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Abstract

In the present investigation our main objective is to find coefficient
estimates, sufficient condition for the function f(z) ∈ A to belong to
the classRτγ(A,B) and finding connections between the classesRτγ(A,B)
and k − UCV by making use of the Hohlov operator [5] .
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1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑
k=2

akz
k. (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and S
denote the subclass of A that are univalent in U. A function f(z) in A is said
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to be in class S∗ of starlike functions of order zero in U, if <
(
zf ′(z)
f(z)

)
> 0 for

z ∈ U. Let K denote the class of all functions f ∈ A that are convex. Also,
f is convex if and only if zf ′(z) is starlike. A function f ∈ A is said to be
close-to-convex of order α (0 ≤ α < 1) with respect to a fixed starlike function

g ∈ S∗ if and only if <
(
zf ′(z)
g′(z)

)
> α for z ∈ U. For more details about these

classes see [3]. Furthermore, f ∈ A, then f ∈ k − UCV iff

<
{

1 +
zf ′′(z)

f ′(z)

}
> k

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (z ∈ U, 0 5 k <∞). (1.2)

The class k − UCV was introduced by Kanas and Wisniowska [6], where its
geometric definition and connection with the conic domains were considered.
In particular 0− UCV = K.

If f, g ∈ H,where H denote the class of holomorphic functions on unit
disk U, then the function f is said to be subordinate to g, written as f(z) ≺
g(z) (z ∈ U), if there exists a Schwarz function w ∈ H with w(0) = 0 and
|w(z)| < 1 (z ∈ U) such that f(z) = g(w(z)).
In particular, if g is univalent in U, then we have the following equivalence:

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

The Gaussian hypergeometric function defined by the series

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n(1)n

zn, (1.3)

is analytic in the unit disk U. It arises naturally in the study of second order
linear differential equations with regular singular points. In (1.3), (a)0 = 1
for a 6= 0 and for each positive integer n, (a)n = a(a + 1)...(a + n − 1) is the
Pochhammer symbol. To avoid division by 0, the parameter c in (1.3) should
be neither zero nor a negative integer. If a or b is 0 or a negative integer, then
the power series reduces to a polynomial . Results regarding 2F1(a, b; c; z)
when <(c− a− b) is positive, zero or negative are abundant in the literature.
In particular when <(c − a − b) > 0, the function 2F1(a, b; c; z) is bounded.
This and the zero balanced case <(c − a − b) = 0 are discussed in detail by
many authors (see [9, 13]). For interesting results regarding <(c− a− b) < 0,
see [14].

The hypergeometric function 2F1(a, b; c; z) has been extensively studied by
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various authors and play an important role in Geometric Function Theory.
It is useful in unifying various functions by giving appropriate values to the
parameters a, b. and c. We refer to [2, 4, 10, 13] and reference therein for some
important results.

The normalized hypergeometric function z2F1(a, b; c; z) has a series expan-
sion of the form

z2F1(a, b; c; z) = z +
∞∑
n=2

(a)n−1(b)n−1
(c)n−1(1)n−1

zn. (1.4)

Consider the convolution operator by taking the convolution between functions
f(z) of the form (1.1) and a normalized hypergeometric functions of the form
z2F1(a, b; c; z):

Ha,b,c(f)(z) = z2F1(a, b; c; z) ∗ f(z) = z +
∞∑
n=2

(a)n−1(b)n−1
(c)n−1(1)n−1

anz
n, (1.5)

which was investigated by Hohlov [5]. This three-parameter family of opera-
tors given by (1.5) contains most of the known linear integral or differential
operators as special cases. In particular , if a = 1 in (1.5), then H1,b,c is the
operator L(b, c) due to Carlson and Shaffer [2] which was defined by

L(b, c)f(z) = z2F1(1, b; c; z) ∗ f(z). (1.6)

Note that z2F1(1, b; c; z) = φ(b; c; z) is known as incomplete beta function.
In particular, the restriction b = 1 + δ, c = 2 + δ with < δ > −1 on the

operator L(b, c)f(z) gives the Bernardi operator

Bδ(f)(z) = L(δ + 1, δ + 2)(f)(z) = (1 + δ)

1∫
0

tδ−1f(tz)dt, (1.7)

which reduces to the Alexander and Libera transforms, respectively, for δ = 1
and δ = 2. It is interesting to note that these operators are all example of the
zero-balanced case <(c− a− b) = 0 in H1,b,c(f)(z).

Throughout this work, we frequently use the well-known formula

2F1(a, b; c; 1) =
Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)
, (<(c− a− b) > 0, c ∈ C\Z−0 ). (1.8)
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Motivated by the class introduced by Swaminathan [16], Bansal [1] intro-
duced the class Rτ

γ(A,B) as follows:
Definition 1.1. Let 0 5 γ 5 1, τ ∈ C \ {0}. A function f ∈ A is in the class
Rτ
γ(A,B), if

1 +
1

τ
(f ′(z) + γzf ′′(z)− 1) ≺ 1 + Az

1 +Bz
(−1 5 B < A 5 1; z ∈ U), (1.9)

which is equivalent to saying that∣∣∣∣ f ′(z) + γzf ′′(z)− 1

τ(A−B)−B(f ′(z) + γzf ′′(z)− 1)

∣∣∣∣ < 1. (1.10)

We list few particular cases of this class discussed in the literature
[1] Rτ

γ(1− 2β,−1) = Rτ
γ(β) for 0 5 β < 1, τ = C \ {0} was discussed recently

by Swaminathan [16].
[2] The class Rτ

γ(1 − 2β,−1) for τ = eiηcosη where −π/2 < η < π/2 is
considered in [11] (see also [12] ).
[3] The class Rτ

1(0,−1) with τ = eiηcosη was considered in [7] with reference
to the univalency of partial sums.
[4] f ∈ Reiηcosη

γ (1 − 2β,−1) whenever zf ′(z) ∈ P τ
γ (β), the class considered in

[17].
For geometric aspects of these classes see the corresponding references.

Our main objective in the present paper is to find coefficient estimates,
sufficient condition for the functions of the form (1.1) to belong to the class
Rτ
γ(A,B) and finding connections between the classes Rτ

γ(A,B) and k −UCV
by making use of the Hohlov operator defined by (1.5). Each of the following
lemmas will be required in our investigation.
Lemma A. (See [15]). Let

h(z) = 1 +

∞∑
n=1

cnz
n ≺ 1 +

∞∑
n=1

Cnz
n = H(z) (z ∈ U). (1.11)

If the function H is univalent in U and H(U) is a convex set, then

|cn| 5 |C1|. (1.12)

Lemma B. (See [6]). Let f ∈ A be of the form (1.1). If for some k(0 5 k <
∞), the following inequality:

∞∑
n=2

n(n− 1)|an| 5
1

k + 2
(1.13)
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holds true, then f ∈ k − UCV. The number 1
k+2

cannot be increased.

Lemma C. (See [8]). Let −1 5 B2 5 B1 < A1 5 A2 5 1, then

1 + A1z

1 +B1z
≺ 1 + A2z

1 +B2z
(z ∈ U).

2. Main Results

We first give the following result related to the coefficient of f(z) ∈ Rτ
γ(A,B).

Theorem 2.1. Let f(z) ∈ A is of the form (1.1). If f(z) is in Rτ
γ(A,B), then

|an| 5
|τ | (A−B)

n [1 + γ(n− 1)]
(n ∈ N\{1}) . (2.1)

Proof. If f(z) of the form (1.1) belongs to in Rτ
γ(A,B), then by definition

1+
1

τ
(f ′(z)+γzf ′′(z)−1) ≺ 1 + Az

1 +Bz
= h(z) (−1 5 B < A 5 1; z ∈ U), (2.2)

where h(z) is obviously convex univalent in U under the stated conditions on
A and B. Using (1.1) and doing Binomial expansion of (1 + Bz)−1 in (2.2),
we have

1 +
1

τ
(f ′(z) + γzf ′′(z)− 1)

= 1 +
∞∑
n=1

(n+1)(1+nγ)
τ

an+1z
n ≺ 1 + (A−B)z −B(A−B)z2 + ...(z ∈ U).

Now, by applying Lemma A we get the desired result. 2

It is easy to find the sufficient condition for f(z) to be in Rτ
γ(A,B) under

standard techniques. Hence we state the following result without proof.
Theorem 2.2. Let f(z) ∈ A. Then a sufficient condition for f(z) to be in
Rτ
γ(A,B) is

∞∑
n=2

n [1 + γ(n− 1)] |an| 5
|τ | (A−B)

|B|+ 1
. (2.3)

The result is sharp for the function

f(z) = z +
|τ | (A−B)

n [1 + γ(n− 1)] (1 + |B|)
zn (n ∈ N\{1}) (2.4)
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Remark 2.1. For B = −1 and A = 1− 2β (0 5 β < 1) Theorem 2.1 and 2.2

gives corresponding result of [16].
Theorem 2.3. Let −1 5 B2 5 B1 < A1 5 A2 5 1 . Then

Rτ
γ(A1, B1) ⊂ Rτ

γ(A2, B2). (2.5)

Proof. Let f ∈ Rτ
γ(A1, B1) then by Definition 1.1 of the class f ∈ Rτ

γ(A1, B1)
we have

1 +
1

τ
(f ′(z) + γzf ′′(z)− 1) ≺ 1 + A1z

1 +B1z
.

Since −1 5 B2 5 B1 < A1 5 A2 5 1 , by Lemma C, we have

1 +
1

τ
(f ′(z) + γzf ′′(z)− 1) ≺ 1 + A1z

1 +B1z
≺ 1 + A2z

1 +B2z
.

Which implies that Rτ
γ(A1, B1) ⊂ Rτ

γ(A2, B2). 2
Theorem 2.4. Suppose that a, b ∈ C\{0} and <(c) > |a|+|b|. If f ∈ Rτ

γ(A,B)
and the inequality

2F1 (|a|, |b|;<(c); 1) 5
|B|+ 2

|B|+ 1
(2.6)

holds true, then z 2F1(a, b; c; z) ∗ f(z) ∈ Rτ
γ(A,B).

Proof. Using Theorem 2.2 and (1.5) it is sufficient to prove that

∞∑
n=2

n[1 + γ(n− 1)]

∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣|an| 5 |τ |(A−B)

1 + |B|
.

Applying Theorem 2.1, for f ∈ Rτ
γ(A,B) , we have

∞∑
n=2

n[1 + γ(n− 1)]

∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣|an| 5 |τ |(A−B)
∞∑
n=2

(|a|)n−1(|b|)n−1
(<(c))n−1(1)n−1

= |τ |(A−B) [2F1 (|a|, |b|;<(c); 1)− 1] 5
|τ |(A−B)

|B|+ 1
(In view of(2.6)).2

If we set γ = 0, B = −1, A = 1 − 2α (0 5 α < 1) and τ = 1, we get
the functions in the class Rτ

γ(A,B) satisfying the analytic criterion <(f ′) > α
which implies that f(z) is close-to-convex of order α with respect to the starlike
function g(z) = z. Hence the following result is immediate:
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Corollary 2.1. Suppose that a, b ∈ C\{0} and <(c) > |a| + |b|. If f ∈ A of
form (1.1) satisfying <(f ′) > α, and the inequality

Γ(<(c)− |a| − |b|)Γ(<(c))

Γ(<(c)− a)Γ(<(c)− b)
5

3

2
(2.7)

holds true,then z 2F1(a, b; c; z) ∗ f(z) is close-to-convex of order α with respect
to the starlike function g(z) = z.
Theorem 2.5. Let a, b, c and γ satisfy the hypergeometric inequality

2F1(|a|, |b|;<(c); 1)

[
1 +

(1 + 2γ)|ab|
<(c)− |a| − |b| − 1

+
γ(|a|)2(|b|)2

(<(c)− |a| − |b| − 1)(<(c)− |a| − |b| − 2)

]
−1

5
|τ | (A−B)

|B|+ 1
, (2.8)

with a, b ∈ C\{0} and <(c)− |a| − |b| − 2 > 0. Then z 2F1(a, b; c; z) is in
Rτ
γ(A,B) .

