SL}(\eta)$; the class $\mathcal{SL} := \mathcal{SL}(1/2)$ was introduced by Sokół and Stankiewicz [35] and studied recently by Ali etal. [1].

For $\alpha_j \in \mathbb{C}$ (j = 1, 2, ..., l) and $\beta_j \in \mathbb{C} \setminus \{0, -1, -2, ...\}$ (j = 1, 2, ..., m), the Dziok-Srivastava operator [11, 36] $H_p^{l,m}[\alpha_1] = H_p^{(l,m)}(\alpha_1, ..., \alpha_l; \beta_1, ..., \beta_m)$ is defined by

$$H_{p}^{(l,m)}(\alpha_{1},\ldots,\alpha_{l};\beta_{1},\ldots,\beta_{m})f(z) := z^{p} + \sum_{n=p+1}^{\infty} \frac{(\alpha_{1})_{n-p}\ldots(\alpha_{l})_{n-p}}{(\beta_{1})_{n-p}\ldots(\beta_{m})_{n-p}} \frac{a_{n}z^{n}}{(n-p)!},$$
(1.1)

where $(a)_n$ is the Pochhammer symbol defined by $(a)_n := \Gamma(a+n)/\Gamma(a)$. Several interesting properties of the classes defined by Dziok-Srivastava operator or its various particular cases including the Hohlov operator [12], the Carlson-Shaffer operator (*cf.* [7, 18]), the Ruscheweyh derivatives [31], the generalized Bernardi-Libera-Livingston integral operator (*cf.* [4, 16, 19]) and the Srivastava-Owa fractional derivative operators (*cf.* [25, 26]), rests on the following identity:

$$z(H_p^{l,m}[\alpha_1]f(z))' = \alpha_1 H_p^{l,m}[\alpha_1 + 1]f(z) - (\alpha_1 - p)H_p^{l,m}[\alpha_1]f(z).$$
(1.2)

The multiplier transformation $I_p(r, \lambda)$ on \mathcal{A}_p , introduced by Sivaprasad Kumar et al. [33] and investigated in [2, 3, 34], defined by the following infinite series

$$I_p(r,\lambda)f(z) := z^p + \sum_{n=p+1}^{\infty} \left(\frac{n+\lambda}{p+\lambda}\right)^r a_n z^n \quad (\lambda \in \mathbb{C} \setminus \{-1, -2, \ldots\}), \quad (1.3)$$

satisfies the identity:

$$z(I_p(r,\lambda)f(z))' = (p+\lambda)I_p(r+1,\lambda)f(z) - \lambda I_p(r,\lambda)f(z).$$
(1.4)

The operator $I_p(r, \lambda)$ is closely related to the Sălăgean derivative operators [32]. The operator $I_{\lambda}^r := I_1(r, \lambda)$ was studied by Cho and Srivastava [9] and Cho and Kim [10]. The operator $I_r := I_1(r, 1)$ was studied by Uralegaddi and Somanatha [37]. Several other operators investigated recently also satisfies a relation similar to the relations (1.2) and (1.4). Notable among them are the operators introduced by Al-Kharasani and Al-Areefi [3] which includes the operators defined in [15], [23] and [22] as well as the Jung-Kim-Srivastava operator [14] and its *p*-valent analogue of Liu [17].

In the following definition, all these operators investigated one by one are unified.

Definition 1.1. Let \mathcal{O}_p be the class of all linear operators L_p^a defined on \mathcal{A}_p satisfying

$$z[L_p^a f(z)]' = \alpha_a L_p^{a+1} f(z) - (\alpha_a - p) L_p^a f(z).$$

One can also consider operators satisfying $z[L_p^b f(z)]' = \alpha_b L_p^{b-1} f(z) - (\alpha_b - p)L_p^b f(z)$ but their properties are very similar to the operators in the above definition. In the following sections, several subordination and superordination

theorems as well as corresponding sandwich theorems are proved. A related integral transform is also discussed. Further several sufficient conditions for functions to belong to the classes S, $S^*(\alpha)$, $SS^*(\eta)$ and $S\mathcal{L}$ are investigated. Our results are motivated by recent results of Miller and Mocanu [21] on second order differential superordinations. Their results were later used extensively by Bulboacă [5, 6] to investigate superordination-preserving integral operators as well as by several others [2, 3, 11, 29, 30, 33, 34, 36].

We need the following:

Definition 1.2. [21, Definition 2, p.817] Denote by \mathcal{Q} , the set of all functions f(z) that are analytic and injective on $\overline{\mathbb{D}} - E(f)$, where

$$E(f) = \{\zeta \in \partial \mathbb{D} : \lim_{z \to \zeta} f(z) = \infty\}$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial \mathbb{D} - E(f)$.

Lemma 1.1 (cf. Miller and Mocanu[20, Theorem 3.4h, p.132]). Let $\psi(z)$ be univalent in the unit disk \mathbb{D} and let ϑ and φ be analytic in a domain $D \supset \psi(\mathbb{D})$ with $\varphi(w) \neq 0$, when $w \in \psi(\mathbb{D})$. Set

$$Q(z) := z\psi'(z)\varphi(\psi(z)), \quad h(z) := \vartheta(\psi(z)) + Q(z).$$

Suppose that

1. Q(z) is starlike univalent in \mathbb{D} and

2. Re $\left(\frac{zh'(z)}{Q(z)}\right) > 0$ for $z \in \mathbb{D}$.

If q(z) is analytic in \mathbb{D} , with $q(0) = \psi(0), q(\mathbb{D}) \subset D$ and

$$\vartheta(q(z)) + zq'(z)\varphi(q(z)) \prec \vartheta(\psi(z)) + z\psi'(z)\varphi(\psi(z)), \tag{1.5}$$

then $q(z) \prec \psi(z)$ and $\psi(z)$ is the best dominant.

Lemma 1.2. [6, Corollary 3.2, p.289] Let $\psi(z)$ be univalent in the unit disk \mathbb{D} and ϑ and φ be analytic in a domain D containing $\psi(\mathbb{D})$. Suppose that

- 1. Re $[\vartheta'(\psi(z))/\varphi(\psi(z))] > 0$ for $z \in \mathbb{D}$,
- 2. $Q(z) := z\psi'(z)\varphi(\psi(z))$ is starlike univalent in \mathbb{D} .

If $q(z) \in \mathcal{H}[\psi(0), 1] \cap \mathcal{Q}$, with $q(\mathbb{D}) \subseteq D$, and $\vartheta(q(z)) + zq'(z)\varphi(q(z))$ is univalent in \mathbb{D} , then

$$\vartheta(\psi(z)) + z\psi'(z)\varphi(\psi(z)) \prec \vartheta(q(z)) + zq'(z)\varphi(q(z)),$$
(1.6)

implies $\psi(z) \prec q(z)$ and $\psi(z)$ is the best subordinant.

2. Subordination, Superordination and Sandwich Results

For functions $f, F \in \mathcal{A}_p$, let

$$\Omega^{a}_{L,\mu,\nu}(f(z)) = \left(\frac{L_{p}^{a+1}f(z)}{z^{p}}\right)^{\mu} \left(\frac{z^{p}}{L_{p}^{a}f(z)}\right)^{\nu}, \quad \Omega^{a}_{L,\mu,\nu}(f(z),F(z)) := \frac{\Omega^{a}_{L,\mu,\nu}(f(z))}{\Omega^{a}_{L,\mu,\nu}(F(z))}$$

where the powers are principal one, μ and ν are real numbers such that they do not assume the value zero simultaneously.

