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1. Introduction

We consider the first-order singular differential-difference operator on the real
line

Λf(x) =
df

dx
+
A

′
(x)

A(x)

(
f(x)− f(−x)

2

)
− ρf(−x),

where

A(x) = |x|2α+1B(x), α > −1

2
,

B being a positive C∞ even function on R, and ρ ≥ 0.
For A(x) = |x|2α+1, α > −1

2
, we regain the differential-difference operator

Dαf =
df

dx
+ (α +

1

2
)
f(x)− f(−x)

x
,

which is referred to as the Dunkl operator with parameter α+ 1
2

associated with
the reflection group Z2 on R. Such operators have been introduced by Dunkl in
connection with a generalization of the classical theory of spherical harmonics
(see [5, 14, 19] and the references therein). Besides its mathematical interest,
the Dunkl operator Dα has quantum-mechanical applications; it is naturally
involved in the study of one-dimensional harmonic oscillators governed by
Wigner’s commutation rules [10, 13, 21].

Notice that the differential-difference operator

Dα,βf =
df

dx
+ [(2α + 1) cothx+ (2β + 1) tanhx](

f(x)− f(−x)

2
)

− (α + β + 1)f(−x),

which is referred to as the Jacobi-Cherednik operator (see [7]) is of the same
type as Λ with{

A(x) = (sinh |x|)2α+1(coshx)2β+1; α ≥ β > −1

2
;

ρ = α + β + 1; δ = 2.

The one-dimensional Cherednik operator (see [3]) is a particular case of Dα,β.
Such operators have been used by Heckmann and Opdam to develop a theory
generalizing harmonic analysis on symmetric spaces (see [8, 12]. For recent
important results in this direction we refer to [15, 20].
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Mourou [11] has proved that there exists a unique automorphism of the
space E(R) of C∞ functions on R, satisfying

V
df

dx
= ΛV f and V f(0) = f(0), (1)

for all f ∈ E(R). The intertwining operator V has been exploited to initi-
ate a quite new commutative harmonic analysis on the real line related to
the differential-difference operator Λ in which several analytic structures on
R were generalized. A summary of this harmonic analysis is provided in Sec.
2. Through this paper, the classical theory of mean-periodic functions on R
is extended to the differential-difference operator Λ. More explicitly, a func-
tion f in E(R) is called Λ-mean-periodic if there exists a non zero compactly
supported distribution µ on R, such that

µ#f(x) = 0, for all x ∈ R,

# being the generalized convolution generated by the differential-difference
operator Λ. By using the intertwining operator V and the results of Schwartz
in the classical setting [16], we express in Sec. 3 the Λ-mean-periodic function
f in terms the elementary functions

Ψλ,l(x) = V
(
yleiλy

)
(x).

Namely, f may be expanded formally as

f(x) =
∑
(λ,l)

∑
0≤s≤l−1

cλ,sΨλ,s(x), cλ,s ∈ C,

the summation being extended over the distinct roots λ of FΛ(µ) counted with
multiplicities l, where FΛ(µ) stands for the generalized Fourier transform of µ
defined by

FΛ(µ)(λ) = 〈µy,Ψ−λ(y)〉 , λ ∈ C.

Starting from the distribution µ, we construct in Sec. 4 a biorthogonal
system which shows that the coefficients cλ,s in the series above are uniquely
determined by f . In Sec. 5, we show that the series above is actually conver-
gent to f in the topology of E(R), after a certain Abel summation procedure
is performed. Moreover, we introduce a class of distributions µ for which the
Abelian summation process can be dispensed.
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In the classical setting, the notion of mean-periodicity was first introduced
by Delsarte [4], and then analyzed in depth by Schwartz [16], Kahane [9],
Berenstein and Taylor [2]. Later, Trimeche [18] extended the theory of mean-
periodic functions to a class of singular second-order differential operator on
the half-line . It is pointed out that all the results obtained in [1] emerge as
easy consequences of those stated in the present article.

