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1. Introduction

Fractional integral equations have recently been applied in various areas of
engineering, science, finance, applied mathematics, bio-engineering, radiative
transfer, neutron transport and the kinetic theory of gases and others [5, 9, 10,
11, 15, 16]. However, many researchers remain unaware of this field. There has
been a significant development in ordinary and partial fractional differential
and integral equations in recent years; see the monographs of Abbas et al.
[4], Baleanu et al. [6], Diethelm [13], Kilbas et al. [17], Miller and Ross [18],
Podlubny [24], Samko et al. [25]. Recently some results on the existence and
the attractivity of the solutions of various classes of integral equations have
been obtained by Abbas et al. [1, 2, 3], Bana$ and Zajac [7], Darwish et al.
[12], Pachpatte [19, 20, 21, 22, 23] and the references therein. In most of the
above cited papers the main tool was the measure of noncompactness. In [23],
Pachpatte proved some results concerning some basic qualitative properties of
solutions of the following general partial integral equation of Barbashin type
of the form

x(t, x) :h(t,a:)—i-/o f(t,a:,s,u(s,x))ds—l—/o /Bg(t,x,s,y,u(s,y))dyds; (1)

for (t,7) € E, where h : R, x B> R, f: Ey xR =R, g: E? xR - R
are given functions continuous functions, Ry = [0,+00), B = [[;"[a:, bi] C
R™(a; < b;),E = Ry x B, By = {(t,z,s) : 0 < s <t < o0, x € B}.
To establish the results, he obtains and uses a variant of a certain integral
inequality with explicit estimate.

In this paper, by means of integral inequalities and the fixed point ap-
proach, we improve the above results for the following partial integral equation
of Riemann-Liouville fractional order of the form

/0 (t —s)" " f(t, x5, u(s, x))ds

u(t,z) = pu(t,x) + o)

1 ' ’ r1—1 ro—1 .
—i—m/o /0 (t—s)" " (b—y)? " g(t,x, s,y,u(s,y))dyds; (t,x) € J, (2)

where J = Ry x [0,b], b > 0, r = (r,72), 11,79 € (0,00), p:J =R, f:
Ji xR —=R, g:Js x R— R are given continuous functions,

Ji={(ta,5):0< s <t <o, we [0,0]},
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Jy={(t,z,5,y): 0< s <t <oo, z€[0,b], yc[0,b)}

and I'(.) is the (Euler’s) Gamma function defined by ['(¢) = [7 ¢~ e~ dt, & >
0.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper. Let L'([0,a] x [0,8]); a,b > 0 we denote the
space of Lebesgue-integrable functions u : [0,a] x [0,b] — R with the norm

a b
wmf//m@MMﬁ
0 0

As usual, by C := C(J) we denote the space of all continuous functions from
J into R. By BC := BC(J) we denote the Banach space of all bounded and
continuous functions from J into R equipped with the standard norm

lullpe = sup |u(t,z)].
(t,x)ed

Definition 1. ([25]) Let r € (0,00). For u € L'([0,b]); b > 0 the expression

T5)t) = g5 [ (6=a7 " u(s)as.

is called the left-sided mixed Riemann-Liouville integral of order r.

In particular,
t
(IQu)(t) = u(t), (Iju)(t) = / u(s)ds; for almost all t € [0, b)].
0
For instance, IJu exists for all » > 0, when u € L'([0, b]). Note also that when
u e C([0,B]), then (Iju) € C([0,1]),
Example 2.1. Let w € (—1,0) U (0,00) and r € (0,00), then

o Ttw)
It = mt *r for almost all t € [0, b].
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Definition 2. [25] Let r € (0,00) and u € L'([0,a] x [0,b]); a,b > 0. The
partial Riemann-Liouville integral of order r of wu(t,x) with respect to x is
defined by the expression

1

Iy qult, r) = m/o (t — )" tu(s, x)ds,

for almost all (¢,z) € [0, a] x [0, b].
Analogously, we define the integral

Iy u(x,t) = F(lr) /0 (t — 5)" " tu(w, s)ds,

for almost all (z,t) € [0, a] x [0, b].

