Starlikeness of a Double Integral Operator *

Sarika Verma ${ }^{\dagger}$ Sushma Gupta, and Sukhjit Singh

Received May 27, 2013, Accepted July 26, 2013

Abstract

For $\alpha, \gamma \geq 0$, sufficient conditions are obtained that ensure the normalized analytic functions f satisfying a differential inequality $$
\left|(1-\alpha+2 \gamma) \frac{f(z)}{z}+(\alpha-2 \gamma) f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-1\right|<\lambda,
$$

to be starlike of order β in the open unit disc. As an application, we construct new starlike function f of order β which can be expressed in terms of double integral

$$
f(z)=\int_{0}^{1} \int_{0}^{1} g(r, s, z) d r d s
$$

of some suitable analytic function in the open unit disc.
Keywords and Phrases: Differential subordination, Starlike function, Convex function.

1. Introduction

Let \mathcal{H} denotes the class of all analytic functions f defined in the open unit $\operatorname{disc} E=\{z:|z|<1\}$. For a positive integer n and $a \in \mathcal{C}$ (Complex plane), define the classes of functions:

$$
\mathcal{H}[a, n]=\left\{f \in \mathcal{H}: f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots\right\},
$$

[^0]$$
\mathcal{A}_{n}=\left\{f \in \mathcal{H}: f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\cdots\right\},
$$
with $\mathcal{A}_{1}=\mathcal{A}$. Let \mathcal{B}_{n} denote the class of all analytic functions ω, such that $\omega(0)=0$ and $|\omega(z)|<|z|^{n}$. Further, denote by S the subclass of \mathcal{A} consisting of univalent functions in E. A function $f \in \mathcal{A}$ is said to be starlike of order β in E iff it satisfies
\[

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta, \quad z \in E \tag{1.1}
\end{equation*}
$$

\]

for some $\beta(0 \leq \beta<1)$. We denote by $S^{*}(\beta)$ the subclass of \mathcal{A} consisting of all functions f which are starlike of order β. Set $S^{*}(0)=S^{*}$, where S^{*} is the well-known class of normalized analytic functions starlike with respect to the origin.

Let the functions f and g be analytic in E. We say that f is subordinate to g (in symbols, $f(z) \prec g(z)$) in E, if there exists a Schwarz function ω analytic in E with $\omega(0)=0$ and $|\omega(z)|<1$, such that $f(z)=g(\omega(z))$. If the function g is univalent in E, then $f(z) \prec g(z)$ is equivalent to $f(0)=g(0)$ and $f(E) \subset g(E)$.

In 2003, Fournier et. al. [2] investigated some differential inequalities which imply starlikeness. The study of such differential inequalities has been a constant theme of geometric function theory. In a recent paper, Miller and Mocanu [4] extended some of the results of Fournier et. al [2] and also investigated starlikeness properties of functions f defined by double integral operators of the form

$$
f(z)=\int_{0}^{1} \int_{0}^{1} W(r, s, z) d r d s
$$

In a very recent paper, R. M. Ali et al [1] discussed the starlikeness of a linear integral transform over functions f in the class $\mathcal{W}_{\beta}(\alpha, \gamma)$

$$
\begin{equation*}
\left\{f \in \mathcal{A}: \exists \phi \in \mathbb{R} \left\lvert\, \Re e^{i \phi}\left((1-\alpha+2 \gamma) \frac{f(z)}{z}+(\alpha-2 \gamma) f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-\beta\right)>0\right., z \in E\right\} . \tag{1.2}
\end{equation*}
$$

Motivated by the definition of the class $\mathcal{W}_{\beta}(\alpha, \gamma)$, the aim of the present paper is to present a new differential inequality which generates starlike function of order β. As an application of this inequality, we construct new starlike function of order β which can be expressed in terms of double integrals of some suitable function in the class \mathcal{H}.

