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Abstract

We consider a second-order singular differential operator L on the
half line which generalizes the Bessel operator. We construct a pair
transmutation operators between L and the second derivative opera-
tor d2/dx2. Using these transmutation operators, we firstly establish a
Paley-Wiener theorem for the Fourier transform associated to L, and
secondly introduce a generalized convolution on [0,∞[ tied to L. Fur-
thermore, a generalization of the classical Sonine integral transform is
built.

Keywords and Phrases: Transmutation operators, Generalized Fourier
transform, Generalized convolution, Generalized Sonine integral transform.

1. Introduction

The german astronomer F.W. Bessel (1784-1846) first achieved fame by com-
puting the orbit of Halley’s comet. In addition to many other accomplishments
in connection with his studies of planetary motion, he is credited with deriving

∗2010 Mathematics Subject Classification. Primary 34B30, 42A38, 44A35.
†E-mail: mohamed ali.mourou@yahoo.fr



330 R. F. Al Subaie and M. A. Mourou

the differential equation bearing his name and carrying out the first systematic
study of the general properties of its solutions (now called Bessel functions) in
his famous 1824 memoir. Nevertheless, Bessel functions were first discovered in
1732 by D. Bernoulli (1700-1782), who provided a series solution (representing
a Bessel function) for the oscillatory displacements of a heavy hanging chain
(see [1]). Euler later developed a series similar to that of Bernoulli, which
was also a Bessel function, and Bessel’s equation appeared in a 1764 article
by Euler dealing with the vibrations of a circular drumhead. J. Fourier (1768-
1836) also used Bessel functions in his classical treatise on heat in 1822, but it
was Bessel who first recognized their special properties. Bessel functions are
closely associated with problems possessing circular or cylindrical symmetry.
For example, they arise in the study of free vibrations of a circular membrane.
They also occur in electromagnetic theory and numerous other areas of physics
and engineering (see [1]). The more complete reference about Bessel functions
is the treatise of Watson [4].

Trimèche [2, 3] has pointed out how the theory of Bessel functions gen-
erates an harmonic analysis on the half line tied to the differential operator

Lαf(x) =
d2f

dx2
+

2α + 1

x

df

dx
, α > −1/2, (1)

which is referred to as the Bessel operator of index α. A summary of this
harmonic analysis is provided in Section 2.

Consider the following generalization of the Bessel operator :

Lα,nf(x) =
d2f

dx2
+

2α + 1

x

df

dx
− 4n(α + n)

x2
f(x), (2)

with n = 0, 1, ... . Throughout this paper, several known analytic structures
related to the Bessel operator Lα are generalized. More explicitly, we propose
the following program.

In Section 3, we construct a pair of transmutation operators Rα,n and Wα,n

between Lα,n and the second derivative operator d2/dx2. Mainly, we prove that
Rα,n and Wα,n are isomorphism between suitable functional spaces, satisfying
the intertwining relations

Rα,n ◦
d2

dx2
= Lα,n ◦Rα,n

d2

dx2
◦Wα,n = Wα,n ◦ Lα,n



Transmutation Operators Associated with a Bessel Type Operator 331

In Section 4, we exploit the transmutation operators Rα,n and Wα,n to build
a completely new commutative harmonic analysis on the half line correspond-
ing to the differential operator Lα,n. More precisely, we define a generalized
Fourier transform Fα,n on [0,∞[ associated to Lα,n by the formula

Fα,n(f)(λ) =

∫ ∞
0

f(x)ϕλ,α,n(x)x2α+1dx,

with

ϕλ,α,n(x) = Γ(α + 2n+ 1)x2n
∞∑
n=0

(−1)n(λx/2)2n

n! Γ(3n+ α + 1)
.

We establish for the generalized Fourier transform Fα,n, a Paley-Wiener
theorem, an inversion formula and a Plancherel theorem.

Next, we introduce a generalized convolution product ∗α,n on [0,∞[ tied
to the differential operator Lα,n, by putting

f ∗α,n g(x) =

∫ ∞
0

T xα,nf(y)g(y)y2α+1dy,

where T xα,n stand for the generalized translation operators tied to Lα,n given
by

T xα,n f(y) =
1

2
(Rα,n)x (Rα,n)y

[
R−1α,nf(x+ y) +R−1α,nf(x− y)

]
.

