Starlikeness of a Double Integral Operator *

Sarika Verma[†], Sushma Gupta, and Sukhjit Singh

Received May 27, 2013, Accepted July 26, 2013

Abstract

For $\alpha, \gamma \geq 0$, sufficient conditions are obtained that ensure the normalized analytic functions f satisfying a differential inequality

$$\left| (1 - \alpha + 2\gamma) \frac{f(z)}{z} + (\alpha - 2\gamma) f'(z) + \gamma z f''(z) - 1 \right| < \lambda,$$

to be starlike of order β in the open unit disc. As an application, we construct new starlike function f of order β which can be expressed in terms of double integral

$$f(z)=\int_0^1\int_0^1g(r,s,z)drds,$$

of some suitable analytic function in the open unit disc.

Keywords and Phrases: *Differential subordination, Starlike function, Convex function.*

1. Introduction

Let \mathcal{H} denotes the class of all analytic functions f defined in the open unit disc $E = \{z : |z| < 1\}$. For a positive integer n and $a \in \mathcal{C}$ (Complex plane), define the classes of functions:

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H} : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots \},\$$

^{*2010} Mathematics Subject Classification. Primary 30C45, Secondary 30C80. †E-mail: sarika.16984@gmail.com

$$\mathcal{A}_{n} = \{ f \in \mathcal{H} : f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + \cdots \},\$$

with $\mathcal{A}_1 = \mathcal{A}$. Let \mathcal{B}_n denote the class of all analytic functions ω , such that $\omega(0) = 0$ and $|\omega(z)| < |z|^n$. Further, denote by S the subclass of \mathcal{A} consisting of univalent functions in E. A function $f \in \mathcal{A}$ is said to be starlike of order β in E iff it satisfies

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \beta, \quad z \in E,$$
(1.1)

for some $\beta(0 \leq \beta < 1)$. We denote by $S^*(\beta)$ the subclass of \mathcal{A} consisting of all functions f which are starlike of order β . Set $S^*(0) = S^*$, where S^* is the well-known class of normalized analytic functions starlike with respect to the origin.

Let the functions f and g be analytic in E. We say that f is subordinate to g (in symbols, $f(z) \prec g(z)$) in E, if there exists a Schwarz function ω analytic in E with $\omega(0) = 0$ and $|\omega(z)| < 1$, such that $f(z) = g(\omega(z))$. If the function g is univalent in E, then $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(E) \subset g(E)$.

In 2003, Fournier et. al. [2] investigated some differential inequalities which imply starlikeness. The study of such differential inequalities has been a constant theme of geometric function theory. In a recent paper, Miller and Mocanu [4] extended some of the results of Fournier et. al [2] and also investigated starlikeness properties of functions f defined by double integral operators of the form

$$f(z) = \int_0^1 \int_0^1 W(r,s,z) dr ds$$

In a very recent paper, R. M. Ali et al [1] discussed the starlikeness of a linear integral transform over functions f in the class $\mathcal{W}_{\beta}(\alpha, \gamma)$

$$\left\{f \in \mathcal{A} : \exists \phi \in \mathbb{R} | \Re e^{i\phi} \left((1 - \alpha + 2\gamma) \frac{f(z)}{z} + (\alpha - 2\gamma) f'(z) + \gamma z f''(z) - \beta \right) > 0, \, z \in E \right\}.$$
(1.2)

Motivated by the definition of the class $\mathcal{W}_{\beta}(\alpha, \gamma)$, the aim of the present paper is to present a new differential inequality which generates starlike function of order β . As an application of this inequality, we construct new starlike function of order β which can be expressed in terms of double integrals of some suitable function in the class \mathcal{H} .

2. Preliminaries

We follow the notations used in [1]. Let $\mu \geq 0$ and $\nu \geq 0$ satisfy

$$\mu + \nu = \alpha - \gamma \text{ and } \mu\nu = \gamma.$$
 (2.1)

When $\alpha = 1 + 2\gamma$, (2.1) yields $\mu + \nu = 1 + \mu\nu$, or $(\mu - 1)(1 - \nu) = 0$. In particular, for $\gamma > 0$, choosing $\mu = 1$ gives $\nu = \gamma$. We shall also need the following lamma to prove our results.

We shall also need the following lemma to prove our results.

Lemma 2.1. ([3], p.71) Let h be a convex function with h(0) = a and let $\Re(\gamma) > 0$. If $p \in \mathcal{H}[a, n]$ and

$$p(z) + rac{zp'(z)}{\gamma} \prec h(z)$$
 in E

then

$$p(z) \prec q(z) \prec h(z)$$
 in E ,

where

$$q(z) = \frac{\gamma}{nz^{\gamma/n}} \int_0^z h(t) t^{\gamma/n-1} dt.$$

This result is sharp.