Theorem 2.1. Let ψ be convex univalent in \mathbb{D} with $\psi(0) = 1$ and $f \in \mathcal{A}_p$. Let $\alpha_{a+1} \neq 0$, Re $[\alpha_{a+1}\mu - \alpha_a\nu] \geq 0$. Assume that χ and Φ are respectively defined by

$$\chi(z) := \frac{1}{\alpha_{a+1}} \left[(\alpha_{a+1}\mu - \alpha_a\nu)\psi(z) + z\psi'(z) \right]$$
(2.1)

and

$$\Phi(z) := \Omega^a_{L,\mu,\nu}(f(z))\Upsilon_L(z), \qquad (2.2)$$

where

$$\Upsilon_L(z) := \mu \Omega_{L,1,1}^{a+1}(f(z)) - \frac{\alpha_a \nu}{\alpha_{a+1}} \Omega_{L,1,1}^a(f(z)).$$

1. If
$$\Phi(z) \prec \chi(z)$$
, then
$$\Omega^a_{L,\mu,\nu}(f(z)) \prec \psi(z)$$

and $\psi(z)$ is the best dominant.

2. If
$$\chi(z) \prec \Phi(z)$$
,
 $0 \neq \Omega^a_{L,\mu,\nu}(f(z)) \in \mathcal{H}[1,1] \cap \mathcal{Q} \text{ and } \Phi(z) \text{ is univalent in } \mathbb{D},$ (2.3)

then

$$\psi(z) \prec \Omega^a_{L,\mu,\nu}(f(z))$$

and $\psi(z)$ is the best subordinant.

Proof. Define the function q by

$$q(z) := \Omega^a_{L,\mu,\nu}(f(z)), \qquad (2.4)$$

where the branch of q(z) is so chosen such that q(0) = 1. Then q(z) is analytic in \mathbb{D} . By a simple computation, we find from (2.4) that

$$\frac{zq'(z)}{q(z)} = \frac{z[\Omega^a_{L,\mu,\nu}(f(z))]'}{\Omega^a_{L,\mu,\nu}(f(z))} \\
= \mu \frac{z(L_p^{a+1}f(z))'}{L_p^{a+1}f(z)} - \nu \frac{z(L_p^af(z))'}{L_p^af(z)} + p(\nu - \mu).$$
(2.5)

By making use of the identity

$$z(L_p^a f(z))' = \alpha_a L_p^{a+1} f(z) - (\alpha_a - p) L_p^a f(z),$$
(2.6)

in (2.5), we have

$$\Omega^{a}_{L,\mu,\nu}(f(z)) \left(\mu \Omega^{a+1}_{L,1,1}(f(z)) - \frac{\alpha_{a}\nu}{\alpha_{a+1}} \Omega^{a}_{L,1,1}(f(z)) \right) = \frac{1}{\alpha_{a+1}} [(\alpha_{a+1}\mu - \alpha_{a}\nu)q(z) + zq'(z)]. \quad (2.7)$$

In view of (2.7), the subordination $\Phi(z) \prec \chi(z)$ becomes

$$(\alpha_{a+1}\mu - \alpha_a\nu)q(z) + zq'(z) \prec (\alpha_{a+1}\mu - \alpha_a\nu)\psi(z) + z\psi'(z)$$

and this can be written as (1.5), by defining

$$\vartheta(w) := (\alpha_{a+1}\mu - \alpha_a\nu)w \text{ and } \varphi(w) := 1.$$

Note that $\varphi(w) \neq 0$ and $\vartheta(w)$, $\varphi(w)$ are analytic in $\mathbb{C} - \{0\}$. Set

$$Q(z) := z\psi'(z)$$

$$h(z) := \vartheta(\psi(z)) + Q(z) = (\alpha_{a+1}\mu - \alpha_a\nu)\psi(z) + z\psi'(z).$$

In light of the hypothesis of our Theorem 2.1, we see that Q(z) is starlike and

$$\operatorname{Re}\left(\frac{zh'(z)}{Q(z)}\right) = \operatorname{Re}\left(\alpha_{a+1}\mu - \alpha_a\nu + 1 + \frac{z\psi''(z)}{\psi'(z)}\right) > 0.$$

By an application of Lemma 1.1, we obtain that $q(z) \prec \psi(z)$ or

$$\Omega^a_{L,\mu,\nu}(f(z)) \prec \psi(z).$$

The second half of Theorem 2.1 follows by a similar application of Lemma 1.2. $\hfill \Box$

Using Theorem 2.1, we obtain the following "sandwich result".

Corollary 2.1. Let ψ_j (j = 1, 2) be convex univalent in \mathbb{D} with $\psi_j(0) = 1$. Assume that $\operatorname{Re} [\alpha_{a+1}\mu - \alpha_a\nu] \geq 0$ and Φ be as defined in (2.2). Further assume that

$$\chi_j(z) := \frac{1}{\alpha_{a+1}} \left[(\alpha_{a+1}\mu - \alpha_a\nu)\psi_j(z) + z\psi'_j(z) \right].$$

If (2.3) holds and $\chi_1(z) \prec \Phi(z) \prec \chi_2(z)$, then

$$\psi_1(z) \prec \Omega^a_{L,\mu,\nu}(f(z)) \prec \psi_2(z).$$

Theorem 2.2. Let ψ be convex univalent in \mathbb{D} with $\psi(0) = 1$ and α_a be a complex number. Assume that $\operatorname{Re}(\mu\alpha_{a+1} - \nu\alpha_a) \geq 0$ and $f \in \mathcal{A}_p$. Define the functions F, χ and Ψ respectively by

$$F(z) := \frac{\alpha_a}{z^{\alpha_a - p}} \int_0^z t^{\alpha_a - p - 1} f(t) dt, \qquad (2.8)$$

$$\chi(z) := (\mu \alpha_{a+1} - \nu \alpha_a)\psi(z) + z\psi'(z)$$
(2.9)

and

$$\Psi(z) := \Omega^{a}_{L,\mu,\nu}(F(z)) \left[\mu \alpha_{a+1} \Omega^{a}_{L,1,0}(f(z), F(z)) - \nu \alpha_{a} \Omega^{a}_{L,0,-1}(f(z), F(z)) \right].$$
(2.10)

1. If $\Psi(z) \prec \chi(z)$, then

$$\Omega^a_{L,\mu,\nu}(F(z)) \prec \psi(z)$$

and $\psi(z)$ is the best dominant.

2. If $\chi(z) \prec \Psi(z)$,

$$0 \neq \Omega^a_{L,\mu,\nu}(F(z)) \in \mathcal{H}[1,1] \cap \mathcal{Q} \text{ and } \Psi(z) \text{ is univalent in } \mathbb{D}, \quad (2.11)$$

then

$$\psi(z) \prec \Omega^a_{L,\mu,\nu}(F(z))$$

and $\psi(z)$ is the best subordinant.

