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Numerous linear operators were introduced in geometric function
theory and the properties of functions defined by them were derived
using a recurrence relation satisfied by them. All these linear opera-
tors are unified in this paper and subordination and superordination
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properties of p-valent analytic functions defined using the general linear
operator as well as a related integral transform are investigated. Some
applications to univalent functions are also provided.

Keywords and Phrases: p-valent function, Linear operator, Starlike func-
tion, Strongly starlike function.

1. Introduction

Let H be the class of functions analytic in the unit disk D := {z ∈ C : |z| < 1}
and H[a, n] be the subclass of H, which contains functions of the form f(z) =
a+ anz

n + an+1z
n+1 + · · · . Let Ap denote the class of all analytic functions of

the form f(z) = zp +
∑∞

k=p+1 akz
k (z ∈ D) and let A1 := A. For two functions

f(z) = zp+
∑∞

k=p+1 akz
k and g(z) = zp+

∑∞
k=p+1 bkz

k, the Hadamard product

(or convolution) of f and g is defined by (f ∗ g)(z) := zp +
∑∞

k=p+1 akbkz
k.

For two analytic functions f and g, we say that f is subordinate to g or
g superordinate to f , denoted by f ≺ g, if there is a Schwarz function w
with |w(z)| ≤ |z| such that f(z) = g(w(z)). If g is univalent, then f ≺ g
if and only if f(0) = g(0) and f(D) ⊆ g(D). The class T (α) is defined to
be the class of all functions f ∈ A satisfying Re(f(z)/z) > α, 0 ≤ α < 1,
z ∈ D and let T := T (0). For an analytic function ϕ with ϕ(0) = 1, let
S∗(ϕ) denote the class of all f ∈ A satisfying zf ′(z)/f(z) ≺ ϕ(z). Several
special choices of ϕ reduce to well-known classes. For −1 ≤ B < A ≤ 1,
S∗[A,B] := S∗((1 +Az)/(1 +Bz)) is the Janowski starlike functions [13] (see
[28]) and S∗[1 − 2α,−1] is the class S∗(α) of starlike functions of order α
and S∗ := S∗(0) is the class of starlike functions. For 0 < η ≤ 1, the class
S∗(((1 + z)/(1− z))η) is the class SS∗(η) of strongly starlike function of order
η. For η > 0, the class S∗((1+z)η) is the class SL(η); the class SL := SL(1/2)
was introduced by Sokó l and Stankiewicz [35] and studied recently by Ali et
al. [1].

For αj ∈ C (j = 1, 2, . . . , l) and βj ∈ C \ {0,−1,−2, . . .} (j = 1, 2, . . .m),

the Dziok-Srivastava operator [11, 36] H l,m
p [α1] = H

(l,m)
p (α1, . . . , αl; β1, . . . , βm)

is defined by

H(l,m)
p (α1, . . . , αl; β1, . . . , βm)f(z) := zp +

∞∑
n=p+1

(α1)n−p . . . (αl)n−p
(β1)n−p . . . (βm)n−p

anz
n

(n− p)!
,

(1.1)
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where (a)n is the Pochhammer symbol defined by (a)n := Γ(a + n)/Γ(a).
Several interesting properties of the classes defined by Dziok-Srivastava op-
erator or its various particular cases including the Hohlov operator [12], the
Carlson-Shaffer operator (cf. [7, 18]), the Ruscheweyh derivatives [31], the
generalized Bernardi-Libera-Livingston integral operator (cf. [4, 16, 19]) and
the Srivastava-Owa fractional derivative operators (cf. [25, 26]), rests on the
following identity:

z(H l,m
p [α1]f(z))′ = α1H

l,m
p [α1 + 1]f(z)− (α1 − p)H l,m

p [α1]f(z). (1.2)

The multiplier transformation Ip(r, λ) on Ap, introduced by Sivaprasad
Kumar et al. [33] and investigated in [2, 3, 34], defined by the following
infinite series

Ip(r, λ)f(z) := zp +
∞∑

n=p+1

(
n+ λ

p+ λ

)r
anz

n (λ ∈ C \ {−1,−2, . . .}), (1.3)

satisfies the identity:

z(Ip(r, λ)f(z))′ = (p+ λ)Ip(r + 1, λ)f(z)− λIp(r, λ)f(z). (1.4)

The operator Ip(r, λ) is closely related to the Sǎlǎgean derivative operators
[32]. The operator Irλ := I1(r, λ) was studied by Cho and Srivastava [9] and
Cho and Kim [10]. The operator Ir := I1(r, 1) was studied by Uralegaddi and
Somanatha [37]. Several other operators investigated recently also satisfies
a relation similar to the relations (1.2) and (1.4). Notable among them are
the operators introduced by Al-Kharasani and Al-Areefi [3] which includes
the operators defined in [15], [23] and [22] as well as the Jung-Kim-Srivastava
operator [14] and its p-valent analogue of Liu [17].

In the following definition, all these operators investigated one by one are
unified.

Definition 1.1. Let Op be the class of all linear operators Lap defined on Ap
satisfying

z[Lapf(z)]′ = αaL
a+1
p f(z)− (αa − p)Lapf(z).