Such a convolution is mapped firstly by the generalized Fourier transform
Fα,n into the simple product, and secondly by the transmutation operator
Wα,n into the ordinary convolution.

Section 5 is devoted to the study of the following integral transform

Sm,nα,β (f)(x) =
2 Γ(β + 2m+ 1)

Γ(α + 2n+ 1)Γ(β − α + 2(m− n))
x2(m−n) ×

×
∫ 1

0

f(tx) (1− t2)β−α+2(m−n)−1 t2α+2n+1 dt,

where β > α > −1/2 and m, n two non-negative integers such that m ≥ n.
For m = n = 0, Sm,nα,β reduces to the classical Sonine integral transform of
order (α, β) (see [3]). Essentially, it is shown that Sm,nα,β and its dual tSm,nα,β are
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isomorphism between appropriate functional spaces, satisfying the intertwin-
ing relations

Sm,nα,β ◦ Lα,n = Lβ,m ◦ Sm,nα,β

Lα,n ◦ tSm,nα,β = tSm,nα,β ◦ Lβ,m

Thanks to Sm,nα,β and tSm,nα,β , all harmonic analysis tools related to Lβ,m may
be expressed in terms of their analogous related to Lα,n.

2. Preliminaries

Notation. Throughout this section assume α > −1/2. We denote by E(R)
the space of C∞ even functions on R, provided with the topology of compact
convergence for all derivatives. For a > 0, Da(R) designates the space of
C∞ even functions on R, which are supported in [−a, a], equipped with the
topology induced by E(R). Put

D(R) =
⋃
a>0

Da(R),

endowed with the inductive limit topology. We denote by Ha, a > 0, the space
of entire even and rapidly decreasing functions of exponential type a; that is,
f ∈ Ha if and only if, f is entire, even on C and for all m = 0, 1, ...,

pm(f) = sup
λ∈C
|(1 + λ)mf(λ)e−a|Imλ|| <∞.

Ha is equipped with the topology defined by the semi-norms pm, m = 0, 1, ....
Put

H =
⋃
a>0

Ha

equipped with the inductive limit topology.

In this section we recall some facts about harmonic analysis related to the
Bessel operator Lα. We cite here, as briefly as possible, only those properties
actually required for the discussion. For more details we refer to [2, 3].
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The normalized spherical Bessel function of index α is defined by

jα(z) = Γ(α + 1)
∞∑
n=0

(−1)n(z/2)2n

n! Γ(n+ α + 1)
(z ∈ C) (3)

The function jα possesses the Laplace type integral representation

jα(z) = aα

∫ 1

0

cos(zt)(1− t2)α−1/2 dt, (4)

where

aα =
2 Γ(α + 1)√
π Γ(α + 1/2)

. (5)

The function jα is the unique solution of the differential equation

Lαu+ u = 0, u(0) = 1, u′(0) = 0. (6)

The Riemann-Liouville integral transform Rα is defined on E(R) by

Rα(f)(x) = aα

∫ 1

0

f(tx)(1− t2)α−1/2 dt, x ∈ R. (7)

From [2] it is known that Rα is the unique automorphism of E(R) satisfying

Rα ◦
d2

dx2
(f) = Lα ◦Rα(f) and Rα(f)(0) = f(0), (8)

for all f ∈ E(R).

The Weyl integral transform Wα is defined on D(R) by

Wα(f)(y) = aα

∫ ∞
|y|

f(x) (x2 − y2)α−1/2 x dx, y ∈ R. (9)

The transforms Rα and Wα are dual in the sense of the relationship∫ ∞
0

Rα(f)(x)g(x)x2α+1dx =

∫ ∞
0

f(y)Wα(g)(y)dy, (10)

which is valid for any f ∈ E(R) and g ∈ D(R).
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By [2] we know that Wα is an automorphism of D(R) satisfying the inter-
twining relation

Wα ◦ Lα(f) =
d2

dx2
◦Wα(f), f ∈ D(R). (11)

The Fourier-Bessel transform of a function f ∈ D(R) is defined by

Fα(f)(λ) =

∫ ∞
0

f(x)jα(λx)x2α+1dx, λ ∈ C. (12)

Theorem 2.1. (i) The Fourier-Bessel transform Fα is a topological isomor-
phism from D(R) onto H. More precisely, f ∈ Da(R) if, and only if, Fα(f) ∈
Ha.