Proof. From the definition of F, we obtain that

$$\alpha_a f(z) = (\alpha_a - p)F(z) + zF'(z).$$
 (2.12)

By convoluting (2.12) with $\mathscr{L}_a(z)$, where

$$L_p^a(f(z)) = \mathscr{L}_a(z) * f(z)$$

and using the fact that z(f * g)'(z) = f(z) * zg'(z), we obtain

$$\alpha_a L_p^a(f(z)) = (\alpha_a - p) L_p^a(F(z)) + z (L_p^a(F(z)))'.$$
(2.13)

Define the function q by

$$q(z) := \Omega^a_{L,\mu,\nu}(F(z)),$$
 (2.14)

where the branch of q(z) is so chosen such that q(0) = 1. Clearly q(z) is analytic in \mathbb{D} . Using (2.13) and (2.14), we have

$$\Omega^{a}_{L,\mu,\nu}(F(z)) \left(\mu \alpha_{a+1} \Omega^{a}_{L,1,0}(f(z), F(z)) - \nu \alpha_{a} \Omega^{a}_{L,0,-1}(f(z), F(z)) \right)$$

= $(\mu \alpha_{a+1} - \nu \alpha_{a})q(z) + zq'(z).$ (2.15)

Using(2.15), the subordination $\Psi(z) \prec \chi(z)$ becomes

$$(\mu\alpha_{a+1} - \nu\alpha_a)q(z) + zq'(z) \prec (\mu\alpha_{a+1} - \nu\alpha_a)\psi(z) + z\psi'(z)$$

and this can be written as (1.5), by defining

$$\vartheta(w) := (\mu \alpha_{a+1} - \nu \alpha_a) \psi(z) \text{ and } \varphi(w) := 1.$$

Note that $\varphi(w) \neq 0$ and $\vartheta(w)$, $\varphi(w)$ are analytic in $\mathbb{C} - \{0\}$. Set

$$Q(z) := z\psi'(z)$$

$$h(z) := \vartheta(\psi(z)) + Q(z) = (\mu\alpha_{a+1} - \nu\alpha_a)\psi(z) + z\psi'(z).$$

In light of the assumption of our Theorem 2.2, we see that Q(z) is starlike and

$$\operatorname{Re}\left(\frac{zh'(z)}{Q(z)}\right) = \operatorname{Re}\left(\mu\alpha_{a+1} - \nu\alpha_a + 1 + \frac{z\psi''(z)}{\psi'(z)}\right) > 0.$$

An application of Lemma 1.1, gives $q(z)\prec\psi(z)$ or

$$\Omega^a_{L,\mu,\nu}(F(z)) \prec \psi(z).$$

By an application of Lemma 1.2 the proof of the second half of Theorem 2.2 follows at once. $\hfill \Box$

As a consequence of Theorem 2.2, we obtain the following "sandwich result".

Corollary 2.2. Let ψ_j (j = 1, 2) be convex univalent in \mathbb{D} with $\psi_j(0) = 1$ and α_a be a complex number. Further assume that $\operatorname{Re}(\mu\alpha_{a+1} - \nu\alpha_a) \geq 0$ and Ψ be as defined in (2.10). If (2.11) holds and $\chi_1(z) \prec \Psi(z) \prec \chi_2(z)$, then

$$\psi_1(z) \prec \Omega^a_{L,\mu,\nu}(F(z)) \prec \psi_2(z),$$

where

$$\chi_j(z) := (\mu \alpha_{a+1} - \nu \alpha_a) \psi_j(z) + z \psi'_j(z) \quad (j = 1, 2)$$

and F is defined by (2.8).

Theorem 2.3. Let ϕ be analytic in \mathbb{D} with $\phi(0) = 1$ and α_a is independent of a. If $f \in \mathcal{A}_p$, then

$$\Omega^a_{L,\mu,\nu}(f(z)) \prec \phi(z) \Leftrightarrow \Omega^{a+1}_{L,\mu,\nu}(F(z)) \prec \phi(z).$$

Further

$$\phi(z) \prec \Omega^a_{L,\mu,\nu}(f(z)) \Leftrightarrow \phi(z) \prec \Omega^{a+1}_{L,\mu,\nu}(F(z)),$$

where F is defined by (2.8).

Proof. Using the following identity

$$z[L_p^a(f(z))]' = \alpha_a L_p^{a+1}(f(z)) - (\alpha_a - p)L_p^a(f(z))$$

in (2.13), we get

$$L_p^a(f(z)) = L_p^{a+1}(F(z)).$$
(2.16)

Since α_a is independent of $a, \alpha_{a+1} = \alpha_a$, we have

$$\begin{aligned} \alpha_a L_p^{a+1}(f(z)) &= z(L_p^a(f(z)))' + (\alpha_a - p)L_p^a(f(z)) \\ &= z(L_p^{a+1}(F(z)))' + (\alpha_a - p)L_p^{a+1}(F(z)) \\ &= \alpha_{a+1}L_p^{a+2}(F(z)). \end{aligned}$$
(2.17)

Therefore, from (2.16) and (2.17), we have

$$\Omega^{a+1}_{L,\mu,\nu}(F(z)) = \Omega^a_{L,\mu,\nu}(f(z))$$

and hence the result follows at once.

Now we will use Theorem 2.3 to state the following "sandwich result".

Corollary 2.3. Let $f \in A_p$ and α_a is independent of a. Let ϕ_i (i = 1, 2) be analytic in \mathbb{D} with $\phi_i(0) = 1$ and F is defined by (2.8). Then

$$\phi_1(z) \prec \Omega^a_{L,\mu,\nu}(f(z)) \prec \phi_2(z)$$

if and only if

$$\phi_1(z) \prec \Omega^{a+1}_{L,\mu,\nu}(F(z)) \prec \phi_2(z)$$

3. Applications

We begin with some interesting applications of subordination part of Theorem 2.1 for the case when L = H, the Dziok Srivastava Operator. Note that the subordination part of Theorem 2.1 holds even if we assume

$$\operatorname{Re}\left\{1+\frac{z\psi''(z)}{\psi'(z)}\right\} > \max\{0, \operatorname{Re}[\alpha_1(\nu-\mu)-\mu]\}$$

instead of " $\psi(z)$ is convex and Re $[\alpha_1(\mu - \nu) + \mu] \ge 0$ " and leads to the following corollary to the first part of Theorem 2.1 by taking $\psi(z) = (1 + Az)/(1 + Bz)$.

Corollary 3.1. Let $-1 < B < A \le 1$ and $\operatorname{Re}(u - vB) \ge |v - \overline{u}B|$ where $u = \alpha_1(\mu - \nu) + \mu + 1$ and $v = [\alpha_1(\mu - \nu) + \mu - 1]B$. If $f \in \mathcal{A}_p$ satisfies the subordination

$$\begin{split} \Omega^{\alpha_1}_{H,\mu,\nu}(f(z)) \left(\mu \Omega^{\alpha_1+1}_{H,1,1}(f(z)) - \frac{\alpha_1 \nu}{\alpha_1 + 1} \Omega^{\alpha_1}_{H,1,1}(f(z)) \right) \\ \prec \frac{1}{\alpha_1 + 1} \left([\alpha_1(\mu - \nu) + \mu] \frac{1 + Az}{1 + Bz} + \frac{(A - B)z}{(1 + Bz)^2} \right) \quad (\alpha_1 \neq -1), \end{split}$$

then

$$\Omega^{\alpha_1}_{H,\mu,\nu}(f(z)) \prec \frac{1+Az}{1+Bz}$$

and (1 + Az)/(1 + Bz) is the best dominant.