One can also consider operators satisfying z[Lbpf(z)]′ = αbL
b−1
p f(z)− (αb−

p)Lbpf(z) but their properties are very similar to the operators in the above
definition. In the following sections, several subordination and superordination
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theorems as well as corresponding sandwich theorems are proved. A related
integral transform is also discussed. Further several sufficient conditions for
functions to belong to the classes S, S∗(α), SS∗(η) and SL are investigated.
Our results are motivated by recent results of Miller and Mocanu [21] on second
order differential superordinations. Their results were later used extensively
by Bulboacă [5, 6] to investigate superordination-preserving integral operators
as well as by several others [2, 3, 11, 29, 30, 33, 34, 36].

We need the following:

Definition 1.2. [21, Definition 2, p.817] Denote by Q, the set of all functions
f(z) that are analytic and injective on D− E(f), where

E(f) = {ζ ∈ ∂D : lim
z→ζ

f(z) =∞},

and are such that f ′(ζ) 6= 0 for ζ ∈ ∂D− E(f).

Lemma 1.1 (cf. Miller and Mocanu[20, Theorem 3.4h, p.132]). Let ψ(z) be
univalent in the unit disk D and let ϑ and ϕ be analytic in a domain D ⊃ ψ(D)
with ϕ(w) 6= 0, when w ∈ ψ(D). Set

Q(z) := zψ′(z)ϕ(ψ(z)), h(z) := ϑ(ψ(z)) +Q(z).

Suppose that

1. Q(z) is starlike univalent in D and

2. Re
(
zh′(z)
Q(z)

)
> 0 for z ∈ D.

If q(z) is analytic in D, with q(0) = ψ(0), q(D) ⊂ D and

ϑ(q(z)) + zq′(z)ϕ(q(z)) ≺ ϑ(ψ(z)) + zψ′(z)ϕ(ψ(z)), (1.5)

then q(z) ≺ ψ(z) and ψ(z) is the best dominant.

Lemma 1.2. [6, Corollary 3.2, p.289] Let ψ(z) be univalent in the unit disk
D and ϑ and ϕ be analytic in a domain D containing ψ(D). Suppose that

1. Re [ϑ′(ψ(z))/ϕ(ψ(z))] > 0 for z ∈ D,

2. Q(z) := zψ′(z)ϕ(ψ(z)) is starlike univalent in D.

If q(z) ∈ H[ψ(0), 1] ∩ Q, with q(D) ⊆ D, and ϑ(q(z)) + zq′(z)ϕ(q(z)) is uni-
valent in D, then

ϑ(ψ(z)) + zψ′(z)ϕ(ψ(z)) ≺ ϑ(q(z)) + zq′(z)ϕ(q(z)), (1.6)

implies ψ(z) ≺ q(z) and ψ(z) is the best subordinant.



Subordination and Superordination for Multivalent Functions 365

2. Subordination, Superordination and Sand-

wich Results

For functions f, F ∈ Ap, let

Ωa
L,µ,ν(f(z)) =

(
La+1
p f(z)

zp

)µ(
zp

Lapf(z)

)ν
, Ωa

L,µ,ν(f(z), F (z)) :=
Ωa
L,µ,ν(f(z))

Ωa
L,µ,ν(F (z))

where the powers are principal one, µ and ν are real numbers such that they
do not assume the value zero simultaneously.

Theorem 2.1. Let ψ be convex univalent in D with ψ(0) = 1 and f ∈ Ap.
Let αa+1 6= 0, Re [αa+1µ− αaν] ≥ 0. Assume that χ and Φ are respectively
defined by

χ(z) :=
1

αa+1

[(αa+1µ− αaν)ψ(z) + zψ′(z)] (2.1)

and
Φ(z) := Ωa

L,µ,ν(f(z))ΥL(z), (2.2)

where
ΥL(z) := µΩa+1

L,1,1(f(z))− αaν

αa+1

Ωa
L,1,1(f(z)).

1. If Φ(z) ≺ χ(z), then
Ωa
L,µ,ν(f(z)) ≺ ψ(z)

and ψ(z) is the best dominant.

2. If χ(z) ≺ Φ(z),

0 6= Ωa
L,µ,ν(f(z)) ∈ H[1, 1] ∩Q and Φ(z) is univalent in D, (2.3)

then
ψ(z) ≺ Ωa

L,µ,ν(f(z))

and ψ(z) is the best subordinant.

Proof. Define the function q by

q(z) := Ωa
L,µ,ν(f(z)), (2.4)
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where the branch of q(z) is so chosen such that q(0) = 1. Then q(z) is analytic
in D. By a simple computation, we find from (2.4) that

zq′(z)

q(z)
=

z[Ωa
L,µ,ν(f(z))]′

Ωa
L,µ,ν(f(z))

= µ
z(La+1

p f(z))′

La+1
p f(z)

− ν
z(Lapf(z))′

Lapf(z)
+ p(ν − µ). (2.5)

By making use of the identity

z(Lapf(z))′ = αaL
a+1
p f(z)− (αa − p)Lapf(z), (2.6)

in (2.5), we have

Ωa
L,µ,ν(f(z))

(
µΩa+1

L,1,1(f(z))− αaν

αa+1

Ωa
L,1,1(f(z))

)
=

1

αa+1

[(αa+1µ− αaν)q(z) + zq′(z)]. (2.7)

In view of (2.7), the subordination Φ(z) ≺ χ(z) becomes

(αa+1µ− αaν)q(z) + zq′(z) ≺ (αa+1µ− αaν)ψ(z) + zψ′(z)

and this can be written as (1.5), by defining

ϑ(w) := (αa+1µ− αaν)w and ϕ(w) := 1.

