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Abstract

In this paper, we introduce the concept of a Generalized normed
space and prove a theorem for existence of an additive mapping in this
space. We show that our results extend some of the known results in
literature.

Keywords and Phrases: Generalized normed space, Additive mappings,
Cauchy function.

1. Introduction and Preliminaries

It is well known that the Ulam’s [12] question in 1940: “Under what conditions
does there exist an additive mapping near an approximately additive mapping
?”, is the origin of the stability problem of functional equations. Many authors
have extended, generalized and improved the answer to Ulam’s question such
as, Hyers [4] in the context of Banach space, K. Ravi, R. Murali and M.
Arunkumar [10] for quadratic functional equation, T. Aoki [1] for additive
mappings and Th.M. Rassias [8] for linear mappings in 1978 by considering
the unbounded Cauchy difference. It states as follows:
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Theorem 1.1. ([8]) Let E, E ′ be two Banach spaces and let θ ∈ [0,∞) and
p ∈ [0, 1). If a function f : E −→ E ′ satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ[‖x‖p + ‖y‖p]

for all x, y ∈ E. Then there exists a unique additive mapping T : E −→ E ′

such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
‖x‖p

for all x ∈ E. Moreover, if f(tx) is continuous in t for each fixed x ∈ E
then T is linear.

In the following theorem J. M. Rassias replaced the sum by the product of
powers of norms.

Theorem 1.2. ([7]) Let f : E −→ E ′ be a mapping from a normed vector
space E into a Banach space E ′ subject to the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε ‖x‖p ‖y‖p (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and 0 ≤ p ≤
1

2
. Then the limit

L(x) = lim
n−→∞

f(2nx)

2n

exists for all x ∈ E and L : E −→ E ′ is the unique additive mapping which
satisfies

‖f(x)− L(x)‖ ≤ ε

2− 22p
‖x‖2p (1.2)

for all x ∈ E . If p < 0, then the inequality (1.1) holds for x, y 6= 0 and

(1.2) for x 6= 0. If p >
1

2
then the inequality (1.1) holds for x, y ∈ E and the

limit
A(x) = lim 2nf(

x

2n
)

n−→∞

exists for all x ∈ E and A : E −→ E ′ is the unique additive mapping which
satisfies

‖f(x)− A(x)‖ ≤ ε

22p − 2
‖x‖2p

for all x ∈ E . If in addition f : E −→ E ′ is a mapping such that the
transformation t→ f(tx) is continuous in t ∈ R for each fixed x ∈ E, then L
is R−linear mapping.
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Also, the topic of stability of functional equations has been studied by a
number of mathematicians (see [6, 2, 3, 9, 5] for more detailed information).
Before giving the main results, we recall the definition of normed-binary op-
eration and some examples and lemmas were used in [11].

Definition 1.3. ([11])A normed-binary operation is a mapping � : [0,∞) ×
[0,∞) −→ [0,∞) which satisfies the following conditions:

(i) � is associative and commutative,
(ii) � is continuous,
(iii) a � 0 = a for all a ∈ [0,∞),
(iv) a � b ≤ c � d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0,∞).

Example 1.4. ([11])Let a, b ∈ [0,∞). Five typical examples of � are:
(a) a �1 b = max{a, b}
(b) a �2 b =

√
a2 + b2

(c) a �3 b = a+ b
(d) a �4 b = ab+ a+ b
(e) a �5 b = (

√
a+
√
b)2.

For a, b ∈ [0,∞), straight forward calculations lead to the following rela-
tions among normed binary operations giving above

a �1 b ≤ a �2 b ≤ a �3 b ≤ a �4 b,
and

a �3 b ≤ a �5 b.

The follwing lemma defines a normed binary operation exploting some
properties of a self map on [0,∞).

Lemma 1.5. ([11])Let f : [0,∞) −→ [0,∞) be a continuous, onto, and
increasing map. Let � : [0,∞)× [0,∞) −→ [0,∞) be defined by

a � b = f−1(f(a) + f(b)) for a, b ∈ [0,∞),
then � is a normed binary operation.