3. Main Results

Theorem 3.1. Let μ , ν satisfy (2.1) such that $\mu > 0$ and $\nu > \frac{2}{1-\beta}$ ($0 \le \beta < 1$). If $f \in \mathcal{A}_n$ satisfies

$$\left| (1 - \alpha + 2\gamma) \frac{f(z)}{z} + (\alpha - 2\gamma) f'(z) + \gamma z f''(z) - 1 \right|$$

$$< \frac{(1 + n\mu)(1 + n\nu)(\nu(1 - \beta) - 2)}{\nu(n + 1 - \beta)},$$

$$(3.1)$$

for $z \in E$, then $f \in S^*(\beta)$.

Proof. The differential inequality (3.1) can be written as follows:

$$(1 - \alpha + 2\gamma)\frac{f(z)}{z} + (\alpha - 2\gamma)f'(z) + \gamma z f''(z) \prec 1 + \frac{(1 + n\mu)(1 + n\nu)(\nu(1 - \beta) - 2)}{\nu(n + 1 - \beta)}z$$
(3.2)

If we set

$$p(z) = (1 - \nu)\frac{f(z)}{z} + \nu f'(z),$$

= 1 + (1 + n\nu)a_{n+1}z^n + \cdots ,

then $p \in \mathcal{H}[1, n]$ and the subordination (3.2) becomes

$$p(z) + \mu z p'(z) \prec 1 + \frac{(1+n\mu)(1+n\nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)} z = h(z) \ (say).$$
(3.3)

It can be easily seen that h is convex and h(0) = p(0). So, applying Lemma 2.1 (with $\gamma = 1/\mu$), we obtain

$$p(z) \prec \frac{1}{n\mu z^{1/n\mu}} \int_0^z \zeta^{\frac{1}{n\mu} - 1} h(\zeta) d\zeta, \quad z \in E.$$

Equivalently

$$(1-\nu)\frac{f(z)}{z} + \nu f'(z) \prec 1 + \frac{(1+n\nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)}z, \ z \in E.$$
 (3.4)

Now, if we set

$$q(z) = \frac{f(z)}{z} = 1 + a_{n+1}z^n + \cdots,$$

then $q \in \mathcal{H}[1, n]$ and the subordination (3.4) leads to

$$q(z) + \nu z q'(z) \prec 1 + \frac{(1+n\nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)} z = h_1(z) \text{ (say)}.$$

The function h_1 satisfies the conditions of Lemma 2.1. Thus, we obtain

$$\frac{f(z)}{z} = q(z) \prec \frac{1}{n\nu z^{1/n\nu}} \int_0^z t^{\frac{1}{n\nu}-1} h_1(t) dt = 1 + \frac{(\nu(1-\beta)-2)}{\nu(n+1-\beta)} z.$$
(3.5)

It follows from the subordination (3.4) that

$$\left| (1-\nu)\frac{f(z)}{z} + \nu f'(z) \right| < 1 + \frac{(1+n\nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)} = \frac{(n\nu+2)(\nu(1-\beta)-1)}{\nu(n+1-\beta)}, \ z \in E, \quad (3.6)$$

354

while from the subordination (3.5), we have

$$\left|\frac{f(z)}{z}\right| > 1 - \frac{(\nu(1-\beta)-2)}{\nu(n+1-\beta)} = \frac{n\nu+2}{\nu(n+1-\beta)}, \ z \in E.$$
(3.7)

Combining these last two inequalities, we see that

$$\frac{n\nu+2}{\nu(n+1-\beta)} \left| \frac{zf'(z)}{f(z)} - \left(1 - \frac{1}{\nu}\right) \right| < \frac{1}{\nu} \left| \nu f'(z) + (1-\nu)\frac{f(z)}{z} \right| < \frac{1}{\nu} \left[\frac{(n\nu+2)(\nu(1-\beta)-1)}{\nu(n+1-\beta)} \right],$$

which simplifies to

$$\left|\frac{zf'(z)}{f(z)} - \left(1 - \frac{1}{\nu}\right)\right| < \left(1 - \frac{1}{\nu} - \beta\right). \tag{3.8}$$

Thus,

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \left(1 - \frac{1}{\nu}\right) - \left(1 - \frac{1}{\nu} - \beta\right) = \beta, \qquad (3.9)$$

that f is starlike of order β in E.

which implies that f is starlike of order β in E.

