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Abstract

In this paper, we establish the Hyers–Ulam stability of the orthogo-
nal quadratic functional equation of Pexiderized type f(x+ y) + f(x−
y) = 2g(x) + 2h(y), x ⊥ y in which ⊥ is the orthogonality in the sense
of Rätz in modular spaces.

Keywords and Phrases: Hyers–Ualm stability, Orthogonality ,Orthogonally
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1. Introduction

The purpose of this paper is to prove the stability of orthogonal Pexiderized
quadratic functional equation in the spirit of Hyers–Ulam in modular spaces.
The theory of modulars on linear spaces and the corresponding theory of mod-
ular linear spaces were founded by Nakano [19] and were intensively developed
by his mathematical school: Amemiya, Koshi, Shimogaki, Yamamuro [10, 29]
and others. Further and the most complete development of these theories
are due to Orlicz, Mazur, Musielak, Luxemburg, Turpin [18, 12, 26, 17] and
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their collaborators. In the present time the theory of modulars and modu-
lar spaces is extensively applied, in particular, in the study of various Orlicz
spaces [20] and interpolation theory [11], which in their turn have broad appli-
cations [17, 13]. The importance for applications consists in the richness of the
structure of modular spaces, that–besides being Banach spaces (or F–spaces
in more general setting)– are equipped with modular equivalent of norm or
metric notions.

Definition 1.1. Let X be an arbitrary vector space.
(a) A functional ρ : X → [0,∞] is called a modular if for arbitrary x, y ∈ X ,
(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every scaler α with |α| = 1,
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) if and only if α + β = 1 and α, β ≥ 0,
(b) if (iii) is replaced by
(iii)

′
ρ(αx+ βy) ≤ αρ(x) + βρ(y) if and only if α + β = 1 and α, β ≥ 0,

then we say that ρ is a convex modular.

A modular ρ defines a corresponding modular space, i.e., the vector space
Xρ given by

Xρ = {x ∈ X : ρ(λx)→ 0 as λ→ 0} .

Let ρ be a convex modular, the modular space Xρ can be equipped with a
norm called the Luxemburg norm, defined by

‖x‖ρ = inf
{
λ > 0 : ρ

(x
λ

)
≤ 1
}
.

A function modular is said to satisfy the ∆2–condition if there exists κ > 0
such that ρ(2x) ≤ κρ(x) for all x ∈ Xρ.

Definition 1.2. Let {xn} and x be in Xρ. Then

(i) we say that {xn} is ρ–convergent to x and write xn
ρ−→ x if and only if

ρ(xn − x)→ 0 as n→∞,
(ii) the sequence {xn}, with xn ∈ Xρ, is called ρ–Cauchy if ρ(xn− xm)→ 0 as
n,m→∞,
(iii) a subset S of Xρ is called ρ–complete if and only if any ρ–Cauchy sequence
is ρ–convergent to an element of S.

The modular ρ has the Fatou property if and only if ρ(x) ≤ lim infn→∞ ρ(xn)
whenever the sequence {xn} is ρ–convergent to x. For further details and
proofs, we refer the reader to [17].
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Remark 1.3. If x ∈ Xρ then ρ(ax) is a nondecreasing function of a ≥ 0.
Suppose 0 < a < b, then property (iii) of Definition 1.1 with y = 0 shows that

ρ(ax) = ρ
(a
b
bx
)
≤ ρ(bx).

Moreover, if ρ is convex modular on X and |α| ≤ 1 then, ρ(αx) ≤ |α|ρ(x) and
also ρ(x) ≤ 1

2
ρ(2x) for all x ∈ X .

The stability problem for functional equations first was planed in 1940
by Ulam [27]:

Let G1 be a group and G2 be a metric group with the metric d(·, ·). Does,
for any ε > 0, there exists δ > 0 such that, for any mapping f : G1 → G2 which
satisfies d(f(xy), f(x)f(y)) 6 δ for all x, y ∈ G1, there exists a homomorphism
h : G1 → G2 so that, for any x ∈ G1, we have d(f(x), h(x)) 6 ε?

