On \mathbf{W}_{2}-Curvature Tensor in a Kenmotsu Manifold*

R. N. Singh †, S. K. Pandey ${ }^{\ddagger}$, and Giteshwari Pandey ${ }^{\S}$
Department of Mathematical Sciences, A.P.S. University,
Rewa (M.P.) 486003, India

Received June 10, 2011, Accepted March 28, 2013

Abstract

The purpose of this paper is to study some properties of W_{2}-curvature tensor in Riemannian and Kenmotsu manifolds.

Keywords and phrases: Riemannian manifold, Kenmotsu manifold, W_{2}-curvature tensor, Irrotational W_{2}-curvature tensor, η-Einstein manifold.

1. Introduction

In 1958, Boothby and Wong [1] studied odd dimensional manifolds with contact and almost contact structures from topological point of view. Sasaki and Hatakeyama [11] re-investigated them using tensor calculus in 1961. In 1972, K. Kenmotsu studied a class of contact Riemannian manifold and call them Kenmotsu manifold [7]. He proved that if Kenmotsu manifold satisfies the condition $R(X, Y) \cdot R=0$, then the

[^0]manifold is of negative curvature -1 , where R is the Riemannian curvature tensor of type $(1,3)$ and $\mathrm{R}(\mathrm{X}, \mathrm{Y})$ denotes the derivation of the tensor algebra at each point of the tangent space. The properties of Kenmotsu manifold have been studied by several authors such as De [4], Sinha and Shrivastava [12], Jun, De and Pathak [6], De and Pathak [3], De, Yildiz and Yaliniz [5], Özgur and De [10] and many others. In this paper, we consider Kenmotsu manifold satisfying the conditions $\mathrm{R}(\xi, \mathrm{X}) . \mathrm{W}_{2}=0$, $\mathrm{W}_{2}(\xi, \mathrm{X}) \cdot \mathrm{R}=0, \mathrm{P}(\xi, \mathrm{X}) \cdot \mathrm{W}_{2}=0$ and $\mathrm{W}_{2}(\xi, \mathrm{X}) \cdot \mathrm{P}=0$, where W_{2} and P denotes the $\mathrm{W}_{2^{-}}$ curvature tensor and projective curvature tensor respectively. Also we have studied the W_{2}-curvature tensor in a Riemannian manifold and obtained the relation between different curvature tensors. In last section, we have shown that the W_{2}-curvature tensor in a Kenmotsu manifold M^{n} is irrotational if and only if $R(X, Y) Z=g(X, Z) Y$ $\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}+\frac{1}{n-1}\left\{\eta(\mathrm{X})\left(\nabla_{Z} \mathrm{Q}\right)(\mathrm{Y})-\eta(\mathrm{Y})\left(\nabla_{Z} \mathrm{Q}\right)(\mathrm{X})\right\}$.

2. Preliminaries

If on an odd dimensional differentiable manifold $M^{n}(n=2 m+1)$, of differentiability class C^{r+1}, there exists a vector valued real linear function φ, a 1-form η, the associated vector field ξ and the Riemannian metric g satisfying

$$
\begin{align*}
& \varphi^{2} X=-X+\eta(X) \xi \tag{1}\\
& \eta(\varphi X)=0 \tag{2}\\
& g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \tag{3}
\end{align*}
$$

for arbitrary vector fields X and Y , then $\left(\mathrm{M}^{\mathrm{n}}, \mathrm{g}\right)$ is said to be an almost contact metric manifold [2] and the structure (φ, ξ, η, g) is called an almost contact metric structure to M^{n}.