Note that ϕ(w) 6= 0 and ϑ(w), ϕ(w) are analytic in C− {0}. Set

Q(z) := zψ′(z)

h(z) := ϑ(ψ(z)) +Q(z) = (αa+1µ− αaν)ψ(z) + zψ′(z).

In light of the hypothesis of our Theorem 2.1, we see that Q(z) is starlike and

Re

(
zh′(z)

Q(z)

)
= Re

(
αa+1µ− αaν + 1 +

zψ′′(z)

ψ′(z)

)
> 0.

By an application of Lemma 1.1, we obtain that q(z) ≺ ψ(z) or

Ωa
L,µ,ν(f(z)) ≺ ψ(z).

The second half of Theorem 2.1 follows by a similar application of Lemma 1.2.
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Using Theorem 2.1, we obtain the following “sandwich result”.

Corollary 2.1. Let ψj (j = 1, 2) be convex univalent in D with ψj(0) = 1.
Assume that Re [αa+1µ− αaν] ≥ 0 and Φ be as defined in (2.2). Further
assume that

χj(z) :=
1

αa+1

[
(αa+1µ− αaν)ψj(z) + zψ′j(z)

]
.

If (2.3) holds and χ1(z) ≺ Φ(z) ≺ χ2(z), then

ψ1(z) ≺ Ωa
L,µ,ν(f(z)) ≺ ψ2(z).

Theorem 2.2. Let ψ be convex univalent in D with ψ(0) = 1 and αa be a
complex number. Assume that Re(µαa+1 − ναa) ≥ 0 and f ∈ Ap. Define the
functions F , χ and Ψ respectively by

F (z) :=
αa
zαa−p

∫ z

0

tαa−p−1f(t)dt, (2.8)

χ(z) := (µαa+1 − ναa)ψ(z) + zψ′(z) (2.9)

and

Ψ(z) := Ωa
L,µ,ν(F (z))

[
µαa+1Ω

a
L,1,0(f(z), F (z))− ναaΩa

L,0,−1(f(z), F (z))
]
.

(2.10)

1. If Ψ(z) ≺ χ(z), then

Ωa
L,µ,ν(F (z)) ≺ ψ(z)

and ψ(z) is the best dominant.

2. If χ(z) ≺ Ψ(z),

0 6= Ωa
L,µ,ν(F (z)) ∈ H[1, 1] ∩Q and Ψ(z) is univalent in D, (2.11)

then

ψ(z) ≺ Ωa
L,µ,ν(F (z))

and ψ(z) is the best subordinant.
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Proof. From the definition of F , we obtain that

αaf(z) = (αa − p)F (z) + zF ′(z). (2.12)

By convoluting (2.12) with La(z), where

Lap(f(z)) = La(z) ∗ f(z)

and using the fact that z(f ∗ g)′(z) = f(z) ∗ zg′(z), we obtain

αaL
a
p(f(z)) = (αa − p)Lap(F (z)) + z(Lap(F (z)))′. (2.13)

Define the function q by

q(z) := Ωa
L,µ,ν(F (z)), (2.14)

where the branch of q(z) is so chosen such that q(0) = 1. Clearly q(z) is
analytic in D. Using (2.13) and (2.14), we have

Ωa
L,µ,ν(F (z))

(
µαa+1Ω

a
L,1,0(f(z), F (z))− ναaΩa

L,0,−1(f(z), F (z))
)

= (µαa+1 − ναa)q(z) + zq′(z). (2.15)

Using(2.15), the subordination Ψ(z) ≺ χ(z) becomes

(µαa+1 − ναa)q(z) + zq′(z) ≺ (µαa+1 − ναa)ψ(z) + zψ′(z)

and this can be written as (1.5), by defining

ϑ(w) := (µαa+1 − ναa)ψ(z) and ϕ(w) := 1.

Note that ϕ(w) 6= 0 and ϑ(w), ϕ(w) are analytic in C− {0}. Set

Q(z) := zψ′(z)

h(z) := ϑ(ψ(z)) +Q(z) = (µαa+1 − ναa)ψ(z) + zψ′(z).

In light of the assumption of our Theorem 2.2, we see that Q(z) is starlike and

Re

(
zh′(z)

Q(z)

)
= Re

(
µαa+1 − ναa + 1 +

zψ′′(z)

ψ′(z)

)
> 0.

An application of Lemma 1.1, gives q(z) ≺ ψ(z) or

Ωa
L,µ,ν(F (z)) ≺ ψ(z).

By an application of Lemma 1.2 the proof of the second half of Theorem 2.2
follows at once.
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As a consequence of Theorem 2.2, we obtain the following “sandwich re-
sult”.

Corollary 2.2. Let ψj (j = 1, 2) be convex univalent in D with ψj(0) = 1 and
αa be a complex number. Further assume that Re(µαa+1 − ναa) ≥ 0 and Ψ be
as defined in (2.10). If (2.11) holds and χ1(z) ≺ Ψ(z) ≺ χ2(z), then

ψ1(z) ≺ Ωa
L,µ,ν(F (z)) ≺ ψ2(z),

where
χj(z) := (µαa+1 − ναa)ψj(z) + zψ′j(z) (j = 1, 2)

and F is defined by (2.8).

Theorem 2.3. Let φ be analytic in D with φ(0) = 1 and αa is independent of
a. If f ∈ Ap, then

Ωa
L,µ,ν(f(z)) ≺ φ(z)⇔ Ωa+1

L,µ,ν(F (z)) ≺ φ(z).