2. Preliminaries

We follow the notations used in [1]. Let $\mu \geq 0$ and $\nu \geq 0$ satisfy

$$
\begin{equation*}
\mu+\nu=\alpha-\gamma \text { and } \mu \nu=\gamma \tag{2.1}
\end{equation*}
$$

When $\alpha=1+2 \gamma$, (2.1) yields $\mu+\nu=1+\mu \nu$, or $(\mu-1)(1-\nu)=0$. In particular, for $\gamma>0$, choosing $\mu=1$ gives $\nu=\gamma$.
We shall also need the following lemma to prove our results.
Lemma 2.1. ([3], p.71) Let h be a convex function with $h(0)=a$ and let $\Re(\gamma)>0$. If $p \in \mathcal{H}[a, n]$ and

$$
p(z)+\frac{z p^{\prime}(z)}{\gamma} \prec h(z) \text { in } E
$$

then

$$
p(z) \prec q(z) \prec h(z) \text { in } E \text {, }
$$

where

$$
q(z)=\frac{\gamma}{n z^{\gamma / n}} \int_{0}^{z} h(t) t^{\gamma / n-1} d t
$$

This result is sharp.

3. Main Results

Theorem 3.1. Let μ, ν satisfy (2.1) such that $\mu>0$ and $\nu>\frac{2}{1-\beta}(0 \leq \beta<1)$. If $f \in \mathcal{A}_{n}$ satisfies

$$
\begin{array}{r}
\left|(1-\alpha+2 \gamma) \frac{f(z)}{z}+(\alpha-2 \gamma) f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-1\right| \\
<\frac{(1+n \mu)(1+n \nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)} \tag{3.1}
\end{array}
$$

for $z \in E$, then $f \in S^{*}(\beta)$.
Proof. The differential inequality (3.1) can be written as follows:

$$
\begin{equation*}
(1-\alpha+2 \gamma) \frac{f(z)}{z}+(\alpha-2 \gamma) f^{\prime}(z)+\gamma z f^{\prime \prime}(z) \prec 1+\frac{(1+n \mu)(1+n \nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)} z \tag{3.2}
\end{equation*}
$$

If we set

$$
\begin{aligned}
p(z) & =(1-\nu) \frac{f(z)}{z}+\nu f^{\prime}(z) \\
& =1+(1+n \nu) a_{n+1} z^{n}+\cdots,
\end{aligned}
$$

then $p \in \mathcal{H}[1, n]$ and the subordination (3.2) becomes

$$
\begin{equation*}
p(z)+\mu z p^{\prime}(z) \prec 1+\frac{(1+n \mu)(1+n \nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)} z=h(z)(\text { say }) . \tag{3.3}
\end{equation*}
$$

It can be easily seen that h is convex and $h(0)=p(0)$. So, applying Lemma 2.1 (with $\gamma=1 / \mu$), we obtain

$$
p(z) \prec \frac{1}{n \mu z^{1 / n \mu}} \int_{0}^{z} \zeta^{\frac{1}{n \mu}-1} h(\zeta) d \zeta, \quad z \in E .
$$

Equivalently

$$
\begin{equation*}
(1-\nu) \frac{f(z)}{z}+\nu f^{\prime}(z) \prec 1+\frac{(1+n \nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)} z, z \in E . \tag{3.4}
\end{equation*}
$$

Now, if we set

$$
q(z)=\frac{f(z)}{z}=1+a_{n+1} z^{n}+\cdots
$$

then $q \in \mathcal{H}[1, n]$ and the subordination (3.4) leads to

$$
q(z)+\nu z q^{\prime}(z) \prec 1+\frac{(1+n \nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)} z=h_{1}(z) \text { (say). }
$$

The function h_{1} satisfies the conditions of Lemma 2.1. Thus, we obtain

$$
\begin{equation*}
\frac{f(z)}{z}=q(z) \prec \frac{1}{n \nu z^{1 / n \nu}} \int_{0}^{z} t^{\frac{1}{n \nu}-1} h_{1}(t) d t=1+\frac{(\nu(1-\beta)-2)}{\nu(n+1-\beta)} z . \tag{3.5}
\end{equation*}
$$