In 1941, Hyers [7] answered to the Ulam’s question when G1 and G2 are
Banach spaces. Subsequently, the result of Hyers was generalized by Aoki [2]
for additive mappings and Rassias [22] for linear mappings by considering an
unbounded Cauchy difference. The paper of Rassias [22] has provided a lot of
influences in the development of the Hyers-Ulam-Rassias stability of functional
equations (see [15]). During the last decades several stability problems of
functional equations have been investigated by a number of mathematicians in
various spaces, such as fuzzy normed spaces, non–Archimedean normed spaces
and random normed spaces; see [4, 8, 9, 14, 3, 21, 30] and reference therein.
Recently, the author present a fixed point method to prove generalized Hyers–
Ulam stability of the generalized Jensen functional equation f(rx + sy) =
rg(x) + sh(x) in modular spaces [24].

There are several orthogonality notions on a real normed spaces as Birkhoff–
James, semi–inner product, Carlsson, Singer, Roberts, Pythagorean, isosceles
and Diminnie (see, e.g., [1]). Let us recall the orthogonality space in the sense
of Rätz; cf. [23].

Suppose L is a real vector space with dim L ≥ 2 and ⊥ is a binary relation
on L with the following properties:
(i) totality of ⊥ for zero: x ⊥ 0, 0 ⊥ x for all L;
(ii) independence: if x, y ∈ L−{0}, x ⊥ y, then, x, y are linearly independent;
(iii) homogeneity: if x, y ∈ L, x ⊥ y, then αx ⊥ βy for all α, β ∈ R;
(iv) the Thalesian property: if P is a 2–dimensional subspace of L, x ∈ P and
λ ∈ R+, then there exists y0 ∈ P such that x ⊥ y0 and x+ y0 ⊥ λx− y0.
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The pair (L,⊥) is called an orthogonality space. By an orthogonality
normed space, we mean an orthogonality space having a normed structure.
Some interesting examples of orthogonality spaces are:

• The trivial orthogonality on a vector space L defined by (i), and for
nonzero elements x, y ∈ L, x ⊥ y iff x, y are linearly independent.

• The ordinary orthogonality on an inner product space (L, 〈.〉) given by
x ⊥ y iff 〈x, y〉 = 0.

• The Birkhoff–James orthogonality on a normed space (L, ‖.‖) defined by
x ⊥ y iff ‖x‖ ≤ ‖x+ λy‖ for all λ ∈ R.

Let L be an orthogonality space and (X ,+) be an Abelian group. A mapping
f : L → X is said to be (orthogonally) quadratic if it satisfies

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

for all x, y ∈ L (with x ⊥ y). The orthogonally quadratic functional equation
(1.1), was first investigated by Vajzović [28] when L is a Hilbert space, X
is equal to C, f is continuous and ⊥ means the Hilbert space orthogonality.
Later Drlijević, Fochi and Szabó generalized this result [5, 6, 25].

One of the significant conditional equation is the so–called orthogonally
quadratic functional equation of Pexideized type,

f(x+ y) + f(x− y) = 2g(x) + 2h(y) (x ⊥ y). (1.2)

Moslehian in [16] obtained the Hyers–Ulam stability of this Pexiderized equa-
tion.

In the present paper, we establish the stability of orthogonal Pexiderized
quadratic functional equation (1.2) in the spirit of Hyers–Ulam in modular
spaces. Therefore, we generalized the main theorem of [16].

2. Orthogonal stability of Pexiderized quadratic

functional equation

The author prove the generalized Hyers–Ulam–Rassias stability of a general-
ized Jensen functional equation in modular spaces [24]. Applying some ideas
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from [16], we deal with the conditional stability problem for equation (1.2) in
modular spaces.

Throughout this paper, we assume that the convex modular ρ has the Fatou
property such that satisfies the ∆2–condition with 0 < κ ≤ 2. In addition, we
assume that (L,⊥) denotes an orthogonality space.

Theorem 2.1. Suppose ⊥ is symmetric on L and Xρ is ρ–complete modular
space. Let f, g, h : L → Xρ be mappings fulfilling

ρ (f(x+ y) + f(x− y)− 2g(x)− 2h(y)) ≤ ε (2.1)

for all x, y ∈ L with x ⊥ y, ε > 0 and f(0) = g(0) = h(0) = 0. Assume that
f is odd. Then there exist unique additive mapping T : L → Xρ and unique
quadratic mapping Q : L → Xρ such that

ρ(f(x)− T (x)−Q(x)) ≤ κ2

2
(1 + κ)ε

ρ(g(x)− T (x)−Q(x)) ≤ κ

4

[
1 + κ2(1 + κ)

]
ε

for all x ∈ L.