2. Preliminaries

In this section we provide some facts about harmonic analysis related to the
differential-difference operator Λ. We cite here, as briefly as possible, only
those properties actually required for the discussion. For more details we refer
to [11].

Notation. We denote by

− E(R) the space of C∞ functions on R, endowed with the topology of
compact convergence for all derivatives;

− E ′
(R) the space of distributions on R with compact support;

− Da(R), a > 0, the space of C∞ functions on R supported in [−a, a],
equipped with the topology induced by E(R);

− D(R) = ∪a>0Da(R) endowed with the inductive limit topology;

−Ha, a > 0, the space of entire, rapidly decreasing functions of exponential
type a; that is, f ∈ Ha if and only if , f is entire on C and for all m = 0, 1, ...,

pm(f) = sup
λ∈C

∣∣(1 + λ)mf(λ)e−a|Imλ|
∣∣ <∞,

Ha is equipped with the topology defined by the semi-norms pm, m = 0, 1, ...;

− H = ∪a>0Ha, equipped with the inductive limit topology;

− Ha, a > 0, the space of entire, slowly increasing functions of exponential
type a; that is, f ∈ Ha, if and only if, f is entire on C and there is m = 0, 1, ...
such that,

sup
λ∈C

∣∣(1 + |λ|)−mf(λ)e−a|Imλ|
∣∣ <∞;

− H = ∪a>0Ha.
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Remark 2.1. Clearly Λ is a bounded linear operator from E(R) into itself. If
µ ∈ E ′(R) and n ∈ N, define Λnµ ∈ E ′(R) by

〈Λnµ, f〉 = (−1)n 〈µ,Λnf〉, f ∈ E(R).

2.1. Intertwining operators

It is shown in [11] that for each λ ∈ C, the differential-difference equation

Λu = iλu, u(0) = 1,

admits a unique C∞ solution on R, denoted Φλ given by

Φλ(x) =


ϕλ(x) +

1

iλ− ρ
d

dx
ϕλ(x) if λ 6= −iρ,

1 +
2ρ

A(x)

∫ x

0

A(t)dt if λ = −iρ,
(2)

where ϕλ denotes the solution of the differential equation

∆u = −
(
λ2 + ρ2

)
u, u(0) = 1, u′(0) = 1,

∆ being the second-order singular differential operator defined by

∆ =
d2

dx2
+
A′(x)

A(x)

d

dx
.

Remark 2.2. (i) If A(x) = |x|2α+1, α > −1/2, then the differential operator
∆ is just the Bessel operator [17], and

ϕλ(x) = Γ(α + 1)
∞∑
n=0

(−1)n (λx/2)2n

n! Γ(n+ α + 1)
.

(ii) For A(x) = (sinh |x|)2α+1 (coshx)2β+1, α ≥ β > −1/2, the differential
operator ∆ reduces to the so-called Jacobi operator. The eigenfunction ϕλ is
given by

ϕλ(x) = 2F1

(
α + β + 1 + iλ

2
,
α + β + 1− iλ

2
;α + 1;−(sinhx)2

)
where 2F1 is the Gauss hypergeometric function [17].
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For x ∈ R\{0} and λ ∈ C, the eigenfunction Φλ(x) has the Laplace type
integral representation

Φλ(x) =

∫ |x|
−|x|

K(x, y)eiλydy, (3)

where K(x, .) is a real-valued function on R, continuous on ] − |x|, |x|[, and
supported in [−|x|, |x|].

As a consequence of this integral representation, we deduce that the inter-
twining operator V is in fact an integral transform :

V f(x) =


∫ |x|
−|x|

K(x, y)f(y)dy if x 6= 0,

f(0) if x = 0.

For A(x) = |x|2α+1, α > −1/2, V reads

V f(x) =
Γ(α + 1)√
πΓ(α + 1

2
)

∫ 1

−1

(1− t)α−
1
2 (1 + t)α+ 1

2f(tx)dt,

and referred to as the Dunkl intertwining operator of index α+ 1/2 associated
with the reflection group Z2 on R.