It follows from the subordination (3.4) that

$$
\begin{align*}
\left|(1-\nu) \frac{f(z)}{z}+\nu f^{\prime}(z)\right| & <1+\frac{(1+n \nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)} \\
& =\frac{(n \nu+2)(\nu(1-\beta)-1)}{\nu(n+1-\beta)}, z \in E, \tag{3.6}
\end{align*}
$$

while from the subordination (3.5), we have

$$
\begin{equation*}
\left|\frac{f(z)}{z}\right|>1-\frac{(\nu(1-\beta)-2)}{\nu(n+1-\beta)}=\frac{n \nu+2}{\nu(n+1-\beta)}, \quad z \in E . \tag{3.7}
\end{equation*}
$$

Combining these last two inequalities, we see that

$$
\begin{aligned}
\frac{n \nu+2}{\nu(n+1-\beta)}\left|\frac{z f^{\prime}(z)}{f(z)}-\left(1-\frac{1}{\nu}\right)\right| & <\frac{1}{\nu}\left|\nu f^{\prime}(z)+(1-\nu) \frac{f(z)}{z}\right| \\
& <\frac{1}{\nu}\left[\frac{(n \nu+2)(\nu(1-\beta)-1)}{\nu(n+1-\beta)}\right]
\end{aligned}
$$

which simplifies to

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-\left(1-\frac{1}{\nu}\right)\right|<\left(1-\frac{1}{\nu}-\beta\right) . \tag{3.8}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\left(1-\frac{1}{\nu}\right)-\left(1-\frac{1}{\nu}-\beta\right)=\beta \tag{3.9}
\end{equation*}
$$

which implies that f is starlike of order β in E.
Taking $\alpha=1+2 \gamma(\mu=1, \nu=\gamma)$ in Theorem 3.1 leads to the following result:

Corollary 3.1. Let $f \in \mathcal{A}_{n}$ and ν be a real number such that $\nu>\frac{2}{1-\beta}(0 \leq$ $\beta<1$). If f satisfies

$$
\begin{equation*}
\left|f^{\prime}(z)+\nu z f^{\prime \prime}(z)-1\right|<\frac{(n+1)(1+n \nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)} \tag{3.10}
\end{equation*}
$$

for $z \in E$, then $f \in S^{*}(\beta)$.
If we make $\nu \longrightarrow \infty$ in Corollary 3.1, we obtain the following criterion for starlikeness:

Corollary 3.2. Let $f \in \mathcal{A}_{n}$ and $0 \leq \beta<1$. If f satisfies

$$
\begin{equation*}
\left|z f^{\prime \prime}(z)\right|<\frac{n(n+1)(1-\beta)}{(n+1-\beta)} \tag{3.11}
\end{equation*}
$$

for $z \in E$, then $f \in S^{*}(\beta)$.

Remark 3.1. We note that $\beta=0$ and $n=1$ in Corollary 3.2 leads us to the well known result of Obradovic [5].

Substituting $n=1$ and $\beta=0$ in Corollary 3.1 yields the following interesting criterion for starlikeness.

Corollary 3.3. Let $f \in \mathcal{A}$ and ν be a real number such that $\nu>2$. If f satisfies

$$
\begin{equation*}
\left|z f^{\prime \prime}(z)+\frac{1}{\nu}\left(f^{\prime}(z)-1\right)\right|<\frac{(1+\nu)(\nu-2)}{\nu^{2}} \tag{3.12}
\end{equation*}
$$

for $z \in E$, then

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\left(1-\frac{1}{\nu}\right)\right|<\left(1-\frac{1}{\nu}\right)
$$

i.e $f \in S^{*}$.

Remark 3.2. Corollary 3.3 is a particular case of the Theorem 1.7 in [6] with $\alpha=\frac{1}{\nu} \in \mathbb{R}$.