Proof. Put x = 0 in equation (2.1). We can do this because of (i). Then

ρ(h(y)) ≤ 1

2
ρ (2h(y)) ≤ ε

2
(2.2)

for all y ∈ L. Similarly, by putting y = 0 in equation (2.1) we obtain

ρ(f(x)− g(x)) ≤ 1

2
ρ (2f(x)− 2g(x)) ≤ ε

2
(2.3)

for all x ∈ L. Hence

ρ(f(x+ y) + f(x− y)− 2f(x)) ≤ 1

2
ρ(2[f(x+ y) + f(x− y)− 2g(x)− 2h(y)])

+
1

2
ρ(2[2f(x)− 2g(x) + 2h(y)])

≤ κ

2
ε+

κ2

2

[
1

2
ρ(2f(x)− 2g(x)) +

1

2
ρ(2h(y))

]
≤
(
κ

2
+
κ2

2

)
ε

(2.4)
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for all x, y ∈ L with x ⊥ y. Fix x ∈ L. By (iv), there exists y0 ∈ L such that
x ⊥ y0 and x+ y0 ⊥ x− y0. Since ⊥ is symmetric x− y0 ⊥ x+ y0, too. Using
inequality (2.4) and the oddness of f we obtain

ρ(f(x+ y0) + f(x− y0)− 2f(x)) ≤
(
κ

2
+
κ2

2

)
ε

ρ(f(2x) + f(2y0)− 2f(x+ y0)) ≤
(
κ

2
+
κ2

2

)
ε

ρ(f(2x)− f(2y0)− 2f(x− y0)) ≤
(
κ

2
+
κ2

2

)
ε.

Hence

ρ(f(2x)− 2f(x)) ≤ 1

2
ρ(2[f(x+ y0) + f(x− y0)− 2f(x)])

+
1

2
ρ[(f(2x) + f(2y0)− 2f(x+ y0))

+ f(2x)− f(2y0)− 2f(x− y0))]

≤ κ

2

(
κ

2
+
κ2

2

)
ε+

κ

4
ρ(f(2x) + f(2y0)− 2f(x+ y0))

+
κ

4
ρ(f(2x)− f(2y0)− 2f(x− y0))

≤ κ2

2
(1 + κ)ε

for all x ∈ L and so

ρ

(
f(2x)

2
− f(x)

)
≤ 1

2

κ2

2
(1 + κ)ε. (2.5)

Continuing in this way, we may have

ρ

(
f(22x)

22
− f(x)

)
≤ κ2

2
(1 + κ)ε

(
κ

23
+
κ2

23

)
≤ κ2

2
(1 + κ)ε

(
1

22
+
κ

22

)
(2.6)

for all x ∈ L. By using (2.5), (2.6) and the principle of mathematical induction,
we can easily see that

ρ

(
f(2nx)

2n
− f(x)

)
≤ κ2

2
(1 + κ)ε

n∑
i=1

κn−i

2n
≤ κ2

2
(1 + κ)ε

n∑
i=1

1

2i
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for all x ∈ L, n ∈ N and

ρ

(
f(2nx)

2n
− f(2mx)

2m

)
≤ κ2

2
(1 + κ)ε

n∑
i=m+1

1

2i

for all x ∈ L, n > m. Therefore, the sequence {f(2nx)
2n
} is a ρ–Cauchy sequence

in the ρ–complete modular space Xρ. Hence ρ–limn→∞
f(2nx)

2n
exists and well

define the odd mapping L(x) = limn→∞
f(2nx)

2n
from L into Xρ satisfying

ρ(f(x)− L(x)) ≤ κ2

2
(1 + κ)ε (2.7)

for all x ∈ L, since ρ has Fatou property.
For all x, y ∈ L wit x ⊥ y, by applying (2.4) and (iii) we get

ρ

(
f(2n(x+ y)

2n
+
f(2n(x− y)

2n
− 2

f(2nx)