Definition 3. ([26]) Let r = (r1,7r2) € (0,00) x (0,00), 8 = (0,0) and u €
L]0, a] x [0,0]). The left-sided mixed Riemann-Liouville integral of order r of
u is defined by

() (¢, 2) = W / / (= 9 (e — ) (s, y)dyds.

In particular,
(Tgu)(t,x) = u(t,z), (I§u)(t, )

t T
—/ / u(s,y)dyds; for almost all (¢,z) € [0, a] x [0, 5],
0 Jo

where 0 = (1,1).
For instance, Iju exists for all ry, 75 > 0, when u € L'([0, a] x [0, b]). Moreover

(Ipu)(t,0) = (Iyu)(0,z) = 0; t € [0,a], z € [0,0].

Example 2.2. Let \,w € (—1,0) U (0,00) and r = (r1,72) € (0,00) x (0, 00),
then
F(l + )\)F<1 + w) t>\+r1xw+r2

It = ,
o T+ A+7r)T(1+w+7y)

for almost all (t,x) € [0,a] x [0,b].



Riemann-Liouville Integral Equations in Two Independent Variables 243

Let G be an operator from Q C BC; Q # () into itself and consider the
solutions of equation

(Gu)(t,z) = u(t,x). (3)

Now we review the concept of attractivity of solutions for equation (1) (see
3])-

Definition 4. Solutions of equation (3) are locally attractive if there exists a
ball B(ug,n) in the space BC such that for arbitrary solutions v = v(¢, x) and
w = w(t,z) of equations (3) belonging to B(ug,n) N2 we have that for each
x € (0,0

lim (v(t,z) —w(t,z)) = 0. (4)

t—o0

When the limit (4) is uniform with respect to B(ug,7)NS2, solutions of equation
(3) are said to be uniformly locally attractive (or equivalently that solutions
of (3) are locally asymptotically stable).

Definition 5. The solution v = v(t, z) of equation (3) is said to be globally
attractive if (4) hold for each solution w = w(t,z) of (3). If condition (4) is
satisfied uniformly with respect to the set €2, solutions of equation (3) are said
to be globally asymptotically stable (or uniformly globally attractive).

Denote by Dy := %, the partial derivative of a function defined on J; (or

Jy) with respect to the first variable. In the sequel we will make use of the
following Lemma due to Pachpatte.

Lemma 2.3. (/23]) Let uw € C(J), q,D1q € C(J1),k, D1k € C(Js) be positive

functions, and ¢ > 0 is a constant. If

u(t, ) §c+/0 q(t,x,s)u(s,x)ds—l—/o /0 k(t,x,s,y)u(s,y)dyds; (t,x) € J,
()

then,
ul(t,z) < cP(t,z) exp ( /0 Ao, ac)da); (t,z) € J, (6)
where
P(t’ x) = exp(Q(t, :L')), (7)
i which

Qt,z) = /Ot [Q(n,xm) + /077 DlQ(mx,f)dﬁ] dn, (8)
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and

A(t, x) :/0 k(t,x,t,y)P(t,y)dy—l—/o /0 P(s,y)D1k(t,x, s,y)dyds; (t,z) € J.
(9)

3. Main Results

Let us start by defining what we mean by a solution of equation (2).

Definition 6. A function u € BC is said to be a solution of (2) if u satisfies
the equation (2) on J.

Our first result is about the existence and uniqueness of the solution of
equation (2).

Theorem 3.1. Assume that following hypotheses hold

(Hy) The function p is continuous and bounded with

pt= sup |u(t,z)l.
(t,z)ER4 x[0,5]

(Hs) There exists a positive function g € BC(Jy) such that
|f(t,l’,S,U) - f(taxa 87U)| < Q(t7$7 S)|U - U|7

for each(t,z,s) € Jiand u,v € R.

Moreover, assume that the function t — fot(t — s)" 7 f(t, x,8,0)ds is
bounded on J with

1 t
P = sup / (t— )Y f (¢, ,0)|ds.
0

(t,w)e ['(r1)
(H3) There exists a positive function k € BC(Jy) such that

|9(t;$,3,y7u) - g(t7m73ay7v)| < k(t7x78’y)|u - U|’

for each (t,z,s,y) € Jy and u,v € R. Moreover, assume that the function
t— fob(t —s)" b —y)2 " g(t, z, s,9,0)dyds is bounded on J with

g-= sup ——— t—s)" " (b—y)? g(t,z,s,y,0)|dyds.
S TG0 Jo o (t—s)" " (b—y)" " g( )|
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If
¢+ k<1, (10)
where
t
¢* = sup [ / t—s)"q(t, x, s)ds|,
(tx)eJ F(Tl) 0 ( ) ( )
and

1 t b
k* = _ t—s) b —y) k(1 dyd
wp [ [ sy o= s gpagas),

(t,x)ed

then equation (2) has a unique solution on J.