Proof. Let

$$\psi(z) = \frac{1 + Az}{1 + Bz} \quad (-1 < B < A \le 1), \tag{3.1}$$

then clearly $\psi(z)$ is univalent and $\psi(0) = 1$. Upon logarithmic differentiation of ψ given by (3.1), we obtain that

$$z\psi'(z) = \frac{(A-B)z}{(1+Bz)^2}.$$
(3.2)

Another differentiation of (3.2), yields

$$1 + \frac{z\psi''(z)}{\psi'(z)} = \frac{1 - Bz}{1 + Bz}.$$

If $z = re^{i\theta}$, $0 \le r < 1$, then we have

$$\operatorname{Re}\left(1 + \frac{z\psi''(z)}{\psi'(z)}\right) = \frac{1 - B^2 r^2}{1 + B^2 r^2 + 2Br\cos\theta} \ge 0.$$

Hence $\psi(z)$ is convex in \mathbb{D} . Also it follows that

$$\begin{aligned} [\alpha_1(\mu-\nu)+\mu] + 1 + \frac{z\psi''(z)}{\psi'(z)} &= \frac{[\alpha_1(\mu-\nu)+\mu+1] + [\alpha_1(\mu-\nu)+\mu-1]Bz}{1+Bz} \\ &= \frac{u+vz}{1+Bz}, \end{aligned}$$

where $u = \alpha_1(\mu - \nu) + \mu + 1$ and $v = [\alpha_1(\mu - \nu) + \mu - 1] B$. The function $w(z) = \frac{u+vz}{1+Bz}$ maps \mathbb{D} into the disk

$$\left| w - \frac{\bar{u} - \bar{v}B}{1 - B^2} \right| \le \frac{|v - \bar{u}B|}{1 - B^2}.$$

Which implies that

$$\operatorname{Re}\left(\left[\alpha_{1}(\mu-\nu)+\mu\right]+1+\frac{z\psi''(z)}{\psi'(z)}\right) \geq \frac{\operatorname{Re}(\bar{u}-\bar{v}B)-|v-\bar{u}B|}{1-B^{2}} \geq 0$$

provided

$$\operatorname{Re}(\bar{u} - \bar{v}B) \ge |v - \bar{u}B|$$

or

$$\operatorname{Re}(u - vB) \ge |v - \bar{u}B|.$$

Thus the result follows at once by an application of the first part of Theorem 2.1. $\hfill \Box$

Corollary 3.2. Let $0 \le \alpha < 1$ and $\operatorname{Re}(\alpha_1(\mu - \nu) + \mu) \ge 0$. If

$$\Omega_{H,\mu,\nu}^{\alpha_{1}}(f(z)) \left(\mu \Omega_{H,1,1}^{\alpha_{1}+1}(f(z)) - \frac{\alpha_{1}\nu}{\alpha_{1}+1} \Omega_{H,1,1}^{\alpha_{1}}(f(z)) \right) \\ \prec \frac{1}{\alpha_{1}+1} \left((\alpha_{1}(\mu-\nu)+\mu) \frac{1+(1-2\alpha)z}{1-z} + \frac{2(1-\alpha)z}{(1-z)^{2}} \right) \quad (\alpha_{1} \neq -1),$$

then

$$\operatorname{Re} \Omega^{\alpha_1}_{H,\mu,\nu}(f(z)) > \alpha.$$

Proof. Let

$$\psi(z) = \frac{1 + (1 - 2\alpha)z}{1 - z} \quad (0 \le \alpha < 1),$$

then obviously $\psi(z)$ is univalent and $\psi(0) = 1$. By a simple calculation, we have

$$1 + \frac{z\psi''(z)}{\psi'(z)} = \frac{1+z}{1-z},$$

which clearly indicates that $\psi(z)$ is convex. If we assume $\beta = \alpha_1(\mu - \nu) + \mu$ then by hypothesis we have $\operatorname{Re} \beta \geq 0$. So if we take

$$w(z) = \beta + \frac{1+z}{1-z} = \frac{(1+\beta) + (1-\beta)z}{1-z},$$

then w(z) maps the unit disc \mathbb{D} on to $\operatorname{Re} w > \operatorname{Re} \beta \ge 0$. The result now follows by an application of the subordination part of Theorem 2.1. \Box

Note that if p = 1, l = m + 1 and $\alpha_{i+1} = \beta_i$ (i = 1, 2, ..., m), then $H_1[1]f(z) = f(z), H_1[2]f(z) = zf'(z)$ and $H_1[3]f(z) = \frac{1}{2}z^2f''(z) + zf'(z)$. Putting $\alpha = 1, p = 1, l = m + 1$ and $\alpha_{i+1} = \beta_i$ (i = 1, 2, ..., m) in Corollary 3.2, we obtain the following.

Corollary 3.3. Let $0 \le \alpha < 1$ and $2\mu \ge \nu$. If $f \in \mathcal{A}$ and satisfies

$$\operatorname{Re}\left((f'(z))^{\mu}\left(\frac{z}{f(z)}\right)^{\nu}\left(\mu\left(2+\frac{zf''(z)}{f'(z)}\right)-\nu\frac{zf'(z)}{f(z)}\right)\right) > \frac{2(2\mu-\nu)\alpha-(1-\alpha)}{2}$$

then

$$\operatorname{Re}\left((f'(z))^{\mu}\left(\frac{z}{f(z)}\right)^{\nu}\right) > \alpha.$$

Proof. From Corollary 3.2, we see that

$$\begin{split} (f'(z))^{\mu} \left(\frac{z}{f(z)}\right)^{\nu} \left(\mu \left(2 + \frac{zf''(z)}{f'(z)}\right) - \nu \frac{zf'(z)}{f(z)}\right) \\ \prec (2\mu - \nu) \frac{1 + (1 - 2\alpha)z}{1 - z} + \frac{2(1 - \alpha)z}{(1 - z)^2} =: h(z). \end{split}$$

We now investigate the image of $h(\mathbb{D})$. Assuming $a = 1 - 2\alpha$ and $b = 2\mu - \nu$, we have

$$h(z) = \frac{b + (1 + a - b + ab)z - abz^2}{(1 - z)^2},$$

where h(0) = b and h(-1) = [2b(1-a) - (1+a)]/4. The boundary curve of the image of $h(\mathbb{D})$ is given by $h(e^{i\theta}) = u(\theta) + iv(\theta), -\pi < \theta < \pi$, where

$$u(\theta) = \frac{(1+a-b+ab) + (1-a)b\cos\theta}{2(\cos\theta - 1)} \quad \text{and} \quad v(\theta) = \frac{(1+a)b\sin\theta}{2(1-\cos\theta)}.$$

By eliminating θ , we obtain the equation of the boundary curve as

$$v^{2} = -b^{2}(1+a)\left(u - \frac{2b(1-a) - (a+1)}{4}\right).$$
(3.3)

Obviously (3.3) represents a parabola opening towards the left, with the vertex at the point $\left(\frac{2b(1-a)-(a+1)}{4}, 0\right)$ and negative real axis as its axis. Hence $h(\mathbb{D})$ is the exterior of the parabola (3.3) which includes the right half plane

$$u > \frac{2b(1-a) - (a+1)}{4}$$

Hence the result follows at once.

Setting $\mu = 0$ and $\nu = -1$ in Corollary 3.3, we obtain the following result. **Example 3.1.** Let $0 \le \alpha < 1$. If $f \in \mathcal{A}$ and $\operatorname{Re} f'(z) > \frac{3\alpha - 1}{2}$, then $f \in \mathcal{T}(\alpha)$. **Remark 3.1.** The above Example 3.1 reduces to [24, Theorem 2] when $\alpha = 1/3$.

If we take $\psi(z) = ((1+z)/(1-z))^{\eta}$ with $0 < \eta \leq 1$ in Theorem 2.1 for the case L = H, the Dziok Srivastava operator, then clearly $\psi(z)$ is convex in \mathbb{D} and consequently corresponding to the subordination part of the Theorem 2.1, we have the following.

Corollary 3.4. Let $0 < \eta \leq 1$, $\alpha_1 \neq -1$ and $\operatorname{Re}(\alpha_1(\mu - \nu) + \mu) \geq 0$. If $f \in \mathcal{A}_p$ and satisfies

$$\Omega_{H,\mu,\nu}^{\alpha_{1}}(f(z)) \left(\mu \Omega_{H,1,1}^{\alpha_{1}+1}(f(z)) - \frac{\alpha_{1}\nu}{\alpha_{1}+1} \Omega_{H,1,1}^{\alpha_{1}}(f(z)) \right) \\ \prec \frac{1}{\alpha_{1}+1} \left(\left(\alpha_{1}(\mu-\nu)+\mu\right) + \frac{2\eta z}{1-z^{2}} \right) \left(\frac{1+z}{1-z} \right)^{\eta},$$

then

$$\Omega^{\alpha_1}_{H,\mu,\nu}(f(z)) \prec \left(\frac{1+z}{1-z}\right)^{\eta}$$

and $((1+z)/(1-z))^{\eta}$ is the best dominant.