In view of equations (1), (2) and (3), we have

$$
\begin{equation*}
\eta(\xi)=1, g(X, \xi)=\eta(X), \varphi(\xi)=0 . \tag{4}
\end{equation*}
$$

An almost contact metric manifold is called Kenmotsu manifold [7] if

$$
\begin{align*}
& \left(\nabla_{\mathrm{x} \varphi}\right)=-\eta(\mathrm{Y}) \varphi \mathrm{X}-\mathrm{g}(\mathrm{X}, \varphi \mathrm{Y}) \xi, \tag{5}\\
& \left(\nabla_{\mathrm{x}} \xi\right)=\mathrm{X}-\eta(\mathrm{X}) \xi, \tag{6}\\
& \left(\nabla_{\mathrm{x}} \eta\right)(\mathrm{Y})=\mathrm{g}(\mathrm{X}, \mathrm{Y})-\eta(\mathrm{X}) \eta(\mathrm{Y}),
\end{align*}
$$

where ∇ is the Levi-Civita connection of g . Also the following relations hold in Kenmotsu manifold [3], [5], [6]

$$
\begin{align*}
& R(X, Y) \xi=\eta(X) Y-\eta(Y) X, \tag{8}\\
& R(\xi, X) Y=\eta(Y) X-g(X, Y) \xi=-R(X, \xi) Y, \tag{9}\\
& \eta(R(X, Y) Z)=\eta(Y) g(X, Z)-\eta(X) g(Y, Z), \tag{10}\\
& S(X, \xi)=-(n-1) \eta(X), \tag{11}\\
& Q \xi=-(n-1) \xi, \tag{12}
\end{align*}
$$

where Q is the Ricci operator, i.e. $\mathrm{g}(\mathrm{QX}, \mathrm{Y})=\mathrm{S}(\mathrm{X}, \mathrm{Y})$ and

$$
\begin{equation*}
S(\varphi X, \varphi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y), \tag{13}
\end{equation*}
$$

for arbitrary vector fields $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ on M^{n}.
A Kenmotsu manifold is said to be η-Einstein if its Ricci tensor S is of the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{14}
\end{equation*}
$$

for arbitrary vector fields X and Y, where a and b are smooth functions on M^{n}.
Projective curvature tensor P , concircular curvature tensor C and the conformal curvature tensor V are given by [8]

$$
\begin{align*}
& \mathrm{P}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}-\frac{1}{n-1}[\mathrm{~S}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{S}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}] . \tag{15}\\
& \mathrm{P}(\xi, \mathrm{Y}) \mathrm{Z}=-\left\{\mathbf{g}(\mathbf{Y}, \mathbf{Z})+\frac{1}{n-1} \mathbf{S}(\mathbf{Y}, \mathbf{Z})\right\}, \tag{16}\\
& \mathrm{P}(\mathrm{X}, \mathrm{Y}) \xi=0 \text {. } \tag{17}\\
& \mathrm{C}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}-\frac{r}{n(n-1)}\{\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}\} . \tag{18}\\
& \text { V(X, Y)Z } \\
& =R(X, Y) Z-\frac{1}{n-2}\{S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y\} \\
& +\frac{r}{(n-1)(n-2)}\{\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}\} . \tag{19}
\end{align*}
$$

3. \mathbf{W}_{2} - Curvature Tensor of a Kenmotsu Manifold

Pokhariyal and Mishra [10] have defined a new curvature tensor ' W_{2} as

$$
\begin{equation*}
\mathrm{W}_{2}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U})=\mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U})+\frac{1}{n-1}[\mathrm{~g}(\mathrm{X}, \mathrm{Z}) \mathrm{S}(\mathrm{Y}, \mathrm{U})-\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{S}(\mathrm{X}, \mathrm{U})], \tag{20}
\end{equation*}
$$

for arbitrary vector fields $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and U , where S is the Ricci tensor of type $(0,2)$ and

$$
W_{2}(X, Y, Z, U)=g\left(W_{2}(X, Y) Z, U\right) \text { and } ' R(X, Y, Z, U)=g(R(X, Y) Z, U)
$$

called W_{2}-curvature tensor of M^{n}.
Proposition: On an n - dimensional Kenmotsu manifold M^{n},

$$
\eta\left(W_{2}(X, Y) Z\right)=0 .
$$

Proof: From equation (20), we have

$$
\begin{equation*}
\mathrm{W}_{2}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\frac{1}{n-1}[\mathrm{~g}(\mathrm{X}, \mathrm{Z}) \mathrm{QY}-\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{QX}] . \tag{21}
\end{equation*}
$$