(ii) For every f ∈ D(R), we have

f(x) = mα

∫ ∞
0

Fα(f)(λ)jα(λx)λ2α+1dλ,

∫ ∞
0

|f(x)|2x2α+1dx = mα

∫ ∞
0

|Fα(f)(λ)|2λ2α+1dλ,

where

mα =
1

4α(Γ(α + 1))2
. (13)

The Bessel translation operators T xα , x ∈ R, are defined by

T xα (f)(y) = aα

∫ π

0

f(
√
x2 + y2 + 2xy cosθ)(sinθ)2αdθ, y ∈ R.

Proposition 2.1. (i) For every f ∈ E(R),

T xα (f)(y) = (Rα)x (Rα)y
[
σxR

−1
α (f)(y)

]
, (14)

where

σx f(y) =
f(x+ y) + f(x− y)

2
.

(ii) For all x ∈ R, T xα is a linear bounded operator from E(R) into itself;
the function x 7→ T xα is C∞.
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(iii) We have

T 0
α = identity, T xαT

y
α = T yαT

x
α , LαT

x
α = T xαLα.

(iv) For all f ∈ E(R),

T xαf(y) = T yαf(x).

(v) For each λ ∈ C, we have the product formula

T xα (jα(λ·))(y) = jα(λx)jα(λy).

(vi) Let f be in Da(R). Then for all x ∈ R, T xαf is an element of Da+|x|(R)
and

Fα(T xα f)(λ) = jα(λx)Fα(f)(λ), λ ∈ C. (15)

(vii) For all f ∈ E(R) and g ∈ D(R),∫ ∞
0

T xα (f)(y)g(y)y2α+1dy =

∫ ∞
0

f(y)T xα (g)(y)y2α+1dy. (16)

The Bessel convolution product of f ∈ E(R) and g ∈ D(R) is defined by

f ∗α g(x) =

∫ ∞
0

T xα f(y)g(y)y2α+1dy, x ∈ R. (17)

Proposition 2.2. (i) Let f ∈ Da(R) and g ∈ Db(R). Then f ∗α g ∈ Da+b(R)
and

Fα(f ∗α g)(λ) = Fα(f)(λ)Fα(g)(λ), λ ∈ C.

(ii) For all f, g ∈ D(R),

Wα(f ∗α g) = Wα(f) ∗Wα(g),

where ∗ is the symmetric convolution product on R given by

f ∗ g(x) =

∫ ∞
0

σxf(y)g(y)dy. (18)
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3. Transmutation operators

Notation. Throughout this section assume α > −1/2 and n a non-negative
integer. Let En(R) (resp. Dn(R)) stand for the subspace of E(R) (resp. D(R))
consisting of functions f such that

f(0) = · · · = f (2n−1)(0) = 0.

For a > 0, put
Da,n(R) = Da(R) ∩ En(R).

The following technical lemma will be useful.

Lemma 3.1. (i) The map

Mn(f)(x) = x2nf(x) (19)

is an isomorphism

− from E(R) onto En(R);

− from D(R) onto Dn(R).

(ii) For all f ∈ E(R),

Lα,n ◦Mn(f) =Mn ◦ Lα+2n(f), (20)

where Lα+2n is the Bessel operator of order α + 2n given by (1).

(iii) The differential operator Lα,n is self-adjoint ,i.e,∫ ∞
0

Lα,nf(x)g(x)x2α+1dx =

∫ ∞
0

f(x)Lα,ng(x)x2α+1dx, (21)

for all f ∈ En(R) and g ∈ Dn(R).

Proof. Assertion (i) is easily checked. For all f ∈ E(R) we have

Lα,n
(
x2nf

)
(x) =

(
x2nf

)′′
+

2α + 1

x

(
x2nf

)′ − 4n(α + n)x2n−2f(x)

= x2nf ′′(x) + (2α + 4n+ 1)x2n−1f ′(x)

= x2n
(
f ′′(x) +

2α + 4n+ 1

x
f ′(x)

)
= x2nLα+2nf(x),
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which gives (ii). Let us verify (iii). If f ∈ En(R) and g ∈ Dn(R), then by (2),∫ ∞
0

Lα,nf(x)g(x)x2α+1dx =

∫ ∞
0

(
Lαf(x)− 4n(α + n)

x2
f(x)

)
g(x)x2α+1dx

=

∫ ∞
0

Lαf(x)g(x)x2α+1dx

−
∫ ∞
0

4n(α + n)

x2
f(x)g(x)x2α+1dx.

But by [2], ∫ ∞
0

Lαf(x)g(x)x2α+1dx =

∫ ∞
0

f(x)Lαg(x)x2α+1dx.

So∫ ∞
0

Lα,nf(x)g(x)x2α+1dx =

∫ ∞
0

f(x)Lαg(x)x2α+1dx

−
∫ ∞
0

4n(α + n)

x2
f(x)g(x)x2α+1dx

=

∫ ∞
0

f(x)

(
Lαg(x)− 4n(α + n)

x2
g(x)

)
x2α+1dx

=

∫ ∞
0

f(x)Lα,ng(x)x2α+1dx.

This ends the proof. 2

Remark 3.1. In view of Lemma 3.1, Lα,n is a bounded linear operator from
En(R) (resp. Dn(R)) into itself.

Theorem 3.1. The integral transform

Rα,n(f)(x) = aα+2n x
2n

∫ 1

0

f(tx)(1− t2)α+2n−1/2 dt, (22)

where aα+2n is given by (5), is an isomorphism from E(R) onto En(R) satisfying
the intertwining relation

Rα,n ◦
d2

dx2
(f) = Lα,n ◦Rα,n(f), f ∈ E(R).
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Proof. By (7) and (22) observe that

Rα,n =Mn ◦Rα+2n, (23)

whereMn is given by (19). As Rα+2n is an automorphism of E(R), we deduce
from (23) and Lemma 3.1(i) that Rα,n is an isomorphism from E(R) onto
En(R). Moreover, by (8), (20) and (23),

Rα,n ◦
d2

dx2
(f) = Mn ◦Rα+2n ◦

d2

dx2
(f)

= Mn ◦ Lα+2n ◦Rα+2n(f)

= Lα,n ◦Mn ◦Rα+2n(f)

= Lα,n ◦ Rα,n(f),

which completes the proof. 2

Remark 3.2. According to Theorem 3.1, Rα,n is a transmutation operator
between Lα,n and d2/dx2.

Define the dual transform of Rα,n on Dn(R) by

Wα,n(f)(y) = aα+2n

∫ ∞
|y|

f(x) (x2 − y2)α+2n−1/2 dx

x2n−1
, y ∈ R, (24)

where aα+2n is given by (5).

Remark 3.3. By (9) and (24) notice that

Wα,n = Wα+2n ◦M−1
n . (25)

Proposition 3.1. We have the duality relation∫ ∞
0

Rα,n(f)(x)g(x)x2α+1dx =

∫ ∞
0

f(y)Wα,n(g)(y)dy, (26)

valid for any f ∈ E(R) and g ∈ Dn(R).

Proof. Using (10), (23) and (25), we get∫ ∞
0

Rα,n(f)(x)g(x)x2α+1dx =

∫ ∞
0

Rα+2n(f)(x)M−1
n g(x)x2α+4n+1dx

=

∫ ∞
0

f(y)Wα+2n

(
M−1

n g
)
(y) dy

=

∫ ∞
0

f(y)Wα,n(g)(y)dy. 2
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Theorem 3.2. The integral transform Wα,n is an isomorphism from Dn(R)
onto D(R) satisfying the intertwining relation

d2

dx2
◦Wα,n(f) = Wα,n ◦ Lα,n(f), f ∈ Dn(R).

Proof. As Wα+2n is an automorphism of D(R), it follows from (25) and
Lemma 3.1(i) that Wα,n is an isomorphism from Dn(R) onto D(R). Further-
more, by (11), (20) and (25), we have

d2

dx2
◦ Wα,n (f) =

d2

dx2
◦ Wα+2n ◦M−1

n (f)

= Wα+2n ◦ Lα+2n ◦M−1
n (f)

= Wα+2n ◦M−1
n ◦ Lα,n(f)

= Wα,n ◦ Lα,n(f),

which achieves the proof. 2

Remark 3.4. From Theorem 3.2 we deduce that Wα,n is a transmutation
operator between Lα,n and d2/dx2.