By taking $p = 1, l = m + 1, \alpha_1 = 1$ and $\alpha_{i+1} = \beta_i$ (i = 1, 2, ...m), in the above Corollary 3.4, we have the following:

Corollary 3.5. Let $0 < \eta \leq 1$ and $2\mu \geq \nu$. If $f \in \mathcal{A}$ and satisfies

$$\left|\arg\left\{(f'(z))^{\mu}\left(\frac{z}{f(z)}\right)^{\nu}\left(\mu\left(2+\frac{zf''(z)}{f'(z)}\right)-\nu\frac{zf'(z)}{f(z)}\right)\right\}\right|<\frac{\delta\pi}{2},$$

then

$$\left|\arg\left\{(f'(z))^{\mu}\left(\frac{z}{f(z)}\right)^{\nu}\right\}\right| < \frac{\eta\pi}{2}$$

where

$$\delta = \eta + 1 - \frac{2}{\pi} \arctan \frac{2\mu - \nu}{\eta}.$$

Proof. In view of the Corollary 3.4, we have

$$(f'(z))^{\mu} \left(\frac{z}{f(z)}\right)^{\nu} \left(\mu \left(2 + \frac{zf''(z)}{f'(z)}\right) - \nu \frac{zf'(z)}{f(z)}\right) \\ \prec \left((2\mu - \nu) + \frac{2\eta z}{1 - z^2}\right) \left(\frac{1 + z}{1 - z}\right)^{\eta} =: h(z)$$

implies

$$(f'(z))^{\mu}\left(\frac{z}{f(z)}\right)^{\nu} \prec \left(\frac{1+z}{1-z}\right)^{\eta}$$

or

$$\left|\arg\left\{(f'(z))^{\mu}\left(\frac{z}{f(z)}\right)^{\nu}\right\}\right| < \frac{\eta\pi}{2} \quad (z \in \mathbb{D}).$$

Now we need to find the minimum value of $\arg h(\mathbb{D})$. Let $z = e^{i\theta}$. Since $h(\mathbb{D})$ is symmetrical about the real axis, we shall restrict ourself to $0 < \theta \leq \pi$. Setting $t = \cot \theta/2$, we have $t \geq 0$ and for $z = \frac{it-1}{it+1}$, we arrive at

$$h(e^{i\theta}) = (it)^{\eta-1} \left[(2\mu - \nu)it - \frac{\eta(1+t^2)}{2} \right]$$

= $(it)^{\eta-1}G(t),$

where

$$G(t) = \left[(2\mu - \nu)it - \frac{\eta(1+t^2)}{2} \right].$$

Let G(t) = U(t) + iV(t), where $U(t) = -\frac{\eta(1+t^2)}{2}$ and $V(t) = (2\mu - \nu)t$, there arises two cases namely $2\mu > \nu$ and $2\mu = \nu$. If $2\mu > \nu$, then a calculation shows that $\min_{t\geq 0} \arg G(t)$ occurs at t = 1 and

$$\min_{t \ge 0} \arg G(t) = \pi - \arctan \frac{2\mu - \nu}{\eta}.$$

Thus

$$\min_{|z|<1} \arg h(z) = \frac{(\eta+1)\pi}{2} - \arctan \frac{2\mu-\nu}{\eta}.$$

If $2\mu = \nu$, then $\arg G(t) = \pi$ and $\min_{|z|<1} \arg h(z) = (\eta + 1)\pi/2$. Thus for $2\mu \ge \nu$, we have

$$\min_{|z|<1} \arg h(z) = \min\left\{\frac{(\eta+1)\pi}{2}, \frac{(\eta+1)\pi}{2} - \arctan\frac{2\mu-\nu}{\eta}\right\}$$
$$= \frac{(\eta+1)\pi}{2} - \arctan\frac{2\mu-\nu}{\eta}.$$

This completes the proof of the corollary.

We now enlist a few applications of Theorem 2.1 for the operator L = H, the Dziok Srivastava operator, by taking $\psi(z) = \sqrt{1+z}$ as dominant. Obviously $\psi(z)$ is a convex function in the open unit disk \mathbb{D} with $\psi(0) = 1$. The subordination part of Theorem 2.1, leads to the following result.

Corollary 3.6. Let $\alpha_1 \neq -1$ and $\operatorname{Re} [\alpha_1(\mu - \nu) + \mu] \geq 0$. If $f \in \mathcal{A}_p$ and satisfies the subordination

$$\begin{split} \Omega^{\alpha_1}_{H,\mu,\nu}(f(z)) \left(\mu \Omega^{\alpha_1+1}_{H,1,1}(f(z)) - \frac{\alpha_1 \nu}{\alpha_1 + 1} \Omega^{\alpha_1}_{H,1,1}(f(z)) \right) \\ \prec \frac{1}{\alpha_1 + 1} \left([\alpha_1(\mu - \nu) + \mu] \sqrt{1 + z} + \frac{z}{2\sqrt{1 + z}} \right), \end{split}$$

then

$$\Omega^{\alpha_1}_{H,\mu,\nu}(f(z)) \prec \sqrt{1+z}$$

and $\sqrt{1+z}$ is the best dominant.

By taking $p = 1, l = m + 1, \alpha_1 = 1$ and $\alpha_{i+1} = \beta_i$ (i = 1, 2, ..., m) in Corollary 3.6, we obtain the following result.

Corollary 3.7. Let $2\mu \ge \nu$. If $f \in \mathcal{A}$ and satisfies the subordination

$$(f'(z))^{\mu} \left(\frac{z}{f(z)}\right)^{\nu} \left(\mu \left(2 + \frac{zf''(z)}{f'(z)}\right) - \nu \frac{zf'(z)}{f(z)}\right) \prec (2\mu - \nu)\sqrt{1 + z} + \frac{z}{2\sqrt{1 + z}},$$

then

$$(f'(z))^{\mu}\left(\frac{z}{f(z)}\right)^{\nu} \prec \sqrt{1+z}$$

and $\sqrt{1+z}$ is the best dominant.

We obtain the following example from Corollary 3.7.

Example 3.2. If $f \in A$ and satisfies

$$\left|\frac{zf'(z)}{f(z)}\left(2 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right)\right| < \sqrt{1.22} \approx 1.10,$$

then $f \in \mathcal{SL}$.

Proof. Putting $\mu = \nu = 1$ in Corollary 3.7, we have

$$\frac{zf'(z)}{f(z)}\left(2 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right) \prec \sqrt{1+z} + \frac{z}{2\sqrt{1+z}} =: h(z),$$

implies

$$\frac{zf'(z)}{f(z)} \prec \sqrt{1+z}.$$

The dominant h(z) can be written as

$$h(z) = \frac{3z+2}{2\sqrt{1+z}}.$$

Writing $h(e^{i\theta}) = u(\theta) + iv(\theta), -\pi < \theta < \pi$, we have

$$u(\theta) = \frac{3\cos(3\theta/4) + 2\cos(\theta/4)}{2\sqrt{2\cos(\theta/2)}}$$

and

$$v(\theta) = \frac{3\sin(3\theta/4) - 2\sin(\theta/4)}{2\sqrt{2\cos(\theta/2)}}.$$

A simple calculation gives

$$u^{2}(\theta) + v^{2}(\theta) = \frac{13 + 12\cos\theta}{8\cos(\theta/2)} =: k(\theta).$$

A computation shows that $k(\theta)$ has minimum at $\theta = \arccos(\sqrt{1/24})$ and $k(\theta) \ge \sqrt{3/2} \approx 1.22$. Since h(0) = 1 and $h(-1) = -\infty$, by a computation we come to know that the image of $h(\mathbb{D})$ is the interior of the domain bounded by parabola opening towards left which contains the interior of the circle $u^2 + v^2 = 1.22$. Hence the result follows at once.