Further
φ(z) ≺ Ωa

L,µ,ν(f(z))⇔ φ(z) ≺ Ωa+1
L,µ,ν(F (z)),

where F is defined by (2.8).

Proof. Using the following identity

z[Lap(f(z))]′ = αaL
a+1
p (f(z))− (αa − p)Lap(f(z))

in (2.13), we get
Lap(f(z)) = La+1

p (F (z)). (2.16)

Since αa is independent of a, αa+1 = αa, we have

αaL
a+1
p (f(z)) = z(Lap(f(z)))′ + (αa − p)Lap(f(z))

= z(La+1
p (F (z)))′ + (αa − p)La+1

p (F (z))

= αa+1L
a+2
p (F (z)). (2.17)

Therefore, from (2.16) and (2.17), we have

Ωa+1
L,µ,ν(F (z)) = Ωa

L,µ,ν(f(z))

and hence the result follows at once.
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Now we will use Theorem 2.3 to state the following “sandwich result”.

Corollary 2.3. Let f ∈ Ap and αa is independent of a. Let φi (i = 1, 2) be
analytic in D with φi(0) = 1 and F is defined by (2.8). Then

φ1(z) ≺ Ωa
L,µ,ν(f(z)) ≺ φ2(z)

if and only if

φ1(z) ≺ Ωa+1
L,µ,ν(F (z)) ≺ φ2(z).

3. Applications

We begin with some interesting applications of subordination part of Theo-
rem 2.1 for the case when L = H, the Dziok Srivastava Operator. Note that
the subordination part of Theorem 2.1 holds even if we assume

Re

{
1 +

zψ′′(z)

ψ′(z)

}
> max{0,Re[α1(ν − µ)− µ]}

instead of “ψ(z) is convex and Re [α1(µ− ν) + µ] ≥ 0” and leads to the follow-
ing corollary to the first part of Theorem 2.1 by taking ψ(z) = (1 +Az)/(1 +
Bz).

Corollary 3.1. Let −1 < B < A ≤ 1 and Re(u − vB) ≥ |v − ūB| where
u = α1(µ − ν) + µ + 1 and v = [α1(µ − ν) + µ − 1]B. If f ∈ Ap satisfies the
subordination

Ωα1
H,µ,ν(f(z))

(
µΩα1+1

H,1,1(f(z))− α1ν

α1 + 1
Ωα1
H,1,1(f(z))

)
≺ 1

α1 + 1

(
[α1(µ− ν) + µ]

1 + Az

1 +Bz
+

(A−B)z

(1 +Bz)2

)
(α1 6= −1),

then

Ωα1
H,µ,ν(f(z)) ≺ 1 + Az

1 +Bz

and (1 + Az)/(1 +Bz) is the best dominant.
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Proof. Let

ψ(z) =
1 + Az

1 +Bz
(−1 < B < A ≤ 1), (3.1)

then clearly ψ(z) is univalent and ψ(0) = 1. Upon logarithmic differentiation
of ψ given by (3.1), we obtain that

zψ′(z) =
(A−B)z

(1 +Bz)2
. (3.2)

Another differentiation of (3.2), yields

1 +
zψ′′(z)

ψ′(z)
=

1−Bz
1 +Bz

.

If z = reiθ, 0 ≤ r < 1, then we have

Re

(
1 +

zψ′′(z)

ψ′(z)

)
=

1−B2r2

1 +B2r2 + 2Br cos θ
≥ 0.

Hence ψ(z) is convex in D. Also it follows that

[α1(µ− ν) + µ] + 1 +
zψ′′(z)

ψ′(z)
=

[α1(µ− ν) + µ+ 1] + [α1(µ− ν) + µ− 1]Bz

1 +Bz

=
u+ vz

1 +Bz
,

where u = α1(µ − ν) + µ + 1 and v = [α1(µ− ν) + µ− 1]B. The function
w(z) = u+vz

1+Bz
maps D into the disk∣∣∣∣w − ū− v̄B

1−B2

∣∣∣∣ ≤ |v − ūB|1−B2
.

Which implies that

Re

(
[α1(µ− ν) + µ] + 1 +

zψ′′(z)

ψ′(z)

)
≥ Re(ū− v̄B)− |v − ūB|

1−B2
≥ 0

provided
Re(ū− v̄B) ≥ |v − ūB|

or
Re(u− vB) ≥ |v − ūB|.

Thus the result follows at once by an application of the first part of Theo-
rem 2.1.
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Corollary 3.2. Let 0 ≤ α < 1 and Re(α1(µ− ν) + µ) ≥ 0. If

Ωα1
H,µ,ν(f(z))

(
µΩα1+1

H,1,1(f(z))− α1ν

α1 + 1
Ωα1
H,1,1(f(z))

)
≺ 1

α1 + 1

(
(α1(µ− ν) + µ)

1 + (1− 2α)z

1− z
+

2(1− α)z

(1− z)2

)
(α1 6= −1),

then
Re Ωα1

H,µ,ν(f(z)) > α.

Proof. Let

ψ(z) =
1 + (1− 2α)z

1− z
(0 ≤ α < 1),

then obviously ψ(z) is univalent and ψ(0) = 1. By a simple calculation, we
have

1 +
zψ′′(z)

ψ′(z)
=

1 + z

1− z
,

which clearly indicates that ψ(z) is convex. If we assume β = α1(µ − ν) + µ
then by hypothesis we have Re β ≥ 0. So if we take

w(z) = β +
1 + z

1− z
=

(1 + β) + (1− β)z

1− z
,

then w(z) maps the unit disc D on to Rew > Re β ≥ 0. The result now follows
by an application of the subordination part of Theorem 2.1.