We now present the following example in support of Theorem 3.1.
Example 3.1. Consider the function

$$
f(z)=z+((\nu(1-\beta)-2) / \nu(n+1-\beta)) z^{n+1}, \quad 0 \leq \beta<1
$$

Now,

$$
\begin{aligned}
& \left|(1-\alpha+2 \gamma) \frac{f(z)}{z}+(\alpha-2 \gamma) f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-1\right| \\
= & \left|((1-\alpha+2 \gamma)+(n+1)(\alpha-2 \gamma)+n(n+1) \gamma) \frac{(\nu(1-\beta)-2)}{\nu(n+1-\beta)} z^{n}\right| \\
= & \left|(1+n \mu)(1+n \nu) \frac{(\nu(1-\beta)-2)}{\nu(n+1-\beta)}\right||z|^{n} \\
< & (1+n \mu)(1+n \nu) \frac{(\nu(1-\beta)-2)}{\nu(n+1-\beta)} .
\end{aligned}
$$

Thus, f satisfies the criterion of Theorem 3.1. Further, for $\mu>0$ and $\nu>\frac{2}{1-\beta}$
as defined in (2.1), we have

$$
\begin{aligned}
\Re\left\{z f^{\prime}(z) f(z)\right\} & =\Re\left\{\frac{1+\left((n+1)(\nu(1-\beta)-2) z^{n} / \nu(n+1-\beta)\right)}{1+\left((\nu(1-\beta)-2) z^{n} / \nu(n+1-\beta)\right)}\right\} \\
& >\left\{\frac{1-((n+1)(\nu(1-\beta)-2) / \nu(n+1-\beta))}{1-((\nu(1-\beta)-2) / \nu(n+1-\beta))}\right\} \\
& =\left\{\frac{n \nu \beta+2 n+2}{n \nu+2}\right\} \\
& >\beta .
\end{aligned}
$$

Theorem 3.2. Let a function $g \in \mathcal{H}$ satisfy

$$
\begin{equation*}
|g(z)| \leq \frac{(1+n \mu)(1+n \nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)} \tag{3.13}
\end{equation*}
$$

for some $\mu>0$ and $\nu>\frac{2}{1-\beta}$ as defined in (2.1) and $0 \leq \beta<1$. Then the function f given by

$$
\begin{equation*}
f(z)=z+\frac{z^{n+1}}{\mu \nu} \int_{0}^{1} \int_{0}^{1} g(r s z) r^{n+1 / \mu-1} s^{n+1 / \nu-1} d r d s \tag{3.14}
\end{equation*}
$$

is starlike of order β in E.
Proof. We first consider the function $f \in \mathcal{A}_{n}$ satisfying the differential equation

$$
\begin{equation*}
(1-\alpha+2 \gamma) \frac{f(z)}{z}+(\alpha-2 \gamma) f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-1=z^{n} g(z) \tag{3.15}
\end{equation*}
$$

In view of (3.13), we have

$$
\begin{aligned}
& \left|(1-\alpha+2 \gamma) \frac{f(z)}{z}+(\alpha-2 \gamma) f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-1\right|=|z|^{n}|g(z)| \\
& <\frac{(1+n \mu)(1+n \nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)}, \quad z \in E .
\end{aligned}
$$

By Theorem 3.1, we see that the solution of differential equation (3.15) must be a starlike function of order β. Further, to obtain the solution, let $\varphi(z)=$ $(1-\nu) \frac{f(z)}{z}+\nu f^{\prime}(z) \in \mathcal{H}[1, n]$, then the equation (3.15) simplifies to

$$
\mu z \varphi^{\prime}(z)+\varphi(z)-1=z^{n} g(z)
$$

On integration, we get

$$
\varphi(z)=1+\frac{1 / \mu}{z^{1 / \mu}} \int_{0}^{z} g(\zeta) \zeta^{n+1 / \mu-1} d \zeta=1+\frac{1}{\mu} z^{n} \int_{0}^{1} g(r z) r^{n+1 / \mu-1} d r
$$