We now give some interesting applications of Theorem 2.2 for the case L = H. Note that if we replace the statement " $\psi(z)$ is convex in the open unit disc \mathbb{D} and $\operatorname{Re}[(\mu - \nu)\alpha_1 + \mu] \geq 0$ " by

$$\operatorname{Re}\left(1+\frac{z\psi''(z)}{\psi'(z)}\right) > \max\{0, \operatorname{Re}\left[(\nu-\mu)\alpha_1-\mu\right]\}$$

in the hypothesis of Theorem 2.2 still the subordination part of the result holds so we obtain the following corollary as a straight forward consequence to the first part of Theorem 2.2 by taking $\psi(z) = (1 + (1 - 2\alpha)z)/(1 - z), 0 \le \alpha < 1$. **Corollary 3.8.** Let $0 \le \alpha < 1$ and $\operatorname{Re}[(\mu - \nu)\alpha_1 + \mu] \ge 0$. If $f \in \mathcal{A}_p$, F as defined in (2.8) and

$$\begin{split} \Omega^{\alpha_1}_{H,\mu,\nu}(F(z))(\mu(\alpha_1+1)\Omega^{\alpha_1}_{H,1,0}(f(z),F(z)) - \nu\alpha_1\Omega^{\alpha_1}_{H,0,-1}(f(z),F(z))) \\ \prec ((\mu-\nu)\alpha_1 + \mu)\frac{1 + (1-2\alpha)z}{1-z} + \frac{2(1-\alpha)z}{(1-z)^2} \end{split}$$

then

$$\Omega_{H,\mu,\nu}^{\alpha_1}(F(z)) \prec \frac{1 + (1 - 2\alpha)z}{1 - z}$$

and $(1 + (1 - 2\alpha)z)/(1 - z)$ is the best dominant.

Putting $p = 1, l = m + 1, \alpha_1 = 1$ and $\alpha_{i+1} = \beta_i$ (i = 1, 2, ...m) in Corollary 3.8, we obtain the following result:

Corollary 3.9. Let $0 \le \alpha < 1$ and $2\mu \ge \nu$. If $f \in \mathcal{A}$, F as defined in (2.8) and

$$\operatorname{Re}\left\{ (F'(z))^{\mu} \left(\frac{z}{F(z)}\right)^{\nu} \left(2\mu \frac{f'(z)}{F'(z)} - \nu \frac{f(z)}{F(z)}\right) \right\} < \frac{2(2\mu - \nu)\alpha - (1 - \alpha)}{2},$$

then

Re
$$\left[(F'(z))^{\mu} \left(\frac{z}{F(z)} \right)^{\nu} \right] > \alpha.$$

Proof. From Corollary 3.8, we see that

$$(F'(z))^{\mu} \left(\frac{z}{F(z)}\right)^{\nu} \left(2\mu \frac{f'(z)}{F'(z)} - \nu \frac{f(z)}{F(z)}\right) \prec (2\mu - \nu) \frac{1 + (1 - 2\alpha)z}{1 - z} + \frac{2(1 - \alpha)z}{(1 - z)^2} =: h(z) \quad (3.4)$$

implies

$$\operatorname{Re}\left[\left(F'(z)\right)^{\mu}\left(\frac{z}{F(z)}\right)^{\nu}\right] > \alpha.$$

Let $z = e^{i\theta}, -\pi \le \theta \le \pi$. Then

$$\operatorname{Re}(h(e^{i\theta})) = \operatorname{Re}\left\{ (2\mu - \nu) \frac{1 + (1 - 2\alpha)e^{i\theta}}{1 - e^{i\theta}} + \frac{2(1 - \alpha)e^{i\theta}}{(1 - e^{i\theta})^2} \right\}$$
$$= (2\mu - \nu)\alpha - \frac{(1 - \alpha)}{2} \left(\frac{1}{\sin^2(\theta/2)} \right) =: k(\theta).$$

A calculation shows that $k(\theta)$ attains its maximum at $\theta = \pi$ and

$$\max_{|\theta| \le \pi} k(\theta) = \frac{2(2\mu - \nu)\alpha - (1 - \alpha)}{2}.$$

Hence the result follows at once.

By taking $\psi(z) = ((1+z)/(1-z))^{\eta}$ in the subordination part of Theorem 2.2 for the case L = H, the Dzoik Srivastava operator, we have the following result.

Corollary 3.10. Let $0 < \eta \leq 1$ and $\operatorname{Re}[(\mu - \nu)\alpha_1 + \mu] \geq 0$. If $f \in \mathcal{A}_p$, F as defined in (2.8) and satisfies the subordination

$$\begin{aligned} \Omega^{\alpha_1}_{H,\mu,\nu}(F(z)) \left((\alpha_1 + 1)\mu \Omega^{\alpha_1}_{H,1,0}(f(z), F(z)) - \nu \alpha_1 \Omega^{\alpha_1}_{H,0,-1}(f(z), F(z)) \right) \\ \prec \left(\left((\mu - \nu)\alpha_1 + \mu \right) + \frac{2\eta z}{(1 - z^2)} \right) \left(\frac{1 + z}{1 - z} \right)^{\eta}, \end{aligned}$$

then

$$\Omega^{\alpha_1}_{H,\mu,\nu}(F(z)) \prec \left(\frac{1+z}{1-z}\right)^{\eta}$$

and $((1+z)/(1-z))^{\eta}$ is the best dominant.

By putting $p = 1, l = m + 1, \alpha_1 = 1$ and $\alpha_{i+1} = \beta_i$ (i = 1, 2, ..., m) in the above Corollary 3.10, we obtain the following result.

Corollary 3.11. Let $0 < \eta \leq 1$ and $2\mu \geq \nu$. If $f \in A$, F as defined in (2.8) and

$$\left|\arg\left\{(F'(z))^{\mu}\left(\frac{z}{F(z)}\right)^{\nu}\left(2\mu\frac{f'(z)}{F'(z)}-\nu\frac{f(z)}{F(z)}\right)\right\}\right| < \frac{(\eta+1)\pi}{2}-\arctan\frac{(2\mu-\nu)}{\eta}$$

then

$$\left|\arg\left\{(F'(z))^{\mu}\left(\frac{z}{F(z)}\right)^{\nu}\right\}\right| < \frac{\eta\pi}{2}.$$

Proof. The proof of the above Corollary 3.11 is similar to that of the Corollary 3.5 hence it is skipped here. \Box

Taking the dominant $\psi(z) = \sqrt{1+z}$, which is a convex function in the open unit disc \mathbb{D} , in the subordination part of Theorem 2.2, we have the following corollary for the Dzoik Srivastava operator H = L.

Corollary 3.12. Let $0 < \eta \leq 1$ and $\operatorname{Re}[(\alpha_1(\mu - \nu) + \mu] \geq 0$. If $f \in \mathcal{A}_p$, F as defined in (2.8) and

$$\Omega_{H,\mu,\nu}^{\alpha_1}(F(z))\left((\alpha_1+1)\mu\Omega_{H,1,0}^{\alpha_1}(f(z),F(z))-\alpha_1\nu\Omega_{H,0,-1}^{\alpha_1}(f(z),F(z))\right)\\ \prec (\alpha_1(\mu-\nu)+\mu)\sqrt{1+z}+\frac{z}{2\sqrt{1+z}},$$

then

$$\Omega_{H,\mu,\nu}^{\alpha_1}(F(z)) \prec \sqrt{1+z}$$

and $\sqrt{1+z}$ is the best dominant.