Example 1.6. ([11])Let f : [0,∞) −→ [0,∞) defined by f(x) = ex−1. Then
a � b = Ln(ea + eb− 1) for a, b ∈ [0,∞) defines a normed binary operation.

We have the following simple observations about normed binary operation.

Lemma 1.7. ([11]) ( i) If r, r′ ≥ 0, then r ≤ r � r′.
(ii) If δ ∈ (0, r), there exist δ′ ∈ (0, r) such that δ′ � δ < r.
(iii) For every ε > 0, there exists δ > 0 such that δ � δ < ε.
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In this paper all vector spaces are real.
Now we are set to generalize the concept of a normed space.

Definition 1.8. Let X be vector space and � be a binary operation. A gen-
eralized norm on X is a function: N : X −→ R that satisfies the following
properties:

(1) N(x) ≥ 0 for each x in X,
(2) N(x) = 0 if and only if x = 0,
(3) N(αx) = |α|tN(x) for some t ∈ (0,∞), for each x in X and every

α ∈ R.
(4) N(x+ y) ≤ N(x) �N(y), for each x, y ∈ X.

The 3−tuple (X,N, �) is called a generalized normed space or a G−normed
space.

Example 1.9. Let (X, ‖.‖) be a normed space, a, b ∈ [0,∞), and x ∈ X. If
we define � : [0,∞)× [0,∞) −→ [0,∞),

(i) a � b = a + b, and N is defind by N(x) = ‖x‖ , then (X,N, �) is a
G− normed space for t = 1.

(ii) a � b =
√
a2 + b2, and N is defined by N(x) =

√
‖x‖, then (X,N, �)

is a G− normed space for t = 1
2
.

(iii) a�b = (
√
a+
√
b)2, and N is defined by N(x) = ‖x‖2 , then (X,N, �)

is a G− normed space for t = 2.

Remark 1.10. From Example 1.9 (i), we see that:
every normed space is a G− normed space.

Remark 1.11. In (3) of Definition 1.8 t is unique.

Example 1.12. Let X = R2, if we define � : [0,∞)× [0,∞) −→ [0,∞) by
a � b = ( 4

√
a+ 4
√
b)4 for a, b ∈ [0,∞), and define N : X −→ R by

N(x, y) = x4 + y4 for x, y ∈ R,
then (X,N, �) is a G− normed space for t = 4.

Definition 1.13. Let (X,N, �) be a G − normed space. For r > 0, the ball
BN(x, r) with center x ∈ X and radius r is defined by

BN(x, r) = {y ∈ X : N(x− y) < r}.

Definition 1.14. Let (X,N, �) be a G− normed space. A subset A ⊆ X is
open if for every x ∈ A, there exists r > 0 such that BN(x, r) ⊆ A.
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Let τ be the set of all open subsets A ⊆ X. It can be verified that τ is a
topology on X, called a topology induced by generalized norme N .

Lemma 1.15. Let (X,N, �) be a G− normed space. Then
(i) N(ax) ≤ N(x) for all real scalars a with |a| ≤ 1.
(ii) if X is convex, then we get

N(ax+ (1− a)y) ≤ N(x) �N(y)

for all x, y ∈ X and every a ∈ (0, 1).

Proof. Proof immediately follows from Definition 1.8.

Definition 1.16. Let (X,N, �) be a G− normed space. A sequence {xn} in
X is said to be convergent to x ∈ X if for each ε > 0 there exists n0 ∈ N
such that

n ≥ n0 =⇒ N(xn − x) < ε.
We denote this by N(xn − x) −→ 0 as n −→∞ or lim

n−→∞
xn = x.

Definition 1.17. Let (X,N, �) be a G − normed space. A sequence {xn}
in X is called a Cauchy sequence if for each ε > 0, there exists n0 ∈ N such
that N(xn − xm) < ε for each n,m ≥ n0.