Note that if p = 1, l = m + 1 and αi+1 = βi (i = 1, 2, ...,m), then
H1[1]f(z) = f(z), H1[2]f(z) = zf ′(z) and H1[3]f(z) = 1

2
z2f ′′(z) + zf ′(z).

Putting α = 1, p = 1, l = m + 1 and αi+1 = βi (i = 1, 2, ...,m) in Corol-
lary 3.2, we obtain the following.

Corollary 3.3. Let 0 ≤ α < 1 and 2µ ≥ ν. If f ∈ A and satisfies

Re

(
(f ′(z))µ

(
z

f(z)

)ν (
µ

(
2 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

))
>

2(2µ− ν)α− (1− α)

2
,

then

Re

(
(f ′(z))µ

(
z

f(z)

)ν)
> α.
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Proof. From Corollary 3.2, we see that

(f ′(z))µ
(

z

f(z)

)ν (
µ

(
2 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)
≺ (2µ− ν)

1 + (1− 2α)z

1− z
+

2(1− α)z

(1− z)2
=: h(z).

We now investigate the image of h(D). Assuming a = 1− 2α and b = 2µ− ν,
we have

h(z) =
b+ (1 + a− b+ ab)z − abz2

(1− z)2
,

where h(0) = b and h(−1) = [2b(1 − a) − (1 + a)]/4. The boundary curve of
the image of h(D) is given by h(eiθ) = u(θ) + iv(θ), −π < θ < π, where

u(θ) =
(1 + a− b+ ab) + (1− a)b cos θ

2(cos θ − 1)
and v(θ) =

(1 + a)b sin θ

2(1− cos θ)
.

By eliminating θ, we obtain the equation of the boundary curve as

v2 = −b2(1 + a)

(
u− 2b(1− a)− (a+ 1)

4

)
. (3.3)

Obviously (3.3) represents a parabola opening towards the left, with the vertex

at the point
(

2b(1−a)−(a+1)
4

, 0
)

and negative real axis as its axis. Hence h(D) is

the exterior of the parabola (3.3) which includes the right half plane

u >
2b(1− a)− (a+ 1)

4
.

Hence the result follows at once.

Setting µ = 0 and ν = −1 in Corollary 3.3, we obtain the following result.

Example 3.1. Let 0 ≤ α < 1. If f ∈ A and Re f ′(z) > 3α−1
2
, then f ∈ T (α).

Remark 3.1. The above Example 3.1 reduces to [24, Theorem 2] when α =
1/3.

If we take ψ(z) = ((1 + z)/(1− z))η with 0 < η ≤ 1 in Theorem 2.1 for the
case L = H, the Dziok Srivastava operator, then clearly ψ(z) is convex in D
and consequently corresponding to the subordination part of the Theorem 2.1,
we have the following.
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Corollary 3.4. Let 0 < η ≤ 1, α1 6= −1 and Re(α1(µ− ν) + µ) ≥ 0. If
f ∈ Ap and satisfies

Ωα1
H,µ,ν(f(z))

(
µΩα1+1

H,1,1(f(z))− α1ν

α1 + 1
Ωα1
H,1,1(f(z))

)
≺ 1

α1 + 1

(
(α1(µ− ν) + µ) +

2ηz

1− z2

)(
1 + z

1− z

)η
,

then

Ωα1
H,µ,ν(f(z)) ≺

(
1 + z

1− z

)η
and ((1 + z)/(1− z))η is the best dominant.

By taking p = 1, l = m + 1, α1 = 1 and αi+1 = βi (i = 1, 2, ...m), in the
above Corollary 3.4, we have the following:

Corollary 3.5. Let 0 < η ≤ 1 and 2µ ≥ ν. If f ∈ A and satisfies∣∣∣∣arg

{
(f ′(z))µ

(
z

f(z)

)ν (
µ

(
2 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)}∣∣∣∣ < δπ

2
,

then ∣∣∣∣arg

{
(f ′(z))µ

(
z

f(z)

)ν}∣∣∣∣ < ηπ

2

where

δ = η + 1− 2

π
arctan

2µ− ν
η

.

Proof. In view of the Corollary 3.4, we have

(f ′(z))µ
(

z

f(z)

)ν (
µ

(
2 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)
≺
(

(2µ− ν) +
2ηz

1− z2

)(
1 + z

1− z

)η
=: h(z)

implies

(f ′(z))µ
(

z

f(z)

)ν
≺
(

1 + z

1− z

)η
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or ∣∣∣∣arg

{
(f ′(z))µ

(
z

f(z)

)ν}∣∣∣∣ < ηπ

2
(z ∈ D).

Now we need to find the minimum value of arg h(D). Let z = eiθ. Since h(D)
is symmetrical about the real axis, we shall restrict ourself to 0 < θ ≤ π.
Setting t = cot θ/2, we have t ≥ 0 and for z = it−1

it+1
, we arrive at

h(eiθ) = (it)η−1
[
(2µ− ν)it− η(1 + t2)

2

]
= (it)η−1G(t),

where

G(t) =

[
(2µ− ν)it− η(1 + t2)

2

]
.