2n

)
≤ 1

2n
κ

2
(1 + κ)ε. (2.8)

If n→∞ then, we conclude that

L(x+ y) + L(x− y)− 2L(x) = 0 (2.9)

for all x, y ∈ L with x ⊥ y. Moreover, L(0) = 0. Using [16, Lemma 2.1] we
conclude that L is an orthogonal additive mapping. By [23, Corollary 7], L
therefore is of form T +Q with T additive and Q quadratic. If there is another
quadratic mapping Q̂ and another additive mapping T̂ satisfying the required
inequalities and L̂ = T̂ + Q̂, then

ρ(L(x)− L̂(x)) ≤ κ

2
ρ(L(x)− f(x)) +

κ

2
ρ(L̂(x)− f(x)) ≤ κ3

2
(1 + κ)ε (2.10)

for all x ∈ L. Using the fact that additive mappings are odd and quadratic
mappings are even we obtain

ρ(T (x)− T̂ (x)) = ρ

(
1

2

[
(T (x) +Q(x)− T̂ (x)− Q̂(x)) + (T (x)−Q(x)− T̂ (x) + Q̂(x))

])
≤ 1

2
ρ(T (x) +Q(x)− T̂ (x)− Q̂(x)) +

1

2
ρ(T (x)−Q(x)− T̂ (x) + Q̂(x))

=
1

2
ρ(L(x)− L̂(x)) + 1

2
ρ(L(−x)− L̂(−x))

≤ κ3

2
(1 + κ)ε
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for all x ∈ L. Thus

ρ(T (x)− T̂ (x)) = ρ

(
T (nx)− T̂ (nx)

n

)
≤ 1

n
ρ
(
T (nx)− T̂ (nx)

)
≤ κ3

2n
(1 + κ)ε

for all x ∈ L. If n→∞, we get T = T̂ . Similarly,

ρ(Q(x)− Q̂(x)) = ρ

(
1

2

[
(T (x) +Q(x)− T̂ (x)− Q̂(x)) + (T (x)−Q(x)− T̂ (x) + Q̂(x))

])
≤ 1

2
ρ(T (x) +Q(x)− T̂ (x)− Q̂(x)) +

1

2
ρ(T (x)−Q(x)− T̂ (x) + Q̂(x))

=
1

2
ρ(L(x)− L̂(x)) + 1

2
ρ(L(−x)− L̂(−x))

≤ κ3

2
(1 + κ)ε

for all x ∈ L. Hence

ρ(Q(x)− Q̂(x)) = ρ

(
Q(nx)− Q̂(nx)

n2

)
≤ 1

n2
ρ
(
Q(nx)− Q̂(nx)

)
≤ κ3

2n
(1 + κ)ε

for all x ∈ L, n ∈ N. If n → ∞ the latter inequality implies that Q = Q̂.
Using inequalities (2.3) and (2.7) we obtain

ρ(g(x)− L(x)) ≤ κ

2
ρ(g(x)− f(x)) +

κ

2
ρ(f(x)− L(x)) ≤ κ

4

[
1 + κ2(1 + κ)

]
ε

for all x ∈ L.

Corollary 2.2. [16] Suppose ⊥ is symmetric on L and X is Banach space.
Let f, g, h : E → X be mappings fulfilling

‖f(x+ y) + f(x− y)− 2g(x) + 2h(y)‖ ≤ ε (2.11)

for all x, y ∈ L with x ⊥ y, ε > 0 and f(0) = g(0) = h(0) = 0. Assume that
f is odd. Then there exist unique additive mapping L : L → X and unique
quadratic mapping Q : L → X such that

‖(f(x)− L(x)−Q(x)‖ ≤ 6ε

‖(g(x)− L(x)−Q(x)‖ ≤ 13

2
ε

for all x ∈ L.
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Proof. It is well known that every normed space is a modular space with the
modular ρ(x) = ‖x‖ and κ = 2.