The generalized normed space (X,N, �) is said to be generalized Banach
space or G−Banach space if every Cauchy sequence is convergent in X.

Now we prove the following basic lemmas needed in the sequel.

Lemma 1.18. Let (X,N, �) be a G− normed space. If r > 0, then the ball
BN(x, r) is open.

Proof. Let y ∈ BN(x, r), so that we have N(x − y) < r. Put, N(x − y) = δ
then by Lemma 1.7 there exists δ′ > 0 such that δ′ � δ < r. Now, we prove
that BN(y, δ′) ⊆ BN(x, r). For this, let z ∈ BN(y, δ′). By triangle inequality
we have

N(x− z) ≤ N(x− y) �N(y − z) < δ � δ′ < r.

This implies that
BN(y, δ′) ⊆ BN(x, r).

Hence BN(x, r) is an open set.

Lemma 1.19. Every G− normed space (X,N, �) is a Hausdorff space.



206 Alireza Mohammadpour and Nabi Shobe

Proof. Let x, y ∈ X and x 6= y. If we set N(x − y) = r then for 0 < δ < r
by Lemma 1.7 there exists 0 < δ′ < r such that δ′ � δ < r. We prove that
BN(x, δ) ∩ BN(y, δ′) = ∅. Let z ∈ BN(x, δ) ∩ BN(y, δ′). Now, by triangle
inequality, we get that

r = N(x− y) ≤ N(x− z) �N(z − y) < δ � δ′ < r,

which is a contradiction. Hence (X,N, �) is a Hausdorff space.

Lemma 1.20. Let (X,N, �) be a G − normed space, then every convergent
sequence in X is Cauchy in X.

Proof. Let {xn} be a sequence in X which converges to x ∈ X. For ε > 0, by
Lemma 1.7 we can choose a δ > 0 such that δ � δ < ε. Since xn −→ x, there
exists n0 ∈ N such that for every n ≥ n0, we obtain that N(xn − x) < δ.

Thus for every n,m ≥ n0, we have

N(xn − xm) ≤ N(xn − x) �N(x− xm) < δ � δ < ε.

Hence {xn} is a Cauchy sequence.

Lemma 1.21. Let (X,N, �) be a G− normed space, then
addition + : X ×X −→ X defined by + (x, y) = x+ y and

scalar multiplication · : R×X −→ X defined by ·(α, x) = α·x
are continuous.

Proof. First we prove continuity of addition. Let xn −→ x, yn −→ y. By
Lemma 1.7 for each ε > 0 there exists δ > 0 such that δ � δ < ε. Also, there
exists n0 ∈ N such that

n ≥ n0 =⇒ N(xn − x) < δ,

and
n ≥ n0 =⇒ N(yn − y) < δ.

By triangle inequality we have

N((xn + yn)− (x+ y)) ≤ N(xn − x) �N(yn − y) < δ � δ < ε.

Now we prove that scalar multiplication is continuous. Let αn −→ α, and
xn −→ x( which means that lim

n−→∞
N(xn − x) = 0).
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Triangle inequality gives that

N(αn·xn−α·x) = N(αn·(xn−x)+(αn−α)·x) ≤ |αn|tN(xn−x)�|αn − α|tN(x).

and so

lim sup
n−→∞

N(αn·xn − α·x) ≤ lim
n−→∞

|αn|tN(xn − x) � lim
n−→∞

|αn − α|tN(x) = 0.

Hence

lim
n−→∞

αn·xn = α·x.

Example 1.22. Let a � b = max{a, b}, then there is not any t ∈ (0,∞) such
that

N(α·x) = |α|t ·N(x).

Because If we assume that (on contrary), there exists t ∈ (0,∞) and N(α·x) =
|α|t·N(x). Then by taking α = 2 we obtain:

|2|t ·N(x) = N(2x) = N(x+ x) ≤ N(x) �N(x) = N(x),

which is a contradiction.