The dual operator tV of V , is defined on E ′
(R) by〈

tV µ, f
〉

= 〈µ, V f〉 , f ∈ E(R).

If f ∈ D(R), then the distribution tV (Af) is given by the function

tV f(y) =

∫
|x|≥|y|

K(x, y)f(x)A(x)dx, y ∈ R.

Theorem 2.1. (i) The dual transform tV of V, is a bijection from E ′
(R) onto

itself. More precisely, suppµ ⊂ [−a, a] if, and only if,
supp tV µ ⊂ [−a, a]. Moreover,

d

dx
tV µ = tV Λµ, for all µ ∈ E ′

(R).
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(ii) The integral transform tV is a topological automorphism of D(R) sat-
isfying the intertwining relation

d

dx
tV f = tV Λ̃ f, f ∈ D(R),

Λ̃ being the dual operator of Λ defined by

Λ̃f(x) =
df

dx
+
A′(x)

A(x)

(
f(x)− f(−x)

2

)
+ 2ρf(−x).

2.2. Generalized Fourier transform

The generalized Fourier transform of a distribution µ ∈ E ′
(R) is defined by

FΛ(µ)(λ) = 〈µ,Φ−λ〉 , λ ∈ C.

The generalized Fourier transform of a function f ∈ D(R) is defined by

FΛ(f)(λ) =

∫
R
f(x)Φ−λ(x)A(x)dx, λ ∈ C.

Recall the following identities :

FΛ(µ) = Fu
(
tV µ

)
, µ ∈ E ′

(R), (4)

FΛ(f) = Fu
(
tV f

)
, f ∈ D(R),

FΛ(Λµ)(λ) = iλFΛ(µ)(λ), µ ∈ E ′
(R),

FΛ

(
Λ̃f
)

(λ) = iλFΛ(f)(λ), f ∈ D(R),

Fu being the usual Fourier transform on R given by

Fu(µ)(λ) =

∫
R
e−iλx dµ(x), µ ∈ E ′

(R).

An outstanding result about the generalized Fourier transform FΛ is as
follows.

Theorem 2.2. (Paley-Wiener)

(i) The generalized Fourier transform FΛ is a bijection from E ′
(R) onto H.

More precisely, µ has its support in [−a, a] if, and only if, FΛ(µ) ∈ Ha.

(ii) The generalized Fourier transform FΛ is a topological isomorphism from
D(R) onto H. More precisely, f ∈ Da(R) if, and only if, FΛ(f) ∈ Ha.
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2.3. Generalized convolution

The generalized translation operators T x, x ∈ R, tied to Λ are defined on E(R)
by

T xf(y) = VxVy
[
V −1f(x+ y)

]
, y ∈ R.

The T x, x ∈ R, are linear bounded operator from E(R) into itself, and
possess the following fundamental properties :

T 0 = identity, T xT y = T yT x, T xf(y) = T yf(x),

ΛT x = T xΛ and T x(Φλ)(y) = Φλ(x)Φλ(y).

The generalized convolution product of two distributions µ, ν ∈ E ′
(R), is

the distribution µ#ν ∈ E ′
(R) given by

〈µ#ν, f〉 = 〈µx, 〈νy, T xf(y)〉〉 , f ∈ E(R).

The generalized convolution of µ ∈ E ′
(R) and f ∈ E(R), is the function

µ#f ∈ E(R) given by

µ#f(x) =
〈
µy, T

−xf−(y)
〉
, x ∈ R,

with f−(y) = f(−y).

Proposition 2.1. (i) Let µ, ν ∈ E ′
(R) and f ∈ D(R). Then

FΛ(µ#ν) = FΛ(µ)FΛ(ν), (5)

FΛ(µ#f) = FΛ(µ)FΛ(f). (6)

(ii) For µ, ν ∈ E ′
(R) and f ∈ E(R) we have

µ#(ν#f) = (µ#ν)#f.