Let G(t) = U(t) + iV (t), where U(t) = −η(1+t2)
2

and V (t) = (2µ − ν)t, there
arises two cases namely 2µ > ν and 2µ = ν. If 2µ > ν, then a calculation
shows that mint≥0 argG(t) occurs at t = 1 and

min
t≥0

argG(t) = π − arctan
2µ− ν
η

.

Thus

min
|z|<1

arg h(z) =
(η + 1)π

2
− arctan

2µ− ν
η

.

If 2µ = ν, then argG(t) = π and min|z|<1 arg h(z) = (η + 1)π/2. Thus for
2µ ≥ ν, we have

min
|z|<1

arg h(z) = min

{
(η + 1)π

2
,
(η + 1)π

2
− arctan

2µ− ν
η

}
=

(η + 1)π

2
− arctan

2µ− ν
η

.

This completes the proof of the corollary.

We now enlist a few applications of Theorem 2.1 for the operator L =
H, the Dziok Srivastava operator, by taking ψ(z) =

√
1 + z as dominant.

Obviously ψ(z) is a convex function in the open unit disk D with ψ(0) = 1.
The subordination part of Theorem 2.1, leads to the following result.
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Corollary 3.6. Let α1 6= −1 and Re [α1(µ− ν) + µ] ≥ 0. If f ∈ Ap and
satisfies the subordination

Ωα1
H,µ,ν(f(z))

(
µΩα1+1

H,1,1(f(z))− α1ν

α1 + 1
Ωα1
H,1,1(f(z))

)
≺ 1

α1 + 1

(
[α1(µ− ν) + µ]

√
1 + z +

z

2
√

1 + z

)
,

then

Ωα1
H,µ,ν(f(z)) ≺

√
1 + z

and
√

1 + z is the best dominant.

By taking p = 1, l = m + 1, α1 = 1 and αi+1 = βi (i = 1, 2, ...m) in
Corollary 3.6, we obtain the following result.

Corollary 3.7. Let 2µ ≥ ν. If f ∈ A and satisfies the subordination

(f ′(z))µ
(

z

f(z)

)ν (
µ

(
2 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)
≺ (2µ−ν)

√
1 + z+

z

2
√

1 + z
,

then

(f ′(z))µ
(

z

f(z)

)ν
≺
√

1 + z

and
√

1 + z is the best dominant.

We obtain the following example from Corollary 3.7.

Example 3.2. If f ∈ A and satisfies∣∣∣∣zf ′(z)

f(z)

(
2 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)∣∣∣∣ < √1.22 ≈ 1.10,

then f ∈ SL.

Proof. Putting µ = ν = 1 in Corollary 3.7, we have

zf ′(z)

f(z)

(
2 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺
√

1 + z +
z

2
√

1 + z
=: h(z),
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implies
zf ′(z)

f(z)
≺
√

1 + z.

The dominant h(z) can be written as

h(z) =
3z + 2

2
√

1 + z
.

Writing h(eiθ) = u(θ) + iv(θ),−π < θ < π, we have

u(θ) =
3 cos(3θ/4) + 2 cos(θ/4)

2
√

2 cos(θ/2)

and

v(θ) =
3 sin(3θ/4)− 2 sin(θ/4)

2
√

2 cos(θ/2)
.

A simple calculation gives

u2(θ) + v2(θ) =
13 + 12 cos θ

8 cos(θ/2)
=: k(θ).

A computation shows that k(θ) has minimum at θ = arccos(
√

1/24) and

k(θ) ≥
√

3/2 ≈ 1.22. Since h(0) = 1 and h(−1) = −∞, by a computation we
come to know that the image of h(D) is the interior of the domain bounded by
parabola opening towards left which contains the interior of the circle u2+v2 =
1.22. Hence the result follows at once.

We now give some interesting applications of Theorem 2.2 for the case
L = H. Note that if we replace the statement “ψ(z) is convex in the open
unit disc D and Re [(µ− ν)α1 + µ] ≥ 0” by

Re

(
1 +

zψ′′(z)

ψ′(z)

)
> max{0,Re [(ν − µ)α1 − µ]}

in the hypothesis of Theorem 2.2 still the subordination part of the result holds
so we obtain the following corollary as a straight forward consequence to the
first part of Theorem 2.2 by taking ψ(z) = (1 + (1− 2α)z)/(1− z), 0 ≤ α < 1.
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Corollary 3.8. Let 0 ≤ α < 1 and Re[(µ − ν)α1 + µ] ≥ 0. If f ∈ Ap, F as
defined in (2.8) and

Ωα1
H,µ,ν(F (z))(µ(α1 + 1)Ωα1

H,1,0(f(z), F (z))− να1Ω
α1
H,0,−1(f(z), F (z)))

≺ ((µ− ν)α1 + µ)
1 + (1− 2α)z

1− z
+

2(1− α)z

(1− z)2

then

Ωα1
H,µ,ν(F (z)) ≺ 1 + (1− 2α)z

1− z
and (1 + (1− 2α)z)/(1− z) is the best dominant.

Putting p = 1, l = m+ 1, α1 = 1 and αi+1 = βi (i = 1, 2, ...m) in Corollary
3.8, we obtain the following result:

Corollary 3.9. Let 0 ≤ α < 1 and 2µ ≥ ν. If f ∈ A, F as defined in (2.8)
and

Re

{
(F ′(z))µ

(
z

F (z)

)ν (
2µ
f ′(z)

F ′(z)
− ν f(z)

F (z)

)}
<

2(2µ− ν)α− (1− α)

2
,

then

Re

[
(F ′(z))µ

(
z

F (z)

)ν]
> α.