Henceforth, we assume that the normed binary operation � on [0,∞) ×
[0,∞) satisfy the following properties:

(PI) : α·(a � b) = α·a � α·b for every α ∈ R+ and

(PII) : there exists h ≥ 0 such that 1 � 1 � · · · � 1 ≤ nh, for every n ∈ N.
In the following example, we give some normed binary operations � on

[0,∞)× [0,∞) with properties (PI) and P (II).

Example 1.23. Let a � b = max{a, b} or a � b =
√
a2 + b2 or a � b = a+ b or

a � b = (
√
a+
√
b)2

then in each case, � satisfies properties (PI) and (PII).

The next example includes a normed binary operation � on [0,∞)×[0,∞) which
does not satisfy (PI) and P (II) properties.

Example 1.24. Define � : [0,∞)× [0,∞) −→ [0,∞) by a� b = a+ b+ab, for
a, b ∈ [0,∞). Obviously � is not have (PI) and (PII) properties.
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2. Main Results

In the rest of this paper, we will assume that (X,N ′, �) is G− normed space
and (Y,N, �) is G−Banach space.

Let φ be a function from X ×X to X. A mapping f : X −→ Y is called
a φ− approximately Cauchy function, if

N(f(x+ y)− f(x)− f(y)) ≤ N ′(φ(x, y)) (2.1)

for all x, y ∈ X.

Example 2.1. Let X = Y = R and N,N ′ be usual norm. Let φ be a function

from X ×X −→ X defined by φ(x, y) = xy(
x+ y

2
).

Let mapping f : R −→ R is defined by f(x) = sinx. Then one can easily
see that f is a φ− approximately Cauchy function, because:

|f(x+ y)− f(x)− f(y)| =

∣∣∣∣−4 sin(
x+ y

2
)· sin x

2
· sin y

2

∣∣∣∣
≤ 4

∣∣∣∣x+ y

2
·x
2
·y
2

∣∣∣∣
=
|x+ y| |xy|

2
= |φ(x, y)|

for all x, y ∈ R.
Hence f : R −→ R is a φ− approximately Cauchy function.

In the sequel, all binary operation � satisfy (PI) and (PII) properties.

Theorem 2.2. Let φ : X × X −→ X be a function and f : X −→ Y be a

φ− approximately Cauchy function and for some 0 < α <
1

2
assume that,

N ′(φ(
x

2
,
y

2
)) ≤ N ′(αφ(x, y))

then there exists an additive mapping T : X −→ Y.
Morover, if a � b ≤ a+ b for every a, b ∈ [0,∞), then

N(f(x)− T (x)) ≤ αt

1− (2α)t
N ′(φ(x, x)) (2.2)

for all x ∈ X and T is unique.
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Proof. Since f is φ− approximately Cauchy function, put x = y in (2.1) to
obtain

N(f(2x)− 2f(x)) ≤ N ′(φ(x, x)) (x ∈ X) (2.3)

Replacing x by 2−n−1x in inequality (2.3) we get

N(f(
x

2n
)− 2f(

x

2n+1
) ≤ N ′(φ(

x

2n+1
,
x

2n+1
))

≤ N ′(αφ(
x

2n
,
x

2n
))

≤ |α|tN ′(φ(
x

2n
,
x

2n
))

...

≤ |α|ntN ′(φ(x, x))

If set an(x) = 2nf(2−nx), we have

N(an(x)− an+1(x)) = N(2nf(2−nx)− 2n+1f(2−n−1x))

= 2ntN(f(2−nx)− 2f(2−n−1x))

≤ |2α|ntN ′(φ(x, x))

Also for n ≤ m (n,m ∈ N)

N(am(x)− an(x)) ≤ N(an+1(x)− an(x)) �N(an+2(x)− an+1(x))

� · · · �N(am(x)− am−1(x))

≤ |2α|ntN ′(φ(x, x)) � |2α|(n+1)tN ′(φ(x, x))

� · · · � |2α|(m−1)tN ′(φ(x, x))