(iii) If µ, ν ∈ E ′
(R) and f ∈ E(R) then

V
(
tV µ ∗ f

)
= µ#V f, (7)

tV (µ#ν) = tV µ ∗ tV ν,

where ∗ denotes the classical convolution on R.
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3. Λ-mean-periodic functions

According to Schwartz [16], a function f in E(R) is called mean-periodic rela-
tively to a distribution µ in E ′

(R), if it is a solution of the convolution equation

µ ∗ f(x) = 0, for all x ∈ R.

In this section we extend the notion of mean-periodicity to the differential-
difference operator Λ, by replacing in the equation above the ordinary convo-
lution * by the generalized convolution #.

Definition 3.1. We say that a function f ∈ E(R) is Λ-mean-periodic, if there
exists 0 6= µ ∈ E ′

(R) such that

µ#f(x) = 0, for all x ∈ R.

If we want to emphasize the equation satisfied by f we will say that f is
mean-periodic with respect to µ or µ-Λ-mean-periodic.

Notation. For f ∈ E(R), write τ(f) for the closure of the subspace of E(R)
spanned by T−xf−, x ∈ R.

Remark 3.1. (i) Notice that

µ#f = 0⇔ µ = 0 on τ(f)⇔ µ ∈ (τ(f))⊥

(ii) According to the Hahn-Banach theorem, Definition 3.1 is equivalent to
τ(f) 6= E(R).

Examples. (i) Let a be a nonzero real number. Each function f ∈ E(R)
satisfying

T−xf−(a) = f(x), for all x ∈ R,

is Λ-mean-periodic with respect to µ = δa − δ0, where δa denotes the Dirac
measure at the point a.

(ii) By virtue of (6) and Theorem 2.2, every 0 6= f ∈ D(R) is not Λ-mean-
periodic.

Proposition 3.1. For λ ∈ C, x ∈ R and l ∈ N, put

ψλ,l(x) = xleiλx and Ψλ,l(x) = V (ψλ,l)(x) (8)
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Then

(i) Ψλ,l(x) = (−i)l ∂
l

∂λl
Φλ(x).

(ii) For all µ ∈ E ′
(R), we have

(FΛ(µ))(l) (λ) = (−i)l 〈µ,Ψ−λ,l〉, (9)

µ#Ψλ,l(x) =
l∑

s=0

(
l
s

)
Ψλ,l−s(x)(−i)s (FΛ(µ))(s) (λ). (10)

(iii) The function x→ Ψλ,l(x) is Λ-mean-periodic.

Proof. Assertion (i) follows by using (3) and differentiation under the integral
sign. Formula (9) follows also by using differentiation under the integral sign.
Let us check (10). By (7) and (8),

µ#Ψλ,l = V
(
tV µ ∗ ψλ,l

)
. (11)

But an easy computation shows that

ν ∗ ψλ,l(x) =
l∑

s=0

(
l
s

)
ψλ,l−s(x)(−i)s (Fu(ν))(s) (λ),

for all ν ∈ E ′
(R). So

tV µ ∗ ψλ,l(x) =
l∑

s=0

(
l
s

)
ψλ,l−s(x)(−i)s (FΛ(ν))(s) (λ), (12)

by virtue of (4). Identity (10) follows now by combining (8), (11) and (12).
Finally, to have µ#Ψλ,l ≡ 0, it is sufficient in view of (10), to choose 0 6= µ ∈
E ′

(R) such that λ is a zero of order at least l of FΛ(µ). This completes the
proof. 2

Proposition 3.2. Let f ∈ E(R) be Λ-mean-periodic. Then Ψλ,l ∈ τ(f) if and
only if, for all µ ∈ (τ(f))⊥, we have

(FΛ(µ))(l) (−λ) = 0.
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Proof. The result follows by using (9) and the Hahn-Banach theorem. 2

Definition 3.2. We call spectrum of a Λ-mean-periodic function f ∈ E(R),
denoted by sp(f), the set of pairs (λ, l), λ ∈ C, l ∈ N, such that the functions
Ψλ,s belong to τ(f) for 0 ≤ s ≤ l − 1 and not for s = l.