Proof. Let us define the operator N : BC' — BC, such that for each (¢, z) € J,

(Nu)(t,z) = p(t,x) + ﬁ/o (t—s8)" " f(t,, 8,u(s, x))ds

1 ' ’ ri—1 ro—1 .
+W/O /0 (t—s) " (b—y) g(t,z,s,y,u(s,y))dyds; (t,z) 6(171)

It is clear that the function (¢,z) — N(u)(t,z) is continuous on J. Now we
prove that N(u) € BC for any u € BC. For arbitrarily fixed (¢,z) € J we
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have

(Nw)(t,z)| = ( u(t, ) + /0 (t— )" Lf (8 2, 5, u(s, 2))ds

L(ry)
1 t b . L
+m/0 /0 (t=s) (b-y) g(t,z,s,y,u(s,y))dyds
< |ult, )| + 1“(11) /0 (t— )" f(t, 2, s,u(s,z)) — f(t,z,s,0)|ds
1 t ri—1
N /0 (t = )" f(t,2,5,0)|ds

1 t b . )
S - t— s (b—y)
+ o r2/ /< b y)

Ig(t z,s,y,u(s,y)) — g(t,z,s,y,0)|dyds

/ / b — y) Vgl 7, 5, , 0)|dyds
7“1 7“2

L/@—SwlﬂtL$W@ka

0

1
F()

// )b — y)? k(8 y) |u(s, y) | dyds
7"1 7“2

// (t—8)""Hb—y)2 " Hg(t, z,s,y,0)|dyds
['(r1)L(rq)

<pt A+ A g 4 (¢ E)|ulse

_I_

t/a—>”1uaxsmws

Hence N(u) € BC. Let u, v € BC. Using the hypotheses, for each (¢,z) € J,
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we have

((Nu)(t, 2) — (Nv)(t, )]

1 | n - z,8,v(8,T s
Fm)/“‘s) F(ta,s,u(s,2)) — f(t,x, 5, 0(s,2))|d

t_sTl 1 7"2—1
7“1 7“2 // y)

X |g(t,z,s,y,u —g(t,x, s,y,0(s,y))|dyds

< F(l / (t—s)~ 1q(t z, $)|u(s,z) —v(s,x)|ds

<

247

/ / (t— )71 (b — y) Ukt 3, 5, 1) |uls, y) — v(s, y)|dyds
7’1 7“2

< sup [F( /(t— s)"q(t, x, 5)ds

(t, z)EJ

/ / (1 — 5 (b — )~ k(t, 2,5, y)dyds] u — o]l
7"1 7“2

(¢" + E)llu = vl[so-

I/\—l—

From (10), it follows that N has a unique fixed point in BC' by Banach con-
traction principle. The fixed point of N is however a solution of equation

(2).

Now, we shall prove the following theorem concerning the estimate on the

solution of equation (2).

Theorem 3.2. Set

d=p+ "+
Assume that (Hy) — (Hs) and the following hypothesis holds
(H4) CI1,D1Q1 € BC(Jl) and kl, lel S BC(JQ), where

(t—s8)""q(t,z,s)

a(t,z,s) = )

and

k1<t7$a Say) = —(t - S)r1_1<b - y)m_lk<t7x>svy)-

(12)
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If w is any solution of (2) on J, then

lu(t, )| < dPi(t,z) eXp( /O Ao, :v)da); (t,2) € J, (13)
where
Pi(t, ) < exp(Qi(t, 7)), (14)
mn which . .
Qi(t, ) S/o [%(77,95777)4‘/0 D1Q1(77a$7§)d§]d777 (15)
and

b t b
Ayt ) < / kat, 2,6, 9) Py (t, y)dy+ / / Pi(s,y) Duks (¢, . 5, y)dyds. (16)
0 0 0