≤ |2α|ntN ′(φ(x, x))(1 � 1 � · · · 1︸ ︷︷ ︸
(m−1)−n

)

≤ |2α|ntN ′(φ(x, x))(1 � 1 � · · · 1︸ ︷︷ ︸
m

)

≤ |2α|ntN ′(φ(x, x))·mh

It is easy to see that for every m ≥ n, there exists s > 0 such that m ≤ ns.
Thus

N(am(x)− an(x)) ≤ |2α|nt ·ns·N ′(φ(x, x)) −→ 0.
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Which implies that an(x) = 2nf(2−nx) is a Cauchy sequence. Since Y
is G − Banach space, hence, for every x ∈ X there exists yυ ∈ Y such
that lim

n−→∞
an(x) = yυ(x). Indeed we can define a mapping T : X −→ Y by

T (x) = lim
n−→∞

an(x). That is

lim
n−→∞

N(2nf(2−nx)− T (x)) = 0(x ∈ X).

Now, we show that T is an additive mapping. We have

N(T (x+ y)− Tx− Ty) ≤ N(T (x+ y)− 2nf(2−n(x+ y)))

�N(2nf(2−nx)− Tx) �N(2nf(2−ny − Ty)

�N(2nf(2−n(x+ y)− 2nf(2−nx)− 2nf(2−ny)

≤ N(T (x+ y)− 2nf(2−n(x+ y))) �N(2nf(2−nx)− Tx)

�N(2nf(2−ny − Ty) � |2α|ntN ′(φ(x, y)).

As n −→∞ we get

N(T (x+ y)− Tx− Ty) −→ 0.

Hence T (x+ y) = T (x) + T (y). Now we show that the mapping T satisfies
in the inequality (2.2).

We have

N(f(x)− T (x)) ≤ N(f(x)− 2nf(2−nx)) �N(2nf(2−nx)− T (x)).



Stability of Additive Mappings In Generalized Normed Spaces 211

Since

N(f(x)− 2nf(2−nx)) = N(
n−1∑
i=0

2if(2−ix)− 2i+1f(2−i−1x))

≤ N(f(x)− 2f(2−1x)) �N(2f(2−1x)− 22f(2−2x))

�N(2n−1f(2n−1x)− 2nf(2−nx))

≤ N ′(φ(
x

2
,
x

2
)) � 2tN ′(φ(

x

4
,
x

4
)) � 22tN ′(φ(

x

8
,
x

8
))

� · · · � 2(n−1)tN ′(φ(
x

2n
,
x

2n
))

≤ αtN ′(φ(x, x)) � 2tα2tN ′(φ(x, x)) � 22tα3tN ′(φ(x, x))

� · · · � 2(n−1)tαntN ′(φ(x, x))

≤ αtN ′(φ(x, x))(1 � (2α)t � (2α)2t � · · · � (2α)(n−1)t

≤ αtN ′(φ(x, x))(1 + (2α)t + (2α)2t + · · ·+ (2α)(n−1)t)

≤ αt

1− (2α)t
N ′(φ(x, x)).

Therefore

N(f(x)− T (x)) ≤ αt

1− (2α)t
N ′(φ(x, x)) �N(2nf(2−nx)− T (x)).

As n tends to infinity we have

N(f(x)− T (x)) ≤ αt

1− (2α)t
N ′(φ(x, x)).

For uniqueness, suppose T ′ : X −→ X is another additive mapping such
that T ′ 6= T and

N(f(x)− T ′(x)) ≤ αt

1− (2α)t
N ′(φ(x, x))

for every x ∈ X.
Also, since T and T ′ are additive we have

T (x) = 2nT (2−nx) and T ′(x) = 2nT ′(2−nx)
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Hence we get

N(Tx− T ′x) ≤ N(2nT (2−nx)− 2nf(2−nx)) �N(2nf(2−nx)− 2nT ′(2−nx))

≤ 2ntN(T (2−nx)− f(2−nx)) � 2ntN(f(2−nx)− T ′(2−nx))

≤ 2nt
αt

1− (2α)t
N ′(φ(

x

2n
,
x

2n
)) � 2nt

αt

1− (2α)t
N ′(φ(

x

2n
,
x

2n
))

≤ 2nt
αt

1− (2α)t
·αntN ′(φ(x, x)) � 2nt

αt

1− (2α)t
·αntN ′(φ(x, x))

≤ (2α)nt
αt

1− (2α)t
N ′(φ(x, x))(1 � 1) −→ 0.