Taking the inner product of above equation with ξ and using equations (10), (11) and (12), we get

$$
\begin{equation*}
\eta\left(\mathrm{W}_{2}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right)=0 . \tag{22}
\end{equation*}
$$

Theorem 1: On an n-dimensional Kenmotsu manifold M^{n},

$$
R(\xi, X) \cdot W_{2}=0 \text { if and only if } W_{2}=0 .
$$

Proof: Let on an n - dimensional Kenmotsu manifold $\mathrm{R}(\xi, \mathrm{X}) . \mathrm{W}_{2}=0$, then
$\mathrm{R}(\xi, \mathrm{X}) \mathrm{W}_{2}(\mathrm{Y}, \mathrm{Z}) \mathrm{U}-\mathrm{W}_{2}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{Z}) \mathrm{U}-\mathrm{W}_{2}(\mathrm{Y}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{Z}) \mathrm{U}-\mathrm{W}_{2}(\mathrm{Y}, \mathrm{Z}) \mathrm{R}(\xi, \mathrm{X}) \mathrm{U}=0$.

From equations (9) and (23), we have

$$
\begin{align*}
& \eta\left(W_{2}(Y, Z) U\right) X-W_{2}(Y, Z, U, X) \xi-\eta(Y) W_{2}(X, Z) U \\
& \quad+g(X, Y) W_{2}(\xi, Z) U-\eta(Z) W_{2}(Y, X) U+g(X, Z) W_{2}(Y, \xi) U \\
& \quad-\eta(U) W_{2}(Y, Z) X+\mathbf{g}(\mathbf{X}, \mathbf{U}) W_{2}(Y, Z) \xi=0 . \tag{24}
\end{align*}
$$

Taking the inner product of above equation with ξ, we get

$$
\begin{align*}
& \eta\left(W_{2}(Y, Z) U\right) \eta(X)-W_{2}(Y, Z, U, X)-\eta(Y) \eta\left(W_{2}(X, Z) U\right) \\
& +g(X, Y) \eta\left(W_{2}(\xi, Z) U\right)-\eta(Z) \eta\left(W_{2}(Y, X) U\right) \\
& +g(X, Z) \eta\left(W_{2}(Y, \xi) U\right)-\eta(U) \eta\left(W_{2}(Y, Z) X\right)+\mathbf{g}(\mathbf{X}, \mathbf{U}) \eta\left(\mathbf{W}_{2}(Y, Z) \xi\right)=0, \tag{25}
\end{align*}
$$

which on using equation (22) gives

$$
' \mathrm{~W}_{2}(\mathrm{Y}, \mathrm{Z}, \mathrm{U}, \mathrm{X})=0
$$

i.e.

$$
\mathrm{W}_{2}=0 .
$$

Conversely, suppose $\mathrm{W}_{2}=0$, then from equation (23), we have

$$
\mathrm{R}(\xi, \mathrm{X}) \cdot \mathrm{W}_{2}=0 .
$$

This completes the proof.

Theorem 2: An n-dimensional Kenmotsu manifold M^{n} satisfying $W_{2}(\xi, X) \cdot R=0$, is an Einstein manifold.
Proof: Let $\mathrm{W}_{2}(\xi, \mathrm{X}) \cdot \mathrm{R}=0$, then we have

$$
\begin{equation*}
\mathrm{W}_{2}(\xi, \mathrm{X}) \cdot \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{U}-\mathrm{R}\left(\mathrm{~W}_{2}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{Z}\right) \mathrm{U}-\mathrm{R}\left(\mathrm{Y}, \mathrm{~W}_{2}(\xi, \mathrm{X}) \mathrm{Z}\right) \mathrm{U} \tag{26}
\end{equation*}
$$

$-\mathbf{R}(\mathbf{Y}, \mathbf{Z}) \mathbf{W}_{\mathbf{2}}(\boldsymbol{\xi}, \mathbf{X}) \mathbf{U}=0$.