Putting $p = 1, l = m + 1, \alpha_1 = 1$ and $\alpha_{i+1} = \beta_i$ (i = 1, 2, ..., m) in Corollary 3.12, we obtain the following result.

Corollary 3.13. Let $0 < \eta \leq 1$ and $2\mu \geq \nu$. If $f \in \mathcal{A}$, F as defined in (2.8) and

$$(F'(z))^{\mu} \left(\frac{z}{F(z)}\right)^{\nu} \left(2\mu \frac{f'(z)}{F'(z)} - \nu \frac{f(z)}{F(z)}\right) \prec (2\mu - \nu)\sqrt{1+z} + \frac{z}{2\sqrt{1+z}},$$

then

$$(F'(z))^{\mu} \left(\frac{z}{F(z)}\right)^{\nu} \prec \sqrt{1+z}$$

and $\sqrt{1+z}$ is the best dominant.

Putting $\mu = \nu = 1$ in the above Corollary 3.13, we have the following example.

Example 3.3. Let $0 < \eta \leq 1$. If $f \in A$, F as defined in (2.8) and

$$\left|\frac{zF'(z)}{F(z)}\left(2\frac{f'(z)}{F'(z)} - \frac{f(z)}{F(z)}\right)\right| < \sqrt{1.22} \approx 1.10,$$

then $F \in \mathcal{SL}$.

Proof. The above result can be proved using the technique adopted in the proof of Example 3.2 and hence it is omitted here. \Box

Next we discuss some applications of Theorem 2.1 when L = I, the multiplier transformation. In Theorem 2.1, the subordination part yields the following corollary by taking $\psi(z) = (1 + (1 + 2\alpha)z)/(1 - z), 0 \le \alpha < 1$ and

$$\operatorname{Re}\left(1+\frac{z\psi''(z)}{\psi'(z)}\right) > \max\{0, \operatorname{Re}[(\nu-\mu)(\lambda+p)]\}$$

in place of " ψ is convex and $\operatorname{Re}[(\mu - \nu)(\lambda + p)] \ge 0$ ".

Corollary 3.14. Let $0 \le \alpha < 1$, $\lambda \ne -p$ be a complex number and $\operatorname{Re}[(\mu - \nu)(\lambda + p)] \ge 0$. If $f \in \mathcal{A}_p$ and

$$\begin{split} \Omega^{r}_{I,\mu,\nu}(f(z)) \left(\mu \Omega^{r+1}_{I,1,1}(f(z)) - \nu \Omega^{r}_{I,1,1}(f(z))\right) \\ \prec (\mu - \nu) \frac{1 + (1 - 2\alpha)z}{1 - z} + \frac{1}{\lambda + p} \frac{2(1 - \alpha)z}{(1 - z)^2} \end{split}$$

then

$$\Omega^r_{I,\mu,\nu}(f(z)) \prec \frac{1 + (1 - 2\alpha)z}{1 - z}$$

and $(1 + (1 - 2\alpha)z)/(1 - z)$ is the best dominant.

Note that for p = 1, $\lambda = 0$ and r = 0, we have $I_1(0,0)f(z) = f(z)$, $I_1(1,0)f(z) = zf'(z)$, $I_1(2,0)f(z) = z(zf''(z) + f'(z))$. Putting these values in Corollary 3.14, we have the following result.

Corollary 3.15. Let $0 \le \alpha < 1$ and $\mu \ge \nu$. If $f \in \mathcal{A}$ and satisfies

$$\operatorname{Re}\left[(f'(z))^{\mu} \left(\frac{z}{f(z)} \right)^{\nu} \left(\mu \left(1 + \frac{zf''(z)}{f'(z)} \right) - \nu \frac{zf'(z)}{f(z)} \right) \right] > \frac{2(\mu - \nu)\alpha - (1 - \alpha)}{2},$$

then

$$\operatorname{Re}\left[\left(f'(z)\right)^{\mu}\left(\frac{z}{f(z)}\right)^{\nu}\right] > \alpha$$

Proof. The proof is similar to that of the Corollary 3.3 and hence omitted here. \Box

Setting $\mu = \nu = 1$ in Corollary 3.15, we have the following result:

Example 3.4. Let $0 \le \alpha < 1$. If $f \in \mathcal{A}$ satisfies the differential subordination

$$\operatorname{Re}\left[\frac{zf'(z)}{f(z)}\left(1-\frac{zf'(z)}{f(z)}+\frac{zf''(z)}{f'(z)}\right)\right] > \frac{\alpha-1}{2},$$

then $f \in S^*(\alpha)$.

Remark 3.2. For $\alpha = 0$, the above asserted Example 3.4 reduces to a result obtained by Owa and Obradović [27, Corollary 2].

Putting $\mu = 1$ and $\nu = 0$ in Corollary 3.15, we have the following result:

Example 3.5. Let $0 \le \alpha < 1$. If $f \in \mathcal{A}$ and satisfies

$$\operatorname{Re}[f'(z) + zf''(z)] > \frac{3\alpha - 1}{2},$$

then $\operatorname{Re} f'(z) > \alpha$.

Remark 3.3. The above Example 3.5 extends the result [8, Theorem 5] due to Chichra. Further corollary 3.15 reduces to [24, Theorem 2] when $\mu = 0, \nu = -1$ and $\alpha = 1/3$.

If we take $\psi(z) = ((1+z)/(1-z))^{\eta}$ with $0 < \eta \leq 1$, for the case L = I, then clearly $\psi(z)$ is convex in the open unit disc \mathbb{D} and we have the following corollary from the subordination part of Theorem 2.1.

Corollary 3.16. Let $0 < \eta \leq 1$, $\lambda \neq -p$ be a complex number and $\operatorname{Re}[(\mu - \nu)(\lambda + p)] \geq 0$. If $f \in \mathcal{A}_p$, and satisfies the subordination

$$\Omega^{r}_{I,\mu,\nu}(f(z)) \left(\mu \Omega^{r+1}_{I,1,1}(f(z)) - \nu \Omega^{r}_{I,1,1}(f(z))\right) \\ \prec \left((\mu - \nu) + \frac{2\eta z}{(\lambda + p)(1 - z^{2})} \right) \left(\frac{1 + z}{1 - z} \right)^{\eta},$$

then

$$\Omega^r_{I,\mu,\nu}(f(z)) \prec \left(\frac{1+z}{1-z}\right)^\eta$$

and $\left(\frac{1+z}{1-z}\right)^{\eta}$ is the best dominant.

Putting $p = 1, \lambda = 0$ and r = 0 in Corollary 3.16, we obtain the following corollary.

Corollary 3.17. Let $0 < \eta \leq 1$ and $\mu \geq \nu$. If $f \in \mathcal{A}$ and satisfies

$$\left|\arg\left\{(f'(z))^{\mu}\left(\frac{z}{f(z)}\right)^{\nu}\left(\mu\left(1+\frac{zf''(z)}{f'(z)}\right)-\nu\frac{zf'(z)}{f(z)}\right)\right\}\right|<\frac{\delta\pi}{2},$$

where

$$\delta = \eta + 1 - \frac{2}{\pi} \arctan \frac{\mu - \nu}{\eta},$$

then

$$\left|\arg\left\{(f'(z))^{\mu}\left(\frac{z}{f(z)}\right)^{\nu}\right\}\right| < \frac{\eta\pi}{2}.$$

Proof. The proof is much akin to the proof of Corollary 3.5 hence it is left here. \Box

Taking $\psi(z) = \sqrt{1+z}$, convex function in the open unit disc \mathbb{D} , as dominant in the subordination part of the Theorem 2.1, we obtain the following corollary.