It follwes that T = T ′.

Corollary 2.3. Let (X, ‖·‖2) be normed space and (Y, ‖·‖1) be Banach Space.
Let φ be a function from X × X to X, and mapping f : X −→ Y be a
φ− approximately Cauchy function. If for some 0 < α < 1

2
assume that,∥∥∥φ(

x

2
,
y

2
)
∥∥∥
2
≤ ‖αφ(x, y)‖2

then there exists a unique additive mapping T : X −→ Y such that

‖f(x)− T (x)‖1 ≤
α

1− 2α
‖φ(x, x)‖2

for all x ∈ X.

Proof. If we take (X, ‖·‖2) = (X,N ′, �) and (Y, ‖·‖1) = (Y,N, �) we get the
proof by Theorem 2.2 and Remark 1.10.

Example 2.4. Let X = Y = R and N,N ′ be usual norm. Let φ be a function

from R × R −→ R defined by φ(x, y) = xy(
x+ y

2
). Let f : R −→ R is defind

by f(x) = sinx. By Example 2.1 f is a φ− approximately Cauchy function
and ∣∣∣φ(

x

2
,
y

2
)
∣∣∣ ≤ |αφ(x, y)| for

1

8
≤ α <

1

2
.

Hence all conditions of Corollary 2.3 are hold. So there exists a unique
additive mapping T : R −→ R such that

|f(x)− T (x)| ≤ α

1− 2α

∣∣x3∣∣ .
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where
T (x) = lim

n−→∞
2nf(2−nx) = lim

n−→∞
2n sin(

x

2n
) = x.

And
|f(x)− T (x)| = |sinx− x| ≤ α

1− 2α

∣∣x3∣∣ .
We show that corollary (2.3) extends the theorems 1.1 ([8]) and 1.2 ([7]).

Corollary 2.5. Let X, X ′ be two Banach spaces and let θ ∈ [0,∞). If a
function f : X −→ X ′ satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ[‖x‖p + ‖y‖p] (2.4)

for all x, y ∈ X. Then there exists a unique additive mapping T : X −→ X ′

such that

‖f(x)− T (x)‖ ≤ 2θ

2p − 2
‖x‖p , for p > 1. (2.5)

And

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
‖x‖p , for 0 < p < 1. (2.6)

Proof. We show that, if set

φ(x, y) =

 0 (x, y) = (0, 0)
θ

‖x‖+ ‖y‖
·(‖x‖p + ‖y‖p)(x+ y) (x, y) 6= (0, 0)

Then, all conditions of corollary (2.3) are established. Case of (x, y) =
(0, 0) is obviously. In case of (x, y) 6= (0, 0) we have

‖f(x+ y)− f(x)− f(y)‖ ≤ ‖φ(x, y)‖

=
θ

‖x‖+ ‖y‖
·(‖x‖p + ‖y‖p) ‖x+ y‖

≤ θ·(‖x‖p + ‖y‖p)

Also we have∥∥∥φ(
x

2
,
y

2
)
∥∥∥ =

θ

‖x‖+ ‖y‖
·(‖x‖p + ‖y‖p)· ‖x+ y‖ · 1

2p

= θ·(‖x‖p + ‖y‖p)· ‖x+ y‖ · 1
2p

=
1

2p
‖φ(x, y)‖
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i) Let p > 1. If set α =
1