Now putting $\mathrm{X}=\xi$ in equation (21) and using equations (9) and (12), we obtain

$$
\begin{equation*}
\mathrm{W}_{2}(\xi, \mathrm{Y}) \mathrm{Z}=\eta(\mathrm{Z})\left[\mathrm{Y}+\frac{1}{n-1} \mathrm{QY}\right] . \tag{27}
\end{equation*}
$$

Now from equations (26) and (27), we have

$$
\begin{align*}
& \eta(\mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{U})\left\{\mathrm{X}+\frac{1}{n-1} \mathrm{QX}\right\}-\eta(\mathrm{Y})\left\{\mathrm{R}(\mathrm{X}, \mathrm{Z}) \mathrm{U}+\frac{1}{n-1} \mathrm{R}(\mathrm{QX}, \mathrm{Z}) \mathrm{U}\right\} \\
& -\eta(\mathrm{Z})\left\{\mathrm{R}(\mathrm{Y}, \mathrm{X}) \mathrm{U}+\frac{1}{n-1} \mathrm{R}(\mathrm{Y}, \mathrm{QX}) \mathrm{U}\right\}-\eta(\mathrm{U})\left\{\mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}+\frac{1}{n-1} \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{QX}\right\} \\
& \quad=0 \tag{28}
\end{align*}
$$

which on taking the inner product with ξ and using equations (4), (11) and (12) gives $-\boldsymbol{\eta}(\mathbf{U})\{\boldsymbol{\eta}(\mathbf{Z}) \mathbf{g}(\mathbf{X}, \mathbf{Y})-\boldsymbol{\eta}(\mathbf{Y}) \mathbf{g}(\mathbf{X}, \mathbf{Z})\}-\frac{1}{n-1}\{\boldsymbol{\eta}(\mathbf{Z}) \mathbf{S}(\mathbf{X}, \mathbf{Y})-\boldsymbol{\eta}(\mathbf{Y}) \mathbf{S}(\mathbf{X}, \mathbf{Z})\} \boldsymbol{\eta}(\mathbf{U})=\mathbf{0}$.

Putting $U=Z=\xi$ in above equation and using equations (4) and (11), we get

$$
\mathbf{S}(\mathbf{X}, \mathbf{Y})=(\mathbf{1 - n}) \mathbf{g}(\mathbf{X}, \mathbf{Y}),
$$

which shows that \mathbf{M}^{n} is an Einstein Manifold.
Theorem 3: An n-dimensional Kenmotsu manifold M^{n} satisfying $P(\xi, X) . W_{2}=0$, is an Einstein manifold.

Proof: Let $\mathrm{P}(\xi, \mathrm{X}) . \mathrm{W}_{2}=0$, then

$$
\begin{align*}
& \mathrm{P}(\xi, \mathrm{X}) \mathrm{W}_{2}(\mathrm{Y}, \mathrm{Z}) \mathrm{U}-\mathrm{W}_{2}(\mathrm{P}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{Z}) \mathrm{U}-\mathrm{W}_{2}(\mathrm{Y}, \mathrm{P}(\xi, \mathrm{X}) \mathrm{Z}) \mathrm{U} \\
& -\mathrm{W}_{2}(\mathrm{Y}, \mathrm{Z}) \mathrm{P}(\xi, \mathrm{X}) \mathrm{U}=0 . \tag{31}
\end{align*}
$$

Using equations (11) and (16) in above equation, we have

$$
\begin{align*}
& -\mathbf{W}_{\mathbf{2}}(\mathbf{Y}, \mathbf{Z}, \mathbf{U}, \mathbf{X}) \xi-\frac{1}{n-1} \mathbf{W}_{\mathbf{2}}(\mathbf{Y}, \mathbf{Z}, \mathbf{U}, \mathbf{Q X}) \xi \\
& +\left\{\mathrm{g}(\mathrm{X}, \mathrm{Y})+\frac{1}{n-1} \mathrm{~S}(\mathrm{X}, \mathrm{Y})\right\} \mathrm{W}_{2}(\xi, \mathrm{Z}) \mathrm{U} \\
& +\left\{\mathrm{g}(\mathrm{X}, \mathrm{Z})+\frac{1}{n-1} \mathrm{~S}(\mathrm{X}, \mathrm{Z})\right\} \mathrm{W}_{2}(\mathrm{Y}, \xi) \mathrm{U} \\
& +\left\{\mathrm{g}(\mathrm{X}, \mathrm{U})+\frac{1}{n-1} \mathrm{~S}(\mathrm{X}, \mathrm{U})\right\} \mathrm{W}_{2}(\mathrm{Y}, \mathrm{Z}) \xi=0 . \tag{32}
\end{align*}
$$