Remark 3.2. According to Proposition 3.2, (λ, l) ∈ sp(f) if and only if, −λ
is a common zero of order l of the generalized Fourier transforms of elements
of (τ(f))⊥.

The next statement clarifies the relationship between Λ-mean-periodic func-
tions and classical mean-periodic functions.

Proposition 3.3. A function f ∈ E(R) is Λ-mean-periodic with respect to
a distribution µ ∈ E ′(R) if, and only if, V −1f is a classical mean-periodic
function with respect to tV µ.

Proof. The result is a direct consequence of (7). 2

From the work of Schwartz [16] and the proposition above, we deduce the
following characterization of Λ-mean-periodic functions.

Theorem 3.1. Let f ∈ E(R) be Λ-mean-periodic. Then f can be approximated
in the topology of E(R) by finite linear combinations of functions of the type
Ψλ,l, (λ, l) ∈ sp(f).

4. Biorthogonal system

Notation. Throughout this section fix 0 6= µ ∈ E ′
(R). Put

ZΛ(µ) = {(λk, lk), k ∈ N, lk ∈ N} ,

where λk is a zero of order lk of the entire function FΛ(µ).

Starting from the distribution µ, we construct in this section a biorthogonal
system in E ′

(R), that is, a family of distributions µk,m ∈ E
′
(R), satisfying

〈µk,m,Ψλs,j〉 = δk,s δm,j (13)

for 0 ≤ m ≤ lk−1 and 0 ≤ j ≤ ls−1. Given a µ-Λ-mean-periodic function f ∈
E(R), formula (13) will allow us to compute the coefficients ck,l in a possible
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development of f with respect to the functions Ψλk,l, k ∈ N, 0 ≤ l ≤ lk − 1.
We adopt here the arguments used by Delsarte [4] and Schwartz [16].

Notation. For f ∈ E(R), put

Ik(f)(x) =

∫ x

0

f(t)eiλk(x−t)dt, x ∈ R.

Lemma 4.1. Let f ∈ E(R). Then

(i) The general solution of the equation(
d

dx
− iλk

)lk
g = f,

is given by

g(x) =

lk−1∑
s=0

βs ψλk,s(x) +

lk times︷ ︸︸ ︷
Ik ◦ · · · ◦ Ik (f)(x), βs ∈ C.

(ii) The general solution of the equation

(Λ− iλk)lk g = f, (14)

is given by

g(x) =

lk−1∑
s=0

βs Ψλk,s(x) + V ◦
lk times︷ ︸︸ ︷

Ik ◦ · · · ◦ Ik ◦V −1(f)(x), βs ∈ C.

Proof. Assertion (i) is easily checked. By virtue of (1), equation (14) is
equivalent to (

d

dx
− iλk

)lk (
V −1g

)
= V −1f.

Assertion (ii) follows then from (i). 2

Lemma 4.2. There is a unique distribution µ− ∈ E
′
(R) such that

FΛ(µ−)(λ) = FΛ(µ)(−λ), for all λ ∈ C.

Moreover, if suppµ ⊂ [−a, a], then supp (µ−) ⊂ [−a, a].
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Proof. The result follows readily from Theorem 2.2(i). 2

Remark 4.1. Define µ− ∈ E ′
(R) by∫

R
f(x)dµ−(x) =

∫
R
f(−x)dµ(x), f ∈ E(R).

Then according to (2) and Theorem 2.2(i), µ− = µ− if and only if ρ = 0.

Notation. If G is a meromorphic function, having γ as a pole, we denote by
[G(λ)]γ the singular part of G(λ) in a neighborhood of γ, hence G(λ)− [G(λ)]γ
is holomorphic in a neighborhood of γ.