Taking $\alpha = 1 + 2\gamma (\mu = 1, \nu = \gamma)$ in Theorem 3.1 leads to the following result:

Corollary 3.1. Let $f \in \mathcal{A}_n$ and ν be a real number such that $\nu > \frac{2}{1-\beta}$ ($0 \leq \frac{1}{1-\beta}$) $\beta < 1$). If f satisfies

$$|f'(z) + \nu z f''(z) - 1| < \frac{(n+1)(1+n\nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)},$$
(3.10)

for $z \in E$, then $f \in S^*(\beta)$.

If we make $\nu \longrightarrow \infty$ in Corollary 3.1, we obtain the following criterion for starlikeness :

Corollary 3.2. Let $f \in A_n$ and $0 \le \beta < 1$. If f satisfies

$$|zf''(z)| < \frac{n(n+1)(1-\beta)}{(n+1-\beta)},$$
(3.11)

for $z \in E$, then $f \in S^*(\beta)$.

Remark 3.1. We note that $\beta = 0$ and n = 1 in Corollary 3.2 leads us to the well known result of Obradovic [5].

Substituting n = 1 and $\beta = 0$ in Corollary 3.1 yields the following interesting criterion for starlikeness.

Corollary 3.3. Let $f \in \mathcal{A}$ and ν be a real number such that $\nu > 2$. If f satisfies

$$\left|zf''(z) + \frac{1}{\nu}\left(f'(z) - 1\right)\right| < \frac{(1+\nu)(\nu-2)}{\nu^2},\tag{3.12}$$

for $z \in E$, then

$$\left|\frac{zf'(z)}{f(z)} - \left(1 - \frac{1}{\nu}\right)\right| < \left(1 - \frac{1}{\nu}\right),$$

i.e $f \in S^*$.

Remark 3.2. Corollary 3.3 is a particular case of the Theorem 1.7 in [6] with $\alpha = \frac{1}{\nu} \in \mathbb{R}$.

We now present the following example in support of Theorem 3.1.

Example 3.1. Consider the function

$$f(z) = z + ((\nu(1-\beta) - 2)/\nu(n+1-\beta))z^{n+1}, \ 0 \le \beta < 1.$$

Now,

$$\left| (1 - \alpha + 2\gamma) \frac{f(z)}{z} + (\alpha - 2\gamma) f'(z) + \gamma z f''(z) - 1 \right|$$

$$= \left| ((1 - \alpha + 2\gamma) + (n+1)(\alpha - 2\gamma) + n(n+1)\gamma) \frac{(\nu(1-\beta)-2)}{\nu(n+1-\beta)} z^n \right|$$

$$= \left| (1 + n\mu)(1 + n\nu) \frac{(\nu(1-\beta)-2)}{\nu(n+1-\beta)} \right| |z|^n$$

$$< (1 + n\mu)(1 + n\nu) \frac{(\nu(1-\beta)-2)}{\nu(n+1-\beta)}.$$

Thus, f satisfies the criterion of Theorem 3.1. Further, for $\mu > 0$ and $\nu > \frac{2}{1-\beta}$

as defined in (2.1), we have

$$\begin{aligned} \Re\left\{zf'(z)f(z)\right\} &= \Re\left\{\frac{1 + \left((n+1)(\nu(1-\beta)-2)z^n/\nu(n+1-\beta)\right)}{1 + \left((\nu(1-\beta)-2)z^n/\nu(n+1-\beta)\right)}\right\} \\ &> \left\{\frac{1 - \left((n+1)(\nu(1-\beta)-2)/\nu(n+1-\beta)\right)}{1 - \left((\nu(1-\beta)-2)/\nu(n+1-\beta)\right)}\right\} \\ &= \left\{\frac{n\nu\beta + 2n + 2}{n\nu + 2}\right\} \\ &> \beta. \end{aligned}$$

Theorem 3.2. Let a function $g \in \mathcal{H}$ satisfy

$$|g(z)| \le \frac{(1+n\mu)(1+n\nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)},\tag{3.13}$$

for some $\mu > 0$ and $\nu > \frac{2}{1-\beta}$ as defined in (2.1) and $0 \le \beta < 1$. Then the function f given by

$$f(z) = z + \frac{z^{n+1}}{\mu\nu} \int_0^1 \int_0^1 g(rsz) r^{n+1/\mu-1} s^{n+1/\nu-1} drds$$
(3.14)

is starlike of order β in E.