Proof. From Corollary 3.8, we see that

(F ′(z))µ
(

z

F (z)

)ν (
2µ
f ′(z)

F ′(z)
− ν f(z)

F (z)

)
≺ (2µ− ν)

1 + (1− 2α)z

1− z
+

2(1− α)z

(1− z)2
=: h(z) (3.4)

implies

Re

[
(F ′(z))µ

(
z

F (z)

)ν]
> α.

Let z = eiθ,−π ≤ θ ≤ π. Then

Re(h(eiθ)) = Re

{
(2µ− ν)

1 + (1− 2α)eiθ

1− eiθ
+

2(1− α)eiθ

(1− eiθ)2

}
= (2µ− ν)α− (1− α)

2

(
1

sin2 (θ/2)

)
=: k(θ).
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A calculation shows that k(θ) attains its maximum at θ = π and

max
|θ|≤π

k(θ) =
2(2µ− ν)α− (1− α)

2
.

Hence the result follows at once.

By taking ψ(z) = ((1+z)/(1−z))η in the subordination part of Theorem 2.2
for the case L = H, the Dzoik Srivastava operator, we have the following result.

Corollary 3.10. Let 0 < η ≤ 1 and Re[(µ− ν)α1 + µ] ≥ 0. If f ∈ Ap, F as
defined in (2.8) and satisfies the subordination

Ωα1
H,µ,ν(F (z))

(
(α1 + 1)µΩα1

H,1,0(f(z), F (z))− να1Ω
α1
H,0,−1(f(z), F (z))

)
≺
(

((µ− ν)α1 + µ) +
2ηz

(1− z2)

)(
1 + z

1− z

)η
,

then

Ωα1
H,µ,ν(F (z)) ≺

(
1 + z

1− z

)η
and ((1 + z)/(1− z))η is the best dominant.

By putting p = 1, l = m + 1, α1 = 1 and αi+1 = βi (i = 1, 2, ...m) in the
above Corollary 3.10, we obtain the following result.

Corollary 3.11. Let 0 < η ≤ 1 and 2µ ≥ ν. If f ∈ A, F as defined in (2.8)
and∣∣∣∣arg

{
(F ′(z))µ

(
z

F (z)

)ν (
2µ
f ′(z)

F ′(z)
− ν f(z)

F (z)

)}∣∣∣∣ < (η + 1)π

2
−arctan

(2µ− ν)

η
,

then ∣∣∣∣arg

{
(F ′(z))µ

(
z

F (z)

)ν}∣∣∣∣ < ηπ

2
.

Proof. The proof of the above Corollary 3.11 is similar to that of the Corol-
lary 3.5 hence it is skipped here.

Taking the dominant ψ(z) =
√

1 + z, which is a convex function in the open
unit disc D, in the subordination part of Theorem 2.2, we have the following
corollary for the Dzoik Srivastava operator H = L.
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Corollary 3.12. Let 0 < η ≤ 1 and Re[(α1(µ− ν) + µ] ≥ 0. If f ∈ Ap, F as
defined in (2.8) and

Ωα1
H,µ,ν(F (z))

(
(α1 + 1)µΩα1

H,1,0(f(z), F (z))− α1νΩα1
H,0,−1(f(z), F (z))

)
≺ (α1(µ− ν) + µ)

√
1 + z +

z

2
√

1 + z
,

then

Ωα1
H,µ,ν(F (z)) ≺

√
1 + z

and
√

1 + z is the best dominant.

Putting p = 1, l = m + 1, α1 = 1 and αi+1 = βi (i = 1, 2, ...m) in Corol-
lary 3.12, we obtain the following result.

Corollary 3.13. Let 0 < η ≤ 1 and 2µ ≥ ν. If f ∈ A, F as defined in (2.8)
and

(F ′(z))µ
(

z

F (z)

)ν (
2µ
f ′(z)

F ′(z)
− ν f(z)

F (z)

)
≺ (2µ− ν)

√
1 + z +

z

2
√

1 + z
,

then

(F ′(z))µ
(

z

F (z)

)ν
≺
√

1 + z

and
√

1 + z is the best dominant.

Putting µ = ν = 1 in the above Corollary 3.13, we have the following
example.

Example 3.3. Let 0 < η ≤ 1. If f ∈ A, F as defined in (2.8) and∣∣∣∣zF ′(z)

F (z)

(
2
f ′(z)

F ′(z)
− f(z)

F (z)

)∣∣∣∣ < √1.22 ≈ 1.10,

then F ∈ SL.

Proof. The above result can be proved using the technique adopted in the
proof of Example 3.2 and hence it is omitted here.
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Next we discuss some applications of Theorem 2.1 when L = I, the mul-
tiplier transformation. In Theorem 2.1, the subordination part yields the
following corollary by taking ψ(z) = (1 + (1 + 2α)z)/(1− z), 0 ≤ α < 1 and

Re

(
1 +

zψ′′(z)

ψ′(z)

)
> max{0,Re[(ν − µ)(λ+ p)]}

in place of “ψ is convex and Re[(µ− ν)(λ+ p)] ≥ 0”.