A convex function ϕ defined on the interval [0,∞), nondecreasing and
continuous for α ≥ 0 and such that ϕ(0) = 0, ϕ(α) > 0 for α > 0, ϕ(α)→∞
as α → ∞, is called an Orlicz function. The Orlicz function ϕ satisfies the
∆2–condition if there exists κ > 0 such that ϕ(2α) ≤ κϕ(α) for all α > 0. Let
(Ω,Σ, µ) be a measure space. Let us consider the space L0(µ) consisting of all
measurable real–valued (or complex–valued) functions on Ω. Define for every
f ∈ L0(µ) the Orlicz modular ρϕ(f) by the formula

ρϕ(f) =

∫
Ω

ϕ(|f |)dµ.

The associated modular function space with respect to this modular is called
an Orlicz space, and will be denoted by Lϕ(Ω, µ) or briefly Lϕ . In other words,

Lϕ = {f ∈ L0(µ) | ρϕ(λf)→ 0 as λ→ 0}

or equivalently as

Lϕ = {f ∈ L0(µ) | ρϕ(λf) <∞ for some λ > 0}.

It is known that the Orlicz space Lϕ is ρϕ–complete. Moreover, (Lϕ, ‖.‖ρϕ) is
a Banach space, where the Luxemburg norm ‖.‖ρϕ is defined as follows

‖f‖ρϕ = inf

{
λ > 0 :

∫
Ω

ϕ

(
|f |
λ

)
dµ ≤ 1

}
.

Moreover, if ` is the space of sequences x = {xi}∞i=1 with real or complex
terms xi, ϕ = {ϕi}∞i=1, ϕi are Orlicz functions and %ϕ(x) = Σ∞i=1ϕi(|xi|), we
shall write `ϕ in place of Lϕ. The space `ϕ is called the generalized Orlicz
sequence space. The motivation for the study of modular spaces (and Orlicz
spaces) and many examples are detailed in [19, 17, 20, 13]. The following
examples show that our results in this paper is different from some results of
[16].

Example 2.3. Suppose ⊥ is symmetric on L and ϕ is an Orlicz function and
satisfy the ∆2–condition with 0 < κ ≤ 2. Let f, g, h : E → Lϕ be mappings
with f(0) = g(0) = h(0) = 0 satisfying∫

Ω

ϕ(|f(x+ y) + f(x− y)− 2g(x)− 2h(y)|)dµ ≤ ε (2.12)
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for all x, y ∈ L, with x ⊥ y and ε > 0. Assume that f is odd. Then there
exists a unique additive mapping T : L → Lϕ and unique quadratic mapping
Q : L → Lϕ such that∫

Ω

ϕ(|f(x)− T (x)−Q(x)|)dµ ≤ κ2

2
(1 + κ)∫

Ω

ϕ(|g(x)− T (x)−Q(x)|)dµ ≤ κ

4
[1 + κ2(1 + κ)]

for all x ∈ L.

Example 2.4. Suppose ⊥ is symmetric on L. Let ϕ̂ = {ϕi} be a sequence of
Orlicz functions and satisfy the ∆2–condition with 0 < κ ≤ 2 and let (`ϕ̂, %ϕ̂) be
a generalized Orlicz sequence space associated to ϕ̂ = {ϕi}. Let f, g, h : L → `ϕ̂

be mappings with f(0) = g(0) = h(0) = 0 satisfying

%ϕ̂(f(x+ y) + f(x− y)− 2g(x)− 2h(y)) ≤ ε

for all x, y ∈ L, with x ⊥ y and ε > 0. Assume that f is odd. Then there
exists a unique additive mapping T : L → Lϕ and unique quadratic mapping
Q : L → Lϕ such that

%ϕ̂(f(x)− T (x)−Q(x))dµ ≤ κ2

2
(1 + κ)

%ϕ̂(g(x)− T (x)−Q(x))dµ ≤ κ

4
[1 + κ2(1 + κ)]

for all x ∈ L.

Problem 2.5. Suppose f, g, h : L → Xρ are mappings fulfilling

ρ (f(x+ y) + f(x− y)− 2g(x)− 2h(y)) ≤ ε

for some ε and all x, y ∈ L with x ⊥ y. Assume that f is even. Does
there exists an orthogonally quadratic mapping Q : L → Xρ, under certain
conditions, such that

ρ (f(x)−Q(x)) ≤ αε

ρ (g(x)−Q(x)) ≤ βε

ρ (h(x)−Q(x)) ≤ γε

for some scalars α, β, γ and for all x ∈ L.
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