Proof. We first consider the function $f \in \mathcal{A}_n$ satisfying the differential equation

$$(1 - \alpha + 2\gamma)\frac{f(z)}{z} + (\alpha - 2\gamma)f'(z) + \gamma z f''(z) - 1 = z^n g(z).$$
(3.15)

In view of (3.13), we have

$$\left| (1 - \alpha + 2\gamma) \frac{f(z)}{z} + (\alpha - 2\gamma) f'(z) + \gamma z f''(z) - 1 \right| = |z|^n |g(z)|$$

< $\frac{(1 + n\mu)(1 + n\nu)(\nu(1 - \beta) - 2)}{\nu(n + 1 - \beta)}, \quad z \in E.$

By Theorem 3.1, we see that the solution of differential equation (3.15) must be a starlike function of order β . Further, to obtain the solution, let $\varphi(z) = (1-\nu)\frac{f(z)}{z} + \nu f'(z) \in \mathcal{H}[1, n]$, then the equation (3.15) simplifies to

$$\mu z \varphi'(z) + \varphi(z) - 1 = z^n g(z).$$

On integration, we get

$$\varphi(z) = 1 + \frac{1/\mu}{z^{1/\mu}} \int_0^z g(\zeta) \zeta^{n+1/\mu-1} d\zeta = 1 + \frac{1}{\mu} z^n \int_0^1 g(rz) r^{n+1/\mu-1} dr.$$

Thus,

$$(1-\nu)\frac{f(z)}{z} + \nu f'(z) = 1 + \frac{1}{\mu}z^n \int_0^1 g(rz)r^{n+1/\mu-1}dr.$$
 (3.16)

Further, setting $\psi(z) = \frac{f(z)}{z} \in \mathcal{H}[1, n]$, the differential equation (3.16) reduces to

$$\nu z \psi'(z) + \psi(z) = 1 + \frac{1}{\mu} z^n \int_0^1 g(rz) r^{n+1/\mu-1} dr.$$

A simple calculation gives

$$\psi(z) = 1 + \frac{1/\mu\nu}{z^{1/\nu}} \int_0^z \left(\int_0^1 g(r\zeta) r^{n+1/\mu-1} dr \right) \zeta^{n+1/\nu-1} d\zeta.$$

Since, $\psi(z) = f(z)/z$ and a change of variable yields that

$$f(z) = z + \frac{z^{n+1}}{\mu\nu} \int_0^1 \int_0^1 g(rsz) r^{n+1/\mu-1} s^{n+1/\nu-1} dr ds.$$

This completes the proof of the theorem.

As an illustration of Theorem 3.2, we give the following example.

Example 3.2. The function $g(z) = \frac{(1+n\mu)(1+n\nu)(\nu(1-\beta)-2)}{\nu(n+1-\beta)}$ ($0 \le \beta < 1$), satisfies the criteria of the Theorem 3.2. An Application of the theorem yields

$$f(z) = z + \frac{(\nu(1-\beta)-2)}{\nu(n+1-\beta)} z^{n+1},$$

which is starlike of order β , as shown in the Example 3.1.

Further, taking n = 1 and $\alpha = 1 + 2\gamma (\mu = 1, \nu = \gamma)$ in Theorem 3.2, we have the following :

Corollary 3.4. Let a function $g \in \mathcal{H}$ satisfy

$$|g(z)| \le \frac{2(1+\nu)(\nu(1-\beta)-2)}{\nu(2-\beta)},\tag{3.17}$$

for some $\nu > \frac{2}{1-\beta}$ and $0 \le \beta < 1$. Then the function f given by

$$f(z) = z + z^2 \left(\frac{1}{\nu} \int_0^1 \int_0^1 g(rsz) rs^{1/\nu} dr ds\right)$$
(3.18)

is starlike of order β in E.

References

- R. M. Ali, A. O. Badghaish, V. Ravichandran and A. Swaminathan, Starlikeness of integral transforms and duality, *J. Math. Anal. Appl.*, 385 (2012) 808-822.
- [2] R. Fournier and P.T. Mocanu, Differential inequalities and starlikeness, Complex Var. Theory Appl., 48 (2003), 283-292.
- [3] S.S. Miller and P.T. Mocanu, *Differential Subordinations Theory and Applications*, Marcel Dekker, NewYork, 1999.
- [4] S.S. Miller and P.T. Mocanu, Double integral starlike operators, *Integral Transforms and Special Functions*, vol. 19 no. 7-8 (2008), 591-597.
- [5] M. Obradovic, Simple sufficient conditions for univalence, Mat. Vesnik., 49 (1997), 241-244.
- [6] S. Ponnusamy and V. Singh, Criteria for univalent, starlike and convex functions, Bull. Belg. Math. Soc. Simon Stevin, 9 (2002), 511-531.