Corollary 3.14. Let 0 ≤ α < 1, λ 6= −p be a complex number and Re[(µ −
ν)(λ+ p)] ≥ 0. If f ∈ Ap and

Ωr
I,µ,ν(f(z))

(
µΩr+1

I,1,1(f(z))− νΩr
I,1,1(f(z))

)
≺ (µ− ν)

1 + (1− 2α)z

1− z
+

1

λ+ p

2(1− α)z

(1− z)2
,

then

Ωr
I,µ,ν(f(z)) ≺ 1 + (1− 2α)z

1− z
and (1 + (1− 2α)z)/(1− z) is the best dominant.

Note that for p = 1, λ = 0 and r = 0, we have I1(0, 0)f(z) = f(z), I1(1, 0)f(z) =
zf ′(z), I1(2, 0)f(z) = z(zf ′′(z)+f ′(z)). Putting these values in Corollary 3.14,
we have the following result.

Corollary 3.15. Let 0 ≤ α < 1 and µ ≥ ν. If f ∈ A and satisfies

Re

[
(f ′(z))µ

(
z

f(z)

)ν (
µ

(
1 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)]
>

2(µ− ν)α− (1− α)

2
,

then

Re

[
(f ′(z))

µ

(
z

f(z)

)ν]
> α.

Proof. The proof is similar to that of the Corollary 3.3 and hence omitted
here.

Setting µ = ν = 1 in Corollary 3.15, we have the following result:
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Example 3.4. Let 0 ≤ α < 1. If f ∈ A satisfies the differential subordination

Re

[
zf ′(z)

f(z)

(
1− zf ′(z)

f(z)
+
zf ′′(z)

f ′(z)

)]
>
α− 1

2
,

then f ∈ S∗(α).

Remark 3.2. For α = 0, the above asserted Example 3.4 reduces to a result
obtained by Owa and Obradović [27, Corollary 2].

Putting µ = 1 and ν = 0 in Corollary 3.15, we have the following result:

Example 3.5. Let 0 ≤ α < 1. If f ∈ A and satisfies

Re[f ′(z) + zf ′′(z)] >
3α− 1

2
,

then Re f ′(z) > α.

Remark 3.3. The above Example 3.5 extends the result [8, Theorem 5] due to
Chichra. Further corollary 3.15 reduces to [24, Theorem 2] when µ = 0, ν = −1
and α = 1/3.

If we take ψ(z) = ((1 + z)/(1 − z))η with 0 < η ≤ 1, for the case L = I,
then clearly ψ(z) is convex in the open unit disc D and we have the following
corollary from the subordination part of Theorem 2.1.

Corollary 3.16. Let 0 < η ≤ 1, λ 6= −p be a complex number and Re[(µ −
ν)(λ+ p)] ≥ 0. If f ∈ Ap, and satisfies the subordination

Ωr
I,µ,ν(f(z))

(
µΩr+1

I,1,1(f(z))− νΩr
I,1,1(f(z))

)
≺
(

(µ− ν) +
2ηz

(λ+ p)(1− z2)

)(
1 + z

1− z

)η
,

then

Ωr
I,µ,ν(f(z)) ≺

(
1 + z

1− z

)η
and

(
1+z
1−z

)η
is the best dominant.

Putting p = 1, λ = 0 and r = 0 in Corollary 3.16, we obtain the following
corollary.
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Corollary 3.17. Let 0 < η ≤ 1 and µ ≥ ν. If f ∈ A and satisfies∣∣∣∣arg

{
(f ′(z))µ

(
z

f(z)

)ν (
µ

(
1 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)}∣∣∣∣ < δπ

2
,

where

δ = η + 1− 2

π
arctan

µ− ν
η

,

then ∣∣∣∣arg

{
(f ′(z))µ

(
z

f(z)

)ν}∣∣∣∣ < ηπ

2
.

Proof. The proof is much akin to the proof of Corollary 3.5 hence it is left
here.

Taking ψ(z) =
√

1 + z, convex function in the open unit disc D, as dom-
inant in the subordination part of the Theorem 2.1, we obtain the following
corollary.

Corollary 3.18. Let λ 6= −p be a complex number and Re[(µ−ν)(λ+p)] ≥ 0.
If f ∈ Ap, and satisfies the subordination

Ωr
I,µ,ν(f(z))

(
µΩr+1

I,1,1(f(z))− νΩr
I,1,1(f(z))

)
≺ (µ−ν)

√
1 + z+

z

2(λ+ p)
√

1 + z
,

then
Ωr
I,µ,ν(f(z)) ≺

√
1 + z

and
√

1 + z is the best dominant.

Putting p = 1, λ = 0 and r = 0 in Corollary 3.18, we have the following
corollary.

Corollary 3.19. Let µ ≥ ν. If f ∈ A and satisfies the subordination

(f ′(z))µ
(

z

f(z)

)ν (
µ

(
1 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)
≺ (µ− ν)

√
1 + z +

z

2
√

1 + z
,

then

(f ′(z))µ
(

z

f(z)

)ν
≺
√

1 + z

and
√

1 + z is the best dominant.
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Example 3.6. If f ∈ A and satisfies∣∣∣∣zf ′(z)

f(z)

(
1− zf ′(z)

f(z)
+
zf ′′(z)

f ′(z)

)∣∣∣∣ < 1

2
√

2
≈ 0.35,

then f ∈ SL.

Proof. Putting µ = ν = 1 in Corollary 3.19 and using the technique used in
the proof of Example 3.2, we get the required result.
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[5] T. Bulboacă, A class of superordination-preserving integral operators,
Indag. Math. (N.S.), 13 no. 3 (2002), 301-311.
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