Proof. Using the fact that u is a solution of (2) and hypotheses, then for each
(t,x) € J, we have

fut, 2)| < |t z)| + % / (t — sy f (b, s,uls, @) — f(t . 5,0)|ds
1

T(ry) /0 (t—s)"|f(t x,8,0)|ds

1 t b ) .
— t— sl —y)
+ T //( DI

Ig(t T,8,Y,u —g(t,z,s,y,0)|dyds

T‘l T2 / / 7‘1 1 —y)T2—1|g(t,ZE,S,y,0)|dde
F( )/(t_s)qu it @, s uls, ) — f(t,@,s,0)|ds

/ / 7"1 1 y)T‘Q—l
7"1 7”2

X |g(t,z,s,y,u —g(t,z,s,y,0)|dyds

1 ' ri—1
<d+ ) /0 (t—s)""q(t,z,s)|u(x, s)|ds

+

1 t b i -
+W/0/O(t_5) (b =) 'k(t, x5, 9)|us, y)ldyds.  (17)

Now an application of Lemma 2.3, to (17) yields (13).
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Theorem 3.3. Set
di=["+g"+p(¢" + k). (18)
Assume that (Hy) — (Hs) hold. If w is any solution of (2) on J, then

lu(t, ) — u(t,z)| < dP,(t, ) exp ( /0 A (o, x)da); (tz)ed,  (19)

where Py and Ay are given by (14) and (16), respectively.

Proof. Let h(t,x) = |u(t,z) — p(t,x)|. Using the fact that u is a solution of
(2) and from the hypotheses, for each (t,z) € J, we have

h(t,z) < F(i“l) /0 (t — )" f(t,z,s,u(s,x)) — f(t,z,s, pu(s,x))|ds
1 ' ri—1
, W =t s nts.aplas
7’1 7“2 / / ’"1 1 y)7"2_1
|g(t T,8,Y,u — g(t,z,5,y, u(s, v))|dyds
/ / )b = y) g (t a8, y, (s, )| dyds

7"1 7"2

<d+ F( /(t—s)r1 Yt z,s,u(s,x)) — f(t,z, s, pu(s,z))|ds

//t_srllb y)r21
7’1 7“2

X |g(t, z, s,y u —g(t, z, s, y, p(s, x))|dyds

3 1 ! ri—1
<d+ o) /0 (t— )" q(t,z,s)h(z, s)ds

1 t b
4= t—s) b —y)2 k(¢ x, s, y)h(s, y)dyds. 20
ooy | e e ks b s (20
Now an application of Lemma 2.3, to (20) yields (19).

We next prove under more appropriate conditions on the functions involved
in (2) that the solutions tends exponentially toward zero as t — oo.
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Theorem 3.4. Assume that the following hypotheses hold

(Hs) There exist constants o > 0 and M > 0 such that

u(t, z)| < Me™ (21)
|f(t,x,s,u) — f(t,x,s,0)] <qlt,x, s)e’a(t’s)|u - (22)
lg(t, 2,5, y,u) — g(t, x,5,y,0)| < k(t,z,5,9)e D u—o];  (23)

and f(t,z,s,0) = g(t,s,s,y,0) = 0; for each (t,z) € J, (t,z,s) € Jy,
(t,z,s,y) € Jo, u,v € R, and the functions q, k be as in Theorem 3.1,

(Hg) Sup( ey Qu(t,x) < 0o, [ Ai(o,x)do < oo, where Q1 and Ay are given
by (15) and (16).

If w is any solution of (2) on J, then all solutions of equation (2) are uniformly
globally attractive on J.

Proof. From the hypotheses, for each (¢,x) € J, we have that

Ju(t, ©)| < |p(t, )] + %/ (t—s)" " f(t, 2, 5,u(s, 2)) — f(t,7,5,0)|ds

t_srl 1 ro—1
7“1 7“2 // y)

X |g(t,z, s,y,u(s,y)) — g(t,x,s,y,0)|dyds

1 t
< Me ™ + / t— )17t z, s)e ) u(x, s)|ds
o [ =t e utes)

1 e ri—1 ro—1 —a(t—s
+m/o/o(t—8) (b—y)2 " k(t, x, 5, 9)e D |u(s, y)|dyds. (24)