Now taking the inner product of above equation with ξ and using equation (22), we get

$$
\text { 'W2(Y, Z, U, QX) = (1-n) 'W }{ }_{2}(\mathrm{Y}, \mathrm{Z}, \mathrm{U}, \mathrm{X}),
$$

which on using equation (21), gives

$$
\begin{aligned}
& g(Q X, R(Y, Z) U)+\frac{1}{n-1}\{g(Y, U) g(Q X, Q Z)-g(Z, U) g(Q X, Q Y)\} \\
& \quad=(1-n)\left[g(X, R(Y, Z) U)+\frac{1}{n-1}\{g(Y, U) g(X, Q Z)-g(Z, U) g(X, Q Y)\}\right] .
\end{aligned}
$$

Putting $Z=U=\xi$ in above equation and using equations (4), (8) and (11), we get $-\mathrm{S}(\mathrm{X}, \mathrm{QY})=2(\mathrm{n}-1) \mathrm{S}(\mathrm{X}, \mathrm{Y})+(\mathrm{n}-1)^{2} \mathrm{~g}(\mathrm{X}, \mathrm{Y})$,
which on using equation (11), gives

$$
\mathrm{S}(\mathrm{X}, \mathrm{Y})=(1-\mathrm{n}) \mathrm{g}(\mathrm{X}, \mathrm{Y})
$$

This completes the proof.
Theorem 4: An n-dimensional Kenmotsu manifold M^{n} satisfying $W_{2}(\xi, X) . P=0$, is an Einstein manifold.
Proof: Let $\mathrm{W}_{2}(\xi, \mathrm{X}) \cdot \mathrm{P}=0$, then we have

$$
\begin{align*}
& \mathrm{W}_{2}(\xi, \mathrm{X}) \mathrm{P}(\mathrm{Y}, \mathrm{Z}) \mathrm{U}-\mathrm{P}\left(\mathrm{~W}_{2}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{Z}\right) \mathrm{U}-\mathrm{P}\left(\mathrm{Y}, \mathrm{~W}_{2}(\xi, \mathrm{X}) \mathrm{Z}\right) \mathrm{U} \\
& -\mathrm{P}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}_{2}(\xi, \mathrm{X}) \mathrm{U}=0, \tag{33}
\end{align*}
$$

which on using equation (27), gives

$$
\begin{gather*}
\eta(\mathrm{P}(\mathrm{Y}, \mathrm{Z}) \mathrm{U})\left\{\mathrm{X}+\frac{1}{n-1} \mathrm{QX}\right\}-\eta(\mathrm{Y})\left\{\mathrm{P}(\mathrm{X}, \mathrm{Z}) \mathrm{U}+\frac{1}{n-1} \mathrm{P}(\mathrm{QX}, \mathrm{Z}) \mathrm{U}\right\} \\
-\eta(\mathrm{Z})\left\{\mathrm{P}(\mathrm{Y}, \mathrm{X}) \mathrm{U}+\frac{1}{n-1} \mathrm{P}(\mathrm{Y}, \mathrm{QX}) \mathrm{U}\right\}-\eta(\mathrm{U})\left\{\mathrm{P}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}+\frac{1}{n-1} \mathrm{P}(\mathrm{Y}, \mathrm{Z}) \mathrm{QX}\right\}=0 \tag{34}
\end{gather*}
$$