Proof. Using Theorem 2.2 it is sufficient to prove that

∞∑
n=2

n [1 + γ(n− 1)]

∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣ 5 |τ | (A−B)

|B|+ 1
.

It is easy to see that, the left hand side of the above inequality is

S =
∞∑
n=2

n [1 + γ(n− 1)]

∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣
=
∞∑
n=2

[1 + (1 + 2γ)(n− 1) + γ(n− 1)(n− 2)]

∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣
5

∞∑
n=2

(|a|)n−1(|b|)n−1
(<(c))n−1(1)n−1

+ (1 + 2γ)
|ab|
<(c)

∞∑
n=2

(|a|+ 1)n−2(|b|+ 1)n−2
(<(c) + 1)n−2(1)n−2

+γ
(|a|)2(|b|)2

(<(c))2

∞∑
n=3

(|a|+ 2)n−3(|b|+ 2)n−3
(<(c) + 2)n−3(1)n−3

= 2F1(|a|, |b|;<(c); 1)
[
1 +

(1 + 2γ)|ab|
<(c)− |a| − |b| − 1

+
γ(|a|)2(|b|)2

(<(c)− |a| − |b| − 1)(<(c)− |a| − |b| − 2)

]
− 1

5
|τ | (A−B)

|B|+ 1
(In view of(2.8)).2
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If we set γ = 0, A = 1 − 2α (0 5 α < 1), B = −1 and τ = 1 in Theorem
2.5, we get the following result:
Corollary 2.2. Let a, b and c satisfy the hypergeometric inequality

2F1(|a|, |b|;<(c); 1)

[
1 +

|ab|
<(c)− |a| − |b| − 1

]
5 2− α, (2.9)

with a, b ∈ C\{0} and <(c − |a| − |b| − 1) > 0, then, z 2F1(a, b; c; z) is
close-to-convex of order α with respect to the starlike function g(z) = z. 2

Theorem 2.6. Suppose that a, b ∈ C\{0}, |a| 6= 1, |b| 6= 1,<(c) 6= 1 and
<(c) > |a|+ |b|.
If f ∈ Rτ

1(A,B) and, for some k (0 5 k <∞), the inequality

2F1(|a|, |b|;<(c); 1)− <(c)− 1

(|a| − 1)(|b| − 1)
(2F1(|a| − 1, |b| − 1;<(c)− 1; 1)− 1)

5
1

|τ | (A−B) (k + 2)
(2.10)

holds true, then z2F1(a, b; c; z) ∗ f(z) ∈ k − UCV.
Proof. For f ∈ Rτ

1(A,B) of form (1.1), by applying Theorem 2.1, we have

∞∑
n=2

n(n− 1)

∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣|an| 5 ∞∑
n=2

n(n− 1)|τ |(A−B)

n2

(|a|)n−1(|b|)n−1
(<(c))n−1(1)n−1

= |τ |(A−B)
∞∑
n=2

(|a|)n−1(|b|)n−1
(Re(c))n−1(1)n−1

− |τ |(A−B)
∞∑
n=2

(|a|)n−1(|b|)n−1
(Re(c))n−1(1)n

= |τ |(A−B) [2F1(|a|, |b|;<(c); 1)− 1]− |τ |(A−B)
<(c)− 1

(|a| − 1)(|b| − 1)

∞∑
n=2

(|a| − 1)n(|b| − 1)n
(<(c)− 1)n(1)n

= |τ |(A−B)

[
2F1(|a|, |b|;<(c); 1)− <(c)− 1

(|a| − 1)(|b| − 1)
(2F1(|a| − 1, |b| − 1;<(c)− 1; 1)− 1)

]
.

Finally, if we make use of (2.10) in above, we find that

∞∑
n=2

n(n− 1)

∣∣∣∣(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣|an| 5 1

k + 2
(0 5 k <∞),

which, in view of (1.5) and Lemma B, immediately proves the inclusion prop-
erty asserted by Theorem 2.6.2
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