Lemma 4.3. (i) The distribution qk ∈ E
′
(R) defined by

FΛ(qk)(λ) = (λ+ λk)
lk

[
1

FΛ(µ)(−λ)

]
−λk

has a support concentrated at the origin.

(ii) The distribution µk,0 ∈ E
′
(R) defined by

FΛ(µk,0)(λ) =


FΛ(µ)(−λ)

[
1

FΛ(µ)(−λ)

]
−λk

if λ 6= −λk,

1 if λ = −λk,
(15)

satisfies

〈µk,0, f〉 = (−i)lk
〈
qk#µ−, V ◦

lk times︷ ︸︸ ︷
Ik ◦ · · · ◦ Ik ◦V −1(f)

〉
,

for all f ∈ E(R).

Proof. (i) As the function (λ+λk)
lk [1/FΛ(µ)(−λ)]−λk is a polynomial Pk(λ),

it follows by (4) that tV qk = Pk(d/dx)(δ0). Then using Theorem 2.1(i), we
deuce that qk has a support concentrated at the origin.

(ii) As
(λ+ λk)

lk FΛ(µk,0)(λ) = FΛ(qk)(λ)FΛ(µ)(−λ),

it follows from (5) that

(−i)lk (Λ + iλk)
lk µk,0 = qk#µ−.
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So for all g in E(R),

〈qk#µ−, g〉 = (−i)lk
〈
(Λ + iλk)

lkµk,0, g
〉

= i lk
〈
µk,0, (Λ− iλk)lkg

〉
.

The result is now a direct consequence of (9) and Lemma 4.1(ii). 2

Remark 4.2. If the zeros λk of FΛ(µ) are simple, then[
1

FΛ(µ)(−λ)

]
−λk

=
−1

(λ+ λk) (FΛ(µ))′(−λk)
,

that is,

qk =
− δ0

(FΛ(µ))′(−λk)

and

〈µk,0, f〉 =
i

(FΛ(µ))′(−λk)
〈
µ−, V ◦ Ik ◦ V −1(f)

〉
for all f ∈ E(R).

Proposition 4.1. Define µk,m ∈ E
′
(R), 0 ≤ m ≤ lk − 1, by

µk,m =
(−1)m

m!
(Λ + iλk)

m µk,0 + τk,m #µ−, (16)

where

− µk,0 ∈ E
′
(R) is defined in Lemma 3.2.

− τk,m ∈ E
′
(R) with support concentrated at the origin, whose the general-

ized Fourier transform is given by

FΛ(τk,m)(λ) =
(−i)m

m!
Rk,m(λ) (17)

with

Rk,m(λ) =

[
(λ+ λk)

m

FΛ(µ)(−λ)

]
−λk
− (λ+ λk)

m

[
1

FΛ(µ)(−λ)

]
−λk

Then the family (µk,m) satisfies (13).
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Proof. Notice that Rk,m(λ) is a polynomial, so the support of τk,m is concen-
trated at the origin. A combination of (15), (16) and (17) yields

FΛ(µk,m)(λ) =
(−i)m

m!
FΛ(µ)(−λ)

[
(λ+ λk)

m

FΛ(µ)(−λ)

]
−λk

. (18)

According to (9) and (18), 〈µk,m,Ψλs,j〉 = 0 for s 6= k. A straightforward
calculation shows that

FΛ(µk,m)(λ) = (−i)m (λ+ λk)
m

m!
+O

(
(λ+ λk)

lk+1
)
,

in a neighborhood of −λk. We conclude, in view of (9), that 〈µk,m,Ψλk,j〉 = 0
for j 6= m, and 〈µk,m,Ψλk,m〉 = 1. This achieves the proof. 2

Corollary 4.1. Let f ∈ E(R). Assume that there are disjoint finite subsets Zj
(groupings) such that ZΛ(µ) =

⋃∞
1 Zj and

∞∑
j=1

 ∑
(λk,lk)∈Zj

∑
0≤l≤lk−1

ck,l Ψλk,l

 (19)

is convergent in E(R) to f , with a suitable mode of convergence. Then f is
µ-Λ-mean-periodic and the coefficients ck,l can be computed by the formula

ck,l = 〈µk,l, f〉 . (20)

Proof. The function f is µ-Λ-mean-periodic because that is true for each
term in (19). Identity (20) follows immediately from Proposition 4.1. 2

5. Series expansion with respect to the func-

tions Ψλk,lk

Like in the classical setting, the series (19) is not actually convergent in E(R),
without a certain abelian summation procedure is performed :

Theorem 5.1. Let f ∈ E(R) be Λ-mean-periodic with respect to µ ∈ E ′(R).
Then there are disjoint finite subsets Zj (groupings) such that ZΛ(µ) =

⋃∞
1 Zj

and for every ε > 0 the series

∞∑
j=1

 ∑
(λk,lk)∈Zj

∑
0≤l≤lk−1

ck,l Ψλk,l e
−ε|λk|


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converges in E(R) to a function fε satisfying :

lim
ε−→0

fε = f, in E(R).

The coefficients ck,l being determined by (20).

Proof. By Proposition 3.3, V −1f is a classical mean-periodic function with
respect to the distribution tV µ. So using (4) and the results of Schwartz [16],
we can find :

− finite subsets Zj such that ZΛ(µ) =
⋃∞

1 Zj
− a sequence of complex numbers c̃k,l

such that for every ε > 0 the series

∞∑
j=1

 ∑
(λk,lk)∈Zj

∑
0≤l≤lk−1

c̃k,l ψλk,l e
−ε|λk|


converges in E(R) to a function fε satisfying :

lim
ε−→0

fε = V −1f, in E(R).

As the intertwining operator V is an automorphism of E(R), it follows by (4)
that

V (fε) =
∞∑
j=1

 ∑
(λk,lk)∈Zj

∑
0≤l≤lk−1

c̃k,l Ψλk,l e
−ε|λk|


and

lim
ε→0

V (fε) = f,

where both the series and the limit are meaningful in the topology of E(R).
Finally, we deduce from Corollary 4.1 that

c̃k,l = ck,l, 0 ≤ l ≤ lk − 1, k ∈ N.

This ends the proof. 2

Following Ehrenpreis [6], we introduce a class of distributions for which the
Abel summation process is not necessary.
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Definition 5.1. A distribution µ ∈ E ′
(R) is called Λ-slowly-decreasing, if

there are positive constants c, d such that for any x ∈ R,

max
{
|FΛ(µ)(y)|, y ∈ R, |x− y| ≤ d log

(
1 + |x|2

)}
≥ c (1 + |x|)−1/c.

Using the results of [6] and Proposition 3.3, it is not hard to establish the
following theorem.

Theorem 5.2. Let f ∈ E(R) be Λ-mean-periodic with respect to a Λ-slowly-
decreasing distribution µ ∈ E ′(R). Then there exist finite groupings Zj of
ZΛ(µ) such that the series

∞∑
j=1

 ∑
(λk,lk)∈Zj

∑
0≤l≤lk−1

ck,l Ψλk,l

 (21)

converges to f in E(R). The coefficients ck,l being determined by (20).

The next statement characterizes the Λ-slowly-decreasing distributions µ ∈
E ′(R) for which every grouping Zj in (21) can be taken to contain a single point
of ZΛ(µ).

Theorem 5.3. Let f ∈ E(R) be Λ-mean-periodic with respect to a Λ-slowly-
decreasing distribution µ ∈ E ′(R). A necessary and sufficient condition that
the series (21) converges to f in E(R) without groupings (i.e., card(Zj) = 1
for all j) is that for some c, d > 0 we have∣∣∣∣ dldλlFΛ(µ)(λ)

∣∣∣∣ ≥ d
exp(− c |Imλ|)

(1 + |λ|)c

for all (λ, l) ∈ ZΛ(µ).

Proof. The result follows easily by combining the results of [2] and Proposition
3.3. 2
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