4. Generalized Fourier transform − General-

ized convolution product

Throughout this section assume α > −1/2 and n a non-negative integer.

4.1. The Fourier transform associated with Lα,n

For λ ∈ C and x ∈ R, put

ϕλ,α,n(x) = x2njα+2n(λx), (27)

where jα+2n is the normalized Bessel function of index α + 2n given by (3).

Proposition 4.1. (i) The kernel ϕλ,α,n possesses the Laplace type integral
representation

ϕλ,α,n(x) = aα+2n x
2n

∫ 1

0

cos(λtx)(1− t2)α+2n−1/2 dt, (28)
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where aα+2n is given by (5).

(ii) ϕλ,α,n satisfies the differential equation

Lα,n ϕλ,α,n = −λ2 ϕλ,α,n. (29)

Proof. Statement (i) follows directly from (4) and (27). Set

ψλ,α,n(x) = jα+2n(λx).

Notice by (27) that

ϕλ,α,n =Mn(ψλ,α,n).

Moreover, it is easily seen from (6) that

Lα+2n ψλ,α,n = −λ2 ψλ,α,n.

So using (20), we obtain

Lα,n ϕλ,α,n = Lα,n ◦Mn(ψλ,α,n)

= Mn ◦ Lα+2n(ψλ,α,n)

= −λ2Mn(ψλ,α,n)

= −λ2 ϕλ,α,n,

which proves (ii). 2

Remark 4.1. By (22) and (28) notice that

ϕλ,α,n(x) = Rα,n(cos(λ·))(x). (30)

Definition 4.1. The generalized Fourier transform of a function f ∈ Dn(R)
is defined by

Fα,n(f)(λ) =

∫ ∞
0

f(x)ϕλ,α,n(x)x2α+1dx, λ ∈ C. (31)

Proposition 4.2. We have

Fα,n = Fα+2n ◦M−1
n . (32)
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Proof. Let f ∈ Dn(R). From (12), (27) and (31) we have

Fα,n(f)(λ) =

∫ ∞
0

f(x)ϕλ,α,n(x)x2α+1dx

=

∫ ∞
0

M−1
n f(x) jα+2n(λx)x2α+4n+1dx

= Fα+2n

(
M−1

n f
)
(λ) . 2

Proposition 4.3. Let f ∈ Dn(R). Then

Fα,n(Lα,nf)(λ) = −λ2Fα,n(f)(λ).

Proof. From (21) and (29) we have

Fα,n(Lα,nf)(λ) =

∫ ∞
0

Lα,nf(x)ϕλ,α,n(x)x2α+1dx

=

∫ ∞
0

f(x)Lα,nϕλ,α,n(x)x2α+1dx

= −λ2
∫ ∞
0

f(x)ϕλ,α,n(x)x2α+1dx

= −λ2Fα,n(f)(λ). 2

Proposition 4.4. We have

Fα,n = Fc ◦Wα,n (33)

where Fc is the cosine transform given by

Fc(f)(λ) =

∫ ∞
0

f(x)cos(λx)dx.

Proof. From (26) and (30) it follows that

Fα,n(f)(λ) =

∫ ∞
0

f(x)ϕλ,α,n(x)x2α+1dx

=

∫ ∞
0

f(x)Rα,n(cos(λ·))(x)x2α+1dx

=

∫ ∞
0

Wα,n(f)(y)cos(λy)dy

= Fc ◦Wα,n(f)(λ). 2
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Theorem 4.1. (Paley-Wiener) The generalized Fourier transform Fα,n is
an isomorphism from Dn(R) onto H. More precisely, f ∈ Da,n(R) if, and only
if, Fα,n(f) ∈ Ha.

Proof. The result follows directly from (32), Lemma 3.1(i) and Theorem
2.1(i). 2

By combining (27), (32) and Theorem 2.1 we get the following two standard
results

Theorem 4.2. (inversion formula) For all f ∈ Dn(R),

f(x) = mα+2n

∫ ∞
0

Fα,n(f)(λ)ϕλ,α,n(x)λ2α+4n+1dλ,

where mα+2n is given by (13).

Theorem 4.3. (Plancherel) (i) For every f ∈ Dn(R), we have the Plancherel
formula ∫ ∞

0

|f(x)|2x2α+1dx = mα+2n

∫ ∞
0

|Fα,n(f)(λ)|2λ2α+4n+1dλ.

(ii) The generalized Fourier transform Fα,n extends uniquely to an isomet-
ric isomorphism from L2([0,∞[, x2α+1dx) onto L2([0,∞[,mα+2nλ

2α+4n+1dλ).

4.2. The convolution product associated with Lα,n

Definition 4.2. The generalized translation operators T xα,n, x ∈ R, associated
with Lα,n are defined on En(R) by

T xα,n f(y) = (Rα,n)x (Rα,n)y
[
σxR

−1
α,nf(y)

]
, y ∈ R. (34)

Proposition 4.5. We have

T xα,n = x2nMn ◦ T xα+2n ◦M−1
n . (35)

Proof. From (14), (23) and (34) we deduce that

T xα,n f(y) = (Rα,n)x (Rα,n)y
[
σxR

−1
α,n f(y)

]
= (Mn ◦Rα+2n)x (Mn ◦Rα+2n)y

[
σxR

−1
α+2nM−1

n f(y)
]

= x2n y2n(Rα+2n)x (Rα+2n)y
[
σxR

−1
α+2nM−1

n f(y)
]

= x2n y2n T xα+2n

(
M−1

n f
)
(y). 2
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A combination of (20), (27), (35) and Proposition 2.1 yields the next state-
ment which contains the essential properties of the generalized translation
operators.

Theorem 4.4. (i) For all x ∈ R, T xα,n is a linear bounded operator from En(R)
into itself; the function x 7→ T xα,n is C∞.

(ii) We have

T xα,nT
y
α,n = T yα,nT

x
α,n, Lα,nT

x
α,n = T xα,nLα,n.

(iii) For all f ∈ En(R),

T xα,nf(y) = T yα,nf(x).

(iv) For each λ ∈ C, ϕλ,α,n satisfies the product formula

T xα,n(ϕλ,α,n)(y) = ϕλ,α,n(x)ϕλ,α,n(y).

Theorem 4.5. (i) Let f be in Da,n(R). Then for all x ∈ R, T xα,nf is an
element of Da+|x|,n, and

Fα,n
(
T xα,nf

)
(λ) = ϕλ,α,n(x)Fα,n(f)(λ), λ ∈ C.

(ii) For all f ∈ En(R) and g ∈ Dn(R),∫ ∞
0

T xα,n f(y) g(y)y2α+1dy =

∫ ∞
0

f(y)T xα,n g(y)y2α+1dy.

Proof. (i) By (15), (27), (32) and (35) we have

Fα,n
(
T xα,nf

)
(λ) = x2nFα+2n

(
T xα+2nM−1

n f
)

(λ)

= x2n jα+2n(λx)Fα+2n

(
M−1

n f
)

(λ)

= ϕλ,α,n(x)Fα,n(f)(λ).

(ii) From (16) and (35) we have∫ ∞
0

T xα,nf(y) g(y)y2α+1dy = x2n
∫ ∞
0

T xα+2n

(
M−1

n f
)
(y)M−1

n g(y) y2α+4n+1dy

= x2n
∫ ∞
0

M−1
n f(y)T xα+2n

(
M−1

n g
)
(y) y2α+4n+1dy

=

∫ ∞
0

f(y)T xα,ng(y) y2α+1dy. 2
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Definition 4.3. For f ∈ Dn(R) and g ∈ En(R), the generalized convolution
product f ∗α,n g is defined by

f ∗α,n g(x) =

∫ ∞
0

T xα,nf(y)g(y)y2α+1dy, x ∈ R. (36)

Proposition 4.6. For f ∈ Dn(R) and g ∈ En(R), we have

f ∗α,n g =Mn

[(
M−1

n f
)
∗α+2n

(
M−1

n g
)]
. (37)

Proof. By (17), (35) and (36) it follows that

f ∗α,n g(x) =

∫ ∞
0

T xα,n f(y)g(y)y2α+1dy

= x2n
∫ ∞
0

T xα+2n

(
M−1

n f
)
(y) g(y) y2α+2n+1dy

= x2n
∫ ∞
0

T xα+2n

(
M−1

n f
)
(y)M−1

n g(y) y2α+4n+1dy

= x2n
(
M−1

n f
)
∗α+2n

(
M−1

n g
)
(x),

and the result follows. 2

Theorem 4.6. (i) Let f ∈ Da,n(R) and g ∈ Db,n(R). Then f∗α,ng ∈ Da+b,n(R)
and

Fα,n(f ∗α,n g)(λ) = Fα,n(f)(λ)Fα,n(g)(λ), λ ∈ C. (38)

(ii) For all f, g ∈ Dn(R),

Wα,n(f ∗α,n g) = Wα,n(f) ∗Wα,n(g), (39)

where ∗ is the symmetric convolution product on R given by (18).

Proof. Identity (38) follows by combining (32), (37) and Proposition 2.2(i).
Identity (39) follows by applying the cosine transform to both its sides and by
using formulas (33) and (38). 2

5. The generalized Sonine integral transform

Throughout this section assume β > α > −1/2 and m, n two non-negative
integers such that m ≥ n.
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5.1. The classical Sonine integral transform

The classical Sonine integral formula may be formulated as follows :

jβ(z) = c(α, β)

∫ 1

0

jα(zt)(1− t2)β−α−1 t2α+1 dt (z ∈ C), (40)

where

c(α, β) =
2 Γ(β + 1)

Γ(α + 1)Γ(β − α)
. (41)

Using this integral formula, Trimeche [3] has introduced the so-called So-
nine integral transform

Sα,βf(x) = c(α, β)

∫ 1

0

f(tx)(1− t2)β−α−1 t2α+1 dt, x ∈ R, (42)

and obtained the following result.

Theorem 5.1. The Sonine integral transform Sα,β is the unique automor-
phism of E(R) satisfying

Sα,β ◦ Lα(f) = Lβ ◦ Sα,β(f) and Sα,βf(0) = f(0), (43)

for all f ∈ E(R). Moreover,

Sα,β(f) = Rβ ◦R−1α (f) for all f ∈ E(R). (44)

The dual Sonine integral transform is defined by

tSα,β(f)(y) = c(α, β)

∫ ∞
|y|

f(x) (x2 − y2)β−α−1 x dx, y ∈ R. (45)

The transforms Sα,β and tSα,β are transposed by virtue of the relation∫ ∞
0

Sα,β(f)(x)g(x)x2β+1dx =

∫ ∞
0

f(y) tSα,β(g)(y)y2α+1dy

valid for any f ∈ E(R) and g ∈ D(R).

Theorem 5.2. The dual Sonine integral transform tSα,β is an automorphism
of D(R) satisfying the intertwining relation

tSα,β ◦ Lβ(f) = Lα ◦ tSα,β(f) for all f ∈ D(R), (46)

and admits the factorization

tSα,β(f) = W−1
α ◦Wβ(f) for all f ∈ D(R). (47)
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Remark 5.1. Sα,β (resp. tSα,β) is a transmutation operator between Lα and
Lβ on E(R) (resp. D(R) ).

5.2. The generalized Sonine integral transform

An easy combination of (27) and (40) leads to

ϕλ,β,m(x) = c(α + 2n, β + 2m)x2(m−n) ×

×
∫ 1

0

ϕλ,α,n(xt) (1− t2)β−α+2(m−n)−1 t2α+2n+1 dt, (48)

where c(α + 2n, β + 2m) is given by (41).

This identity enables us to define a generalized Sonine integral transform
by putting

Sm,nα,β (f)(x) = c(α + 2n, β + 2m)x2(m−n) ×

×
∫ 1

0

f(tx) (1− t2)β−α+2(m−n)−1 t2α+2n+1 dt. (49)

Remark 5.2. (i) By (48) and (49) it follows that

ϕλ,β,m = Sm,nα,β (ϕλ,α,n).

(ii) By a change of variables we have for x > 0,

Sm,nα,β (f)(x) =
c(α + 2n, β + 2m)

x2β+2m

∫ x

0

f(y)(x2 − y2)β−α+2(m−n)−1 y2α+2n+1 dy.

(50)

Theorem 5.3. The generalized Sonine integral transform Sm,nα,β is an isomor-
phism from En(R) onto Em(R) satisfying the intertwining relation

Sm,nα,β ◦ Lα,n(f) = Lβ,m ◦ Sm,nα,β (f) for all f ∈ En(R).

Moreover, we have the factorization

Sm,nα,β (f) = Rβ,m ◦R−1α,n(f) for all f ∈ En(R). (51)



Transmutation Operators Associated with a Bessel Type Operator 347

Proof. By (42) and (49) observe that

Sm,nα,β =Mm ◦ Sα+2n,β+2m ◦M−1
n . (52)

So by Lemma 3.1(i) and Theorem 5.1, Sm,nα,β is an isomorphism from En(R)
onto Em(R). Moreover, by (20), (43) and (52),

Sm,nα,β ◦ Lα,n = Mm ◦ Sα+2n,β+2m ◦M−1
n ◦ Lα,n

= Mm ◦ Sα+2n,β+2m ◦ Lα+2n ◦M−1
n

= Mm ◦ Lβ+2m ◦ Sα+2n,β+2m ◦M−1
n

= Lβ,m ◦Mm ◦ Sα+2n,β+2m ◦M−1
n

= Lβ,m ◦ Sm,nα,β .

Finally, identity (51) follows readily by combining (23), (44) and (52). 2

Remark 5.3. By Theorem 5.3, Sm,nα,β is a transmutation operator between Lα,n
and Lβ,m.

Define the dual generalized Sonine transform tSm,nα,β on Dm(R) by

tSm,nα,β (f)(y) = c(α + 2n, β + 2m) y2n
∫ ∞
|y|

f(x) (x2 − y2)β−α+2(m−n)−1 dx

x2m−1
,

(53)
where c(α + 2n, β + 2m) is given by (41).

Remark 5.4. (i) By (45) and (53) notice that

tSm,nα,β =Mn ◦ tSα+2n,β+2m ◦M−1
m . (54)

(ii) Let f ∈ En(R) and g ∈ Dm(R). A combination of (50), (53) and Fubini’s
theorem yields the relation∫ ∞

0

Sm,nα,β (f)(x)g(x)x2β+1dx =

∫ ∞
0

f(y) tSm,nα,β (g)(y)y2α+1dy

which means that the transforms Sm,nα,β and tSm,nα,β are transposed.

We can now state
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Theorem 5.4. The dual generalized Sonine transform tSm,nα,β is an isomorphism
from Dm(R) onto Dn(R) satisfying the intertwining relation

tSm,nα,β ◦ Lβ,m(f) = Lα,n ◦ tSm,nα,β (f) for all f ∈ Dm(R).

Moreover,

tSm,nα,β (f) = W−1
α,n ◦Wβ,m(f) for all f ∈ Dm(R). (55)

Proof. It is clear from (54), Lemma 3.1(i) and Theorem 5.2, that tSm,nα,β is an
isomorphism from Dm(R) onto Dn(R). Furthermore, by (20), (46) and (54) it
follows that

tSm,nα,β ◦ Lβ,m = Mn ◦ tSα+2n,β+2m ◦M−1
m ◦ Lβ,m

= Mn ◦ tSα+2n,β+2m ◦ Lβ+2m ◦M−1
m

= Mn ◦ Lα+2n ◦ tSα+2n,β+2m ◦M−1
m

= Lα,n ◦Mn ◦ tSα+2n,β+2m ◦M−1
m

= Lα,n ◦ tSm,nα,β .

Finally, (55) is an easy consequence of (25), (47) and (54). 2

The next statement provides formulas relating harmonic analysis tools tied
to Lα,n with those tied to Lβ,m, and involving the transform tSm,nα,β .

Proposition 5.1. (i) For every f ∈ Dm(R) we have the identity

Fβ,m(f) = Fα,n ◦ tSm,nα,β (f). (56)

(ii) Let f, g ∈ Dm(R). Then

tSm,nα,β (f ∗β,m g) = tSm,nα,β (f) ∗α,n tSm,nα,β (g). (57)

Proof. Identity (56) follows readily by combining (33) and (55). Identity (57)
follows by applying the generalized Fourier transform Fα,n to both its sides
and by using (38) and (56). 2
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