From (24), we get

lu(t, z)|e* < M +

1 t ri—1 as
ey J, (= 9ot et s

// Tllb y)”_lk’(t,az,s,y)eo‘s|u(s,y)|dyds. (25)
7’1 7’2
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Now an application of Lemma 2.3 to (25) yields
t
lu(t, z)[e* < MPy(t,r)exp (/ Ay (o, x)da); (t,z) € J. (26)
0
Multiplying both sides of (26) by e~* and in view of (Hg), we get
¢
lim |u(t,z)| < lim MPi(t, z) exp ( —at —l—/ A (o, m)da) = 0.
t—o0 t—o00 0

Hence, the solution u tends to zero as t — oo. Consequently, all solutions of
equation (2) are uniformly globally attractive on J.

4. An Example

To illustrate our results, we consider the following partial integral equation of
Riemann-Liouville fractional order of the form

ert 1

t =
U()Jf) 1+t+x2+F<T1

)/0 (t —s)" " f(t,z, s,u(s, x))ds

1 t 1
- i1l yr2—1 .
rere | T A g s (s )y (t.0) € R x(0.1),
(27)
where 71,79 € (0, 00),

f(t ) xzt*“s_% sinssint
7‘/177 SJU - 1

2c(1+t72)(1 + |ul)

f(t?x707u):f<o7x707'u’>:07

s for(t,z,s) € Jy, st # 0andu € R,

Ji={(t,z,5):0< s <t<oo, xe[01]},
'(3) L(3)e

2
= + ,
F(% +7“1) F(% +T1>F(1—|—7”2)

gz et YT
g(t,z,s,y,u) = i 261 s for(t,x,s,y) € Jo, st # O0and u € R,
2c(1+t72)(1 + |ul)

g(t,z,0,y,u) = g(0,2,0,y,u) =0,
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and
Jo={(t,x,s,y): 0<s<t<oo, x€[0,1], ye[0,1)}.
Set ot
t =— (¢ J.
M(?x> 1+t_'_x2’ (’x)e

We can see that the function p is continuous and bounded with p* = e.
For each u,v € R and (¢, , s) € J;, we have
1
|f(t7 Z, S, U) - f(ta L, S, U>| < o . 1. (th_nS_% | SiIlSSiIlt|) |U - U|a
2¢(1+1t72)

and for each u,v € R and (¢, z, s,y) € Ja, we have
1

90,2, 5,9,0) = gty 5,9,0)] €~ (s ) u =),

Hence condition (H,) is satisfied with

q(t,z,s) = ———— <a:2t’”s’%\ sinssint!) st #£0,
2e(1+t2)

q(t7 x’ 0) = q(O’ :E7 0) = 07
and condition (Hj) is satisfied with
1 1 1_1
k(t,z,s,y) = ——— <t_”s_5em_y_t_§_?> ; st # 0,
tosy) = T 7
k(t,z,0,y) = k(0,2,0,y) = 0.

We shall show that condition (10) holds with b = 1. Indeed

1 t
— [ (t=9s)""Yq(t d
oy | =ttt syas
1 ¢ |

< - /(t—s)” Lp2 s 2ds

2¢(1+t72)(ry) Jo

e
—_ xzt—ﬁt—%-i—?“l 1(2)
2 (1+ 5) ( +T1)

< L) t2
e 1 9

2c(1+t2)I(5 + 1)
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then .
;< I'(3)
- QCF(% +71)
Also,
N
_— — s - T, S, s
CrOT) Jo Jo ! o
1 t 1 . ) L
< (t—s)" (1 —y)? "t s 2e"dyds
20(1%—t‘5)F(rQIKr2)j§ ]ﬁ
1 NG
< ettt . 1(2)
2¢(1+t72)0(5 +71)I(1 + 1p)
_1
< 1F(%)et 2 |
2c(1+t72)0(3 +r)0(1 + 7o)
then )
k< T'3)
- ZCF(% +r)T(1+7g)
Thus,

L(3) I'(3)e ) 1

k< — + =-<1,
1 _2C<H%+m) TE+m)(1+rm)) 2

which is satisfied for each 71,7y € (0,00). Consequently Theorem 3.1 implies
that equation (27) has a unique solution defined on R x [0, 1].
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