2p
, then α <

1

2
and by corollary (2.3) there exists

an additive mapping T : X −→ Y such that

‖f(x)− T (x)‖ ≤ α

1− 2α
‖φ(x, x)‖

=

1

2p

1− 2

2p

· θ

2 ‖x‖
·2 ‖x‖p . ‖2x‖

=
2θ

2p − 2
‖x‖p .

ii) Let 0 < p < 1. If set α =
2p

4
, then α <

1

2
and by corollary (2.3) there

exists an additive mapping T : X −→ Y such that

‖f(x)− T (x)‖ ≤ α

1− 2α
‖φ(x, x)‖

=

2p

4

1− 2·2
p

4

· θ

2 ‖x‖
·2 ‖x‖p · ‖2x‖

=
2p

4− 2.2p
·2θ ‖x‖p

=
2p−1

2− 2p
·2θ ‖x‖p ≤ 2θ

2− 2p
‖x‖p . (By considering p < 1.)

Corollary 2.6. Let f : X −→ X ′ be a mapping from a normed vector space
X into a Banach space X ′ subject to the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε ‖x‖p ‖y‖p

for all x, y ∈ X, where ε > 0.

If p >
1

2
, then there exists T : X −→ X ′ such that

T (x) = lim
n−→∞

2nf(
x

2n
)
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for all x ∈ X and T : X −→ X ′ is the unique additive mapping which
satisfies

‖f(x)− T (x)‖ ≤ ε

22p − 2
‖x‖2p .

If 0 < p <
1

2
, then there exists T : X −→ X ′ such that

T (x) = lim
n−→∞

2nf(
x

2n
)

for all x ∈ X and T : X −→ X ′ is the unique additive mapping which
satisfies

‖f(x)− T (x)‖ ≤ ε

2− 22p
‖x‖2p .

Proof. We show that if set

φ(x, y) =

 0 (x, y) = (0, 0)
ε

‖x‖1−p + ‖y‖1−p
(x ‖y‖p + y ‖x‖p) (x, y) 6= (0, 0)

Then all conditions of corollary (2.3) are established.
Case of (x, y) = (0, 0) is obviously. In case of (x, y) 6= (0, 0) we have

‖f(x+ y)− f(x)− f(y)‖ ≤ ‖φ(x, y)‖
≤ ε

‖x‖1−p + ‖y‖1−p
· ‖(x ‖y‖p + y ‖x‖p)‖

≤ ε

‖x‖1−p + ‖y‖1−p
· ‖x‖p ‖y‖p ·(‖x‖1−p + ‖y‖1−p)

≤ ε ‖x‖p ‖y‖p .

Moreover∥∥∥φ(
x

2
,
y

2
)
∥∥∥ =

ε21−p

‖x‖1−p + ‖y‖1−p
· ‖(x ‖y‖p + y ‖x‖p)‖ · 1

2p+1

=
1

22p
· ε

‖x‖1−p + ‖y‖1−p
· ‖(x ‖y‖p + y ‖x‖p)‖

=
1

22p
· ‖φ(x, y)‖ .
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i) Let p >
1

2
. If set α =

1

22p
, then α <

1

2
and by corollary (2.3) there exists

an additive mapping T : X −→ Y such that

‖f(x)− T (x)‖ ≤ α

1− 2α
‖φ(x, x)‖

=

1

22p

1− 1

22p

· ε

2 ‖x‖1−p
·2 ‖x‖1+p

=
ε

22p − 2
‖x‖2p .

ii) Let 0 < p <
1

2
. If set α =

22p

4
, then α <

1

2
and by corollary (2.3) there

exists an additive mapping T : X −→ Y such that

‖f(x)− T (x)‖ ≤ α

1− 2α
‖φ(x, x)‖

=

22p

4

1− 22p

4

·ε ‖x‖2p

=
22p

4− 2.22p
·ε ‖x‖2p

=
22p−1

2− 22p
·ε ‖x‖2p

≤ ε

2− 22p
‖x‖2p (By considering p <

1

2
)
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