Thus,

$$
\begin{equation*}
(1-\nu) \frac{f(z)}{z}+\nu f^{\prime}(z)=1+\frac{1}{\mu} z^{n} \int_{0}^{1} g(r z) r^{n+1 / \mu-1} d r . \tag{3.16}
\end{equation*}
$$

Further, setting $\psi(z)=\frac{f(z)}{z} \in \mathcal{H}[1, n]$, the differential equation (3.16) reduces to

$$
\nu z \psi^{\prime}(z)+\psi(z)=1+\frac{1}{\mu} z^{n} \int_{0}^{1} g(r z) r^{n+1 / \mu-1} d r .
$$

A simple calculation gives

$$
\psi(z)=1+\frac{1 / \mu \nu}{z^{1 / \nu}} \int_{0}^{z}\left(\int_{0}^{1} g(r \zeta) r^{n+1 / \mu-1} d r\right) \zeta^{n+1 / \nu-1} d \zeta .
$$

Since, $\psi(z)=f(z) / z$ and a change of variable yields that

$$
f(z)=z+\frac{z^{n+1}}{\mu \nu} \int_{0}^{1} \int_{0}^{1} g(r s z) r^{n+1 / \mu-1} s^{n+1 / \nu-1} d r d s
$$

This completes the proof of the theorem.
As an illustration of Theorem 3.2, we give the following example.
Example 3.2. The function $g(z)=\frac{(1+n \mu)(1+n \nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)}(0 \leq \beta<$ 1), satisfies the criteria of the Theorem 3.2. An Application of the theorem yields

$$
f(z)=z+\frac{(\nu(1-\beta)-2)}{\nu(n+1-\beta)} z^{n+1}
$$

which is starlike of order β, as shown in the Example 3.1.
Further, taking $n=1$ and $\alpha=1+2 \gamma(\mu=1, \nu=\gamma)$ in Theorem 3.2, we have the following :

Corollary 3.4. Let a function $g \in \mathcal{H}$ satisfy

$$
\begin{equation*}
|g(z)| \leq \frac{2(1+\nu)(\nu(1-\beta)-2)}{\nu(2-\beta)} \tag{3.17}
\end{equation*}
$$

for some $\nu>\frac{2}{1-\beta}$ and $0 \leq \beta<1$. Then the function f given by

$$
\begin{equation*}
f(z)=z+z^{2}\left(\frac{1}{\nu} \int_{0}^{1} \int_{0}^{1} g(r s z) r s^{1 / \nu} d r d s\right) \tag{3.18}
\end{equation*}
$$

is starlike of order β in E.

References

[1] R. M. Ali, A. O. Badghaish, V. Ravichandran and A. Swaminathan, Starlikeness of integral transforms and duality, J. Math. Anal. Appl., 385 (2012) 808-822.
[2] R. Fournier and P.T. Mocanu, Differential inequalities and starlikeness, Complex Var. Theory Appl., 48 (2003), 283-292.
[3] S.S. Miller and P.T. Mocanu, Differential Subordinations - Theory and Applications, Marcel Dekker, NewYork, 1999.
[4] S.S. Miller and P.T. Mocanu, Double integral starlike operators, Integral Transforms and Special Functions, vol. 19 no. 7-8 (2008), 591-597.
[5] M. Obradovic, Simple sufficient conditions for univalence, Mat. Vesnik., 49 (1997), 241-244.
[6] S. Ponnusamy and V. Singh, Criteria for univalent, starlike and convex functions, Bull. Belg. Math. Soc. Simon Stevin, 9 (2002), 511-531.

[^0]: *2010 Mathematics Subject Classification. Primary 30C45, Secondary 30C80.
 ${ }^{\dagger}$ E-mail: sarika.16984@gmail.com