Now taking the inner product of above equation with ξ and using equation (11), we get

$$
\begin{align*}
& \eta(\mathrm{Y})\left\{\eta(\mathrm{P}(\mathrm{X}, \mathrm{Z}) \mathrm{U})+\frac{1}{n-1} \eta(\mathrm{P}(\mathrm{QX}, \mathrm{Z}) \mathrm{U})\right\} \\
& +\eta(\mathrm{Z})\left\{\eta(\mathrm{P}(\mathrm{Y}, \mathrm{X}) \mathrm{U})+\frac{1}{n-1} \eta(\mathrm{P}(\mathrm{Y}, \mathrm{QX}) \mathrm{U})\right\} \\
& +\eta(\mathrm{U})\left\{\eta(\mathrm{P}(\mathrm{Y}, \mathrm{Z}) \mathrm{X})+\frac{1}{n-1} \eta(\mathrm{P}(\mathrm{Y}, \mathrm{Z}) \mathrm{QX})\right\}=0 \tag{35}
\end{align*}
$$

Putting $U=Z=\xi$ in above equation and using equations (15), (16) and (17), we get

$$
\mathrm{S}(\mathrm{QX}, \mathrm{Y})=(\mathrm{n}-1)^{2} \mathrm{~g}(\mathrm{X}, \mathrm{Y})
$$

which on using equation (11), gives

$$
\mathbf{S}(\mathbf{X}, \mathbf{Y})=(\mathbf{1 - n}) \mathbf{g}(\mathbf{X}, \mathbf{Y})
$$

This completes the proof.
Theorem 5: The W_{2}-curvature tensor and projective curvature tensor of the Riemannian manifold M^{n} are linearly dependent if and only if M^{n} is an Einstein Manifold.

Proof: Let

$$
\mathrm{W}_{2}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\alpha \mathrm{P}(\mathrm{X}, \mathrm{Y}) \mathrm{Z},
$$

where α being any non-zero constant. In view of equations (15) and (21), above equation assumes the form (1- α) $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\frac{1}{n-1}\{\mathrm{~g}(\mathrm{X}, \mathrm{Z}) \mathrm{QY}-\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{QX}\}+\frac{\alpha}{n-1}\{\mathrm{~S}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{S}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}\}=0$, which can be written as

$$
\begin{aligned}
(1-\alpha)^{\prime} \mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U})+\frac{1}{n-1} & \{\mathrm{~g}(\mathrm{X}, \mathrm{Z}) \mathrm{S}(\mathrm{Y}, \mathrm{U})-\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{S}(\mathrm{X}, \mathrm{U})\} \\
& +\frac{\alpha}{n-1}\{\mathrm{~S}(\mathrm{Y}, \mathrm{Z}) \mathrm{g}(\mathrm{X}, \mathrm{U})-\mathrm{S}(\mathrm{X}, \mathrm{Z}) \mathrm{g}(\mathrm{Y}, \mathrm{U})\}=0 .
\end{aligned}
$$

Now putting $\mathrm{X}=\mathrm{U}=\mathrm{e}_{\mathrm{i}}$ in above equation and taking summation over $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$, we get

$$
\begin{aligned}
& \quad(1-\alpha) \mathrm{S}(\mathrm{Y}, \mathrm{Z})+\frac{1}{n-1}\{\mathrm{~S}(\mathrm{Y}, \mathrm{Z})-\mathrm{rg}(\mathrm{Y}, \mathrm{Z})\}+\frac{\alpha}{n-1}\{\mathrm{nS}(\mathrm{Y}, \mathrm{Z})-\mathrm{S}(\mathrm{Y}, \mathrm{Z})\}=0 \text {, } \\
& \text { i.e. } \quad \mathrm{S}(\mathrm{Y}, \mathrm{Z})=\frac{r}{n} \mathrm{~g}(\mathrm{Y}, \mathrm{Z}) \Rightarrow \mathrm{QY}=\frac{r}{n} \mathrm{Y},
\end{aligned}
$$

which shows that M^{n} is an Einstein manifold.
Conversely, let M^{n} be an Einstein manifold, i.e. $\mathrm{S}(\mathