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Abstract

In this paper, q-analogues of the Stirling formula for the q-factorial
function are derived and expressed as infinite integral, infinite series and
double infinite series.
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1. Introduction

The Stirling formula and its generalizations have a large class of applications
in science as in statistical physics or probability theory. In consequence, it
has been deeply studied by a large number of authors, due to its practical
importance. For details see [1-3] and the references given therein.

Many of the classical facts for the gamma function have been extended to
the q-gamma function which is defined as

Γq(z) =
(q; q)∞
(qz; q)∞

(1− q)1−z, |q| < 1, z 6= 0,−1,−2, · · · (1.1)
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where (a; q)∞ is the q-shifted factorial defined by the limit

(a; q)∞ = lim
m→∞

(a; q)m = lim
m→∞

m−1∏
k=0

(1− aqk), |q| < 1 (1.2)

(see [4-10] and the references therein). An important fact for the gamma
function in applied mathematics as well as in probability is the Stirling formula
that gives a pretty accurate idea about the size of the gamma function. With
the Euler-Maclaurin formula, Moak [6] obtained the following q-analogue of
Stirling formula

log Γq(x) ∼
(
x− 1

2

)
log[x]q +

Li2(1− qx)
log q

+ Cq̂ +
1

2
H(q − 1) log q

+
∞∑
k=1

B2k

(2k)!

(
log q̂

q̂x − 1

)2k−1

q̂xp2k−3(q̂
x), x→∞ (1.3)

where H(·) denotes the Heaviside step function,

q̂ =

{
q if 0 < q ≤ 1

q−1 if q ≥ 1
,

[x]q = (1− qx)/(1− q), Li2(z) is the dilogarithm function defined for complex
argument z as [11]

Li2(z) = −
∫ z

0

log(1− t)
t

dt; z 6∈ (1,∞), (1.4)

pk is a polynomial of degree k satisfying

pk(z) = (z − z2)p′k−1(z) + (kz + 1)pk−1(z), p0 = p−1 = 1, k = 1, 2, · · ·
(1.5)

and

Cq =
1

2
log(2π) +

1

2
log

(
q − 1

log q

)
− 1

24
log q

+ log

(
∞∑

m=−∞

(
rm(6m+1) − r(2m+1)(3m+1)

))
, (1.6)
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where r = exp(4π2/ log q). It is easy to see that

lim
q→1

Cq = C1 =
1

2
log(2π), lim

q→1

Li2(1− qx)
log q

= −x and Pk(1) = (k + 1)!

(1.7)
and so (1.3) when letting q → 1, tends to the ordinary Stirling formula [11]

log Γ(x) ∼
(
x− 1

2

)
log x−x+

1

2
log(2π) +

∞∑
k=1

B2k

2k(2k − 1)

1

x2k−1
, x→∞.

(1.8)
Mansour [12] derived an asymptotic expansion of the q-gamma function Γq(x)
as

Γq(x) = [2]
1
2
q Γq2(

1

2
)(1− q)1/2−xe

θqx

1−q−qx , 0 < θ < 1, 0 < q < 1. (1.9)

In this paper, the Euler-Maclaurin formula is exploited to provide an ex-
pression for the q-factorial function as an infinite integral. This integral repre-
sentation for the q-factorial function is used to express it as infinite series and
double infinite series.

2. Main Results

The Euler-Maclaurin formula provides a powerful connection between integrals
and sums. It can be used to approximate integrals by finite sums, or conversely
to evaluate finite sums and infinite series using integrals and the machinery of
calculus and defined as

n∑
k=1

f(k) =

∫ n

1

f(x)dx+
1

2
(f(n) + f(1)) +

∫ n

1

P1(x)f ′(x)dx (2.1)

where Pn(x) = Bn({x}) is the periodic Bernoulli functions and {x} = x− [x]
and [x] denotes the largest integer less than or equal to x. The q-analogue of
the factorial function is defined for positive integer n as

[n]q! =
n∏
k=1

[k]q =
(q; q)n

(1− q)n
with [0]q! = 1, q 6= 1. (2.2)

From now on, we will fix q ∈ (0, 1).
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Theorem 2.1. For a positive integer n, the q-factorial function (2.2) can
be expressed via the infinite integral as

[n]q! =
√

1− qne
−π2
6 log q (q; q)∞[n]nq exp

(
Li2(1− qn)

log q
+

∫ ∞
n

qx log q
(
{x} − 1

2

)
1− qx

dx

)
(2.3)

=
√

2π[n]qSq[n]nq exp

(
Li2(1− qn)

log q
+

∫ ∞
n

qx log q
(
{x} − 1

2

)
1− qx

dx

)
(2.4)

where

Sq = q
−1
24

√
q − 1

log q

∞∑
m=−∞

(
rm(6m+1) − r(2m+1)(3m+1)

)
, r = exp(4π2/ log q).

(2.5)
Proof. Let f(x) = log(1 − qx) and substitute into Euler-Maclaurin formula

(2.1), we get

n∑
k=1

log(1− qk) =

∫ n

1

log(1− qx)dx+
1

2
(log(1− qn) + log(1− q))

−
∫ n

1

qx log q

1− qx
P1(x)dx. (2.6)

It is easy to show that the first integral can be computed as∫ n

1

log(1− qx)dx =

∫ qn

q

log(1− t)
t log q

dt =
Li2(q)− Li2(q

n)

log q

where Li2(z) is the dilogarithm function defined as in (1.4) and it has the
identity

Li2(z) = −Li2(1− z) +
π2

6
− log z log(1− z), 0 < z ≤ 1

which reveals that∫ n

1

log(1−qx)dx =
Li2(1− qn)− Li2(1− q)

log q
+n log(1−qn)− log(1−q). (2.7)
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Substituting P1(x) = {x} − 1
2

and (2.7) into (2.6) to obtain

log[n]q! =
Li2(1− qn)− Li2(1− q)

log q
+

(
n+

1

2

)
log[n]q

−
∫ n

1

qx log q
(
{x} − 1

2

)
1− qx

dx

which can be rewritten as

[n]q! = [n]nq

√
[n]q exp

(
Li2(1− qn)

log q
+ δn

)
, (2.8)

where

δn = −Li2(1− q)
log q

−
∫ n

1

qx log q
(
{x} − 1

2

)
1− qx

dx.

The Dirichlet test for convergence of infinite integral shows that∫ ∞
1

qx
(
{x} − 1

2

)
1− qx

dx

is convergent for 0 < q < 1. Therefore, we can define

lim
n→∞

δn = −Li2(1− q)
log q

−
∫ ∞
1

qx log q
(
{x} − 1

2

)
1− qx

dx = δ.

From (2.8), we have

e2δn−δ2n =
([n]q!)

2[2n]2nq
√

[2n]q

[2n]q![n]2n+1
q

exp

(
Li2(1− q2n)− 2Li2(1− qn)

log q

)
.

When letting n→∞, this leads to

eδ =
√

1− qe
−π2
6 log q lim

n→∞

(q; q)2n
√

1− q2n
(q; q)2n(1− qn)

lim
n→∞

(
1− q2n

1− qn

)2n

=
√

1− qe
−π2
6 log q (q; q)∞.

These conclude that

[n]q! =
√

1− qne
−π2
6 log q (q; q)∞[n]nq exp

(
Li2(1− qn)

log q
+ δn − δ

)
=
√

1− qne
−π2
6 log q (q; q)∞[n]nq exp

(
Li2(1− qn)

log q
+

∫ ∞
n

qx log q
(
{x} − 1

2

)
1− qx

dx

)
.
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In order to prove (2.4), inserting the formula

(q; q)∞ =

(
r

q

) 1
24
√

2π

− log q

∞∑
m=−∞

(
rm(6m+1) − r(2m+1)(3m+1)

)
which was proven by Moak [6], into (2.3) to obtain the desired result (2.4).

Corollary 2.2. For a positive integer n, the q-factorial function (2.2) can be
expressed via the double infinite series as

[n]q! =
√

2π[n]qSq[n]nq e
Li2(1−q

n)
log q

× exp

(
∞∑
k=n

∞∑
i=1

i(−1)i−1(k + 1
2
)qik log q + (1− qk)i([k + 1]iq − [k]iq)

i2[k]iq log q

)
.

(2.9)

Proof. Since the infinite integral in the previous theorem is convergent, then
we have∫ ∞

n

qx log q
(
{x} − 1

2

)
1− qx

dx

=
∞∑
k=n

∫ k+1

k

qx log q
(
{x} − 1

2

)
1− qx

dx

=
∞∑
k=n

∫ k+1

k

qx log q
(
x− k − 1

2

)
1− qx

dx

=
∞∑
k=n

[(
k +

1

2

)
log

(
1− qk+1

1− qk

)
+

Li2(1− qk+1)− Li2(1− qk)
log q

]
=
∞∑
k=n

[(
k +

1

2

)
log

(
1 +

qk

[k]q

)
+

Li2(1− qk+1)− Li2(1− qk)
log q

]
=
∞∑
k=n

∞∑
i=1

i(−1)i−1(k + 1
2
)qik log q + (1− qk)i([k + 1]iq − [k]iq)

i2[k]iq log q
.

This completes the proof.
Remark 2.3. It is not difficult to see that the results obtained in (2.4) and
(2.9) when letting q → 1 tend to the same results for the factorial function
(see [3]).
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Corollary 2.4. For a positive integer n, the q-factorial function (2.2) can be
expressed via the infinite series as

[n]q! =
√

2π[n]qSq(1− q)−n exp

(
π2

6 log q
+

1

2

∞∑
i=1

qin(1 + qi)

i(1− qi)

)
(2.10)

and the q-shifted factorial can also be expressed as

(q; q)n =
√

2π[n]qSq exp

(
π2

6 log q
+

1

2

∞∑
i=1

qin(1 + qi)

i(1− qi)

)
. (2.11)

Proof. If limN→∞ f(N) exists, then we get

∞∑
k=n

(f(k + 1)− f(k)) = lim
N→∞

N∑
k=n

(f(k + 1)− f(k)) = lim
N→∞

f(N + 1)− f(n).

Applying the above rule with using the results obtained in the proof of Corol-
lary 2.2 would yield∫ ∞
n

qx log q
(
{x} − 1

2

)
1− qx

dx

=
∞∑
k=n

[(
k +

1

2

)
log

(
1− qk+1

1− qk

)
+

Li2(1− qk+1)− Li2(1− qk)
log q

]

= lim
N→∞

N∑
k=n

[
(k + 1) log(1− qk+1)− k log(1− qk)

]
+ lim

N→∞

N∑
k=n

[
Li2(1− qk+1)− Li2(1− qk)

log q

]
− 1

2

∞∑
k=n

[
log(1− qk+1) + log(1− qk)

]
= −n log(1− qn) +

π2

6 log q
− Li2(1− qn)

log q
+

1

2

∞∑
k=n

∞∑
i=1

qik(1 + qi)

i

= −n log(1− qn) +
π2

6 log q
− Li2(1− qn)

log q
+

1

2

∞∑
i=1

qin(1 + qi)

i(1− qi)
.

Substituting into (2.4) to end the proof.
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Remark 2.5. In view of the value of the term π2

6 log q
when letting q → 1,

we get limq→1
π2

6 log q
= ∞ but limq→1

−π2

6 log q−1 = −∞ which occurs confused.

However, we can realize this by changing the form of exponent in (2.10) and
(2.11) to be

f(q) =
1

1− q

(
π2

6

1− q
log q

+
1

2

∞∑
i=1

qin(1 + qi)

i[i]q

)
(2.12)

which reveals that limq→1(1− q)f(q) = 0. By using the l’Hospital rule, we de-
duce that limq→1 f(q) = −∞ and thus the right hand side of (2.11) approaches
to zero when letting q → 1 which equals precisely the left hand side in the
same equation.

References

[1] C. Mortici, A class of integral approximations for the factorial function,
Computers and Mathematics with Applications., 59 (2010), 2053-2058.

[2] C. Mortici, An ultimate extremely accurate formula for approximation of
the factorial function, Arch. Math., 93 (2009), 37-45.

[3] Z. Liu, A New Version of The Stirling Formula, Tamsui Oxford Journal
of Mathematical Sciences, 23 no.4 (2007), 389-392.

[4] R. Askey, The q-gamma and q-beta functions, Appl. Anal., 8 (1978), 125-
141.

[5] D.S. Moak, The q-gamma function for q > 1, Aequationes Math., 20
(1980), 278-285.

[6] D.S. Moak, The q-analogue of Stirling’s formula, Rocky Mountain J.
Math., 14 (1984), 403-413.

[7] A.B. Olde Daalhuis, Asymptotic expansions of q-gamma, q-exponential
and q-bessel functions, Journal of Mathematical Analysis and Applica-
tions, 186 (1994), 896-913.



The Stirling Formula for The q-factorial Function 293

[8] A. Salem, Complete monotonicity properties of functions involving q-
gamma and q-digamma functions, Mathematical Inequalities & Appli-
cations(To appear).

[9] A. Salem, Some Properties and Expansions Associated with the q-
Digamma Function, Quaestiones mathematicae, 36 no. 1 (2013), 67-77.

[10] A. Salem, A completely monotonic function involving q-gamma and q-
digamma functions, Journal of Approximations Theory, 164 (2012), 971-
980.

[11] M. Abramowitz and C.A. Stegun, Handbook of Mathematical functions
with formulas, Graphs, Mathematical tables 7th printing, Applied Math-
ematics Series, 55 , Nathional Bureau of standards, Washington, DC,
1964.

[12] M. Mansour, An asymptotic expansion of the q-gamma function Γq(x),
Journal of Nonlinear Mathematical Physics, 13 no. 4 (2006), 479-483.