Corollary 3.18. Let $\lambda \neq -p$ be a complex number and $\operatorname{Re}[(\mu - \nu)(\lambda + p)] \geq 0$. If $f \in \mathcal{A}_p$, and satisfies the subordination

$$\Omega^{r}_{I,\mu,\nu}(f(z)) \left(\mu \Omega^{r+1}_{I,1,1}(f(z)) - \nu \Omega^{r}_{I,1,1}(f(z))\right) \prec (\mu - \nu)\sqrt{1+z} + \frac{z}{2(\lambda + p)\sqrt{1+z}},$$

then

$$\Omega^r_{I,\mu,\nu}(f(z)) \prec \sqrt{1+z}$$

and $\sqrt{1+z}$ is the best dominant.

Putting $p = 1, \lambda = 0$ and r = 0 in Corollary 3.18, we have the following corollary.

Corollary 3.19. Let $\mu \geq \nu$. If $f \in \mathcal{A}$ and satisfies the subordination

$$(f'(z))^{\mu} \left(\frac{z}{f(z)}\right)^{\nu} \left(\mu \left(1 + \frac{zf''(z)}{f'(z)}\right) - \nu \frac{zf'(z)}{f(z)}\right) \prec (\mu - \nu)\sqrt{1 + z} + \frac{z}{2\sqrt{1 + z}},$$

then

$$(f'(z))^{\mu} \left(\frac{z}{f(z)}\right)^{\nu} \prec \sqrt{1+z}$$

and $\sqrt{1+z}$ is the best dominant.

Example 3.6. If $f \in A$ and satisfies

$$\left|\frac{zf'(z)}{f(z)}\left(1 - \frac{zf'(z)}{f(z)} + \frac{zf''(z)}{f'(z)}\right)\right| < \frac{1}{2\sqrt{2}} \approx 0.35,$$

then $f \in S\mathcal{L}$.

Proof. Putting $\mu = \nu = 1$ in Corollary 3.19 and using the technique used in the proof of Example 3.2, we get the required result.

References

- R. M. Ali, N. E. Cho, S. S. Kumar and V. Ravichandran, Differential subordination for functions associated with the lemniscate of Bernoulli, *Taiwanese J. Math.*, 16 no. 3 (2012), 1017-1026.
- [2] R. Aghalary, S. B. Joshi, R. N. Mohapatra and V. Ravichandran, Subordinations for analytic functions defined by the Dziok-Srivastava linear operator, *Appl. Math. Comput.*, **187** no. 1 (2007), 13-19.
- [3] H. A. Al-Kharsani and N. M. Al-Areefi, On classes of multivalent functions involving linear operator and multiplier transformations, *Hacet. J. Math. Stat.*, **37** no. 2 (2008), 115-127.
- [4] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
- [5] T. Bulboacă, A class of superordination-preserving integral operators, Indag. Math. (N.S.), 13 no. 3 (2002), 301-311.
- [6] T. Bulboacă, Classes of first-order differential superordinations, *Demonstratio Math.*, 35 no. 2 (2002), 287-292.
- [7] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 no. 4 (1984), 737-745.
- [8] P. N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc., 62 no. 1 (1976), 37-43 (1977).

- [9] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, *Mathematical* and Computer Modelling, **37** (2003), 39-49.
- [10] N. E. Cho and T. H. Kim, Multiplier transformations and strongly closeto-convex functions, Bull. Korean Math. Soc., 40 (2003), 399-410.
- [11] J. Dziok, H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, *Integral Transform. Spec. Funct.*, **14** (2003), 7-18.
- [12] Yu. E. Hohlov, Operators and operations in the class of univalent functions, Izv. Vysš. Učebn. Zaved. Mat., 10 (1978), 83-89.
- [13] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23 (1970/1971), 159-177.
- [14] I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 no. 1 (1993), 138-147.
- [15] O. S. Kwon and N. E. Cho, Inclusion properties for certain subclasses of analytic functions associated with the Dziok-Srivastava operator, J. Inequal. Appl., 2007, Art. ID 51079, 10 pp.
- [16] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-758.
- [17] J.-L. Liu, Notes on Jung-Kim-Srivastava integral operator. Comment on: "The Hardy space of analytic functions associated with certain oneparameter families of integral operators" [J. Math. Anal. Appl. 176 (1993), no. 1, 138–147] by I. B. Jung, Y. C. Kim and H. M. Srivastava, J. Math. Anal. Appl., **294** no. 1 (2004), 96-103.
- [18] J.-L. Liu and S. Owa, On a class of multivalent functions involving certain linear operator, *Indian J. Pure Appl. Math.*, **33** no. 11 (2002), 1713-1722.
- [19] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 352-357.

386 S. Sivaprasad Kumar, Virendra Kumar and V. Ravichandran

- [20] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications. *Pure and Applied Mathematics No. 225*, Marcel Dekker, New York, 2000.
- [21] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, *Complex Var. Theory Appl.*, 48 no. 10 (2003), 815-826.
- [22] K. I. Noor, On some analytic functions defined by a multiplier transformation, Int. J. Math. Math. Sci., 2007, Art. ID 92439, 9 pp.
- [23] K. I. Noor and M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 no. 2 (1999), 341-352.
- [24] M. Obradović, Estimates of the real part of f(z)/z for some classes of univalent functions, *Mat. Vesnik* **36** no. 4 (1984), 266-270.
- [25] S. Owa, On the distortion theorems I, Kyungpook Math. J., 18 (1978), 53-58.
- [26] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39 (1987), 1057-1077.
- [27] S. Owa and M. Obradović, An application of differential subordinations and some criteria for univalency, *Bull. Austral. Math. Soc.*, **41** no. 3 (1990), 487-494.
- [28] Y. Polatoğlu and M. Bolcal, Some radius problem for certain families of analytic functions, *Turkish J. Math.*, 24 no. 4 (2000), 401-412.
- [29] Y. Polatoğlu M. Bolcal, A. Şen, E. Yavuz, An investigation on a subclass of *p*-valently starlike functions in the unit disc, *Turkish J. Math.*, **31** no. 2 (2007), 221-228.
- [30] V. Ravichandran and S. S. Kumar, On sufficient conditions for starlikeness, Southeast Asian Bull. Math., 29 no. 4 (2005), 773-783.
- [31] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.

- [32] G. St. Sălăgean, Subclasses of univalent functions, in Complex Analysis: Fifth Romanian-Finnish Seminar, Part I (Bucharest, 1981), Lecture Notes in Mathematics, Vol. 1013, Springer-Verlag, Berlin and New York, 1983, 362-372.
- [33] S. Sivaprasad Kumar, V. Ravichandran and H. C. Taneja, Differential sandwich theorems for linear operators, *International Journal of Mathematical Modeling, Simulation and Applications*, 2 no. 4 (2009), 490-507.
- [34] S. Sivaprasad Kumar, H. C. Taneja and V. Ravichandran, Classes of multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformation, *Kyungpook Math. J.*, 46 no. 1 (2006), 97-109.
- [35] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. no. 19 (1996), 101-105.
- [36] H. M. Srivastava, Some families of fractional derivative and other linear operators associated with analytic, univalent, and multivalent functions, in *Analysis and its applications (Chennai, 2000)*, 209-243, Allied Publ., New Delhi
- [37] B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, in *Current topics in analytic function theory*, 371-374, World Sci. Publ., River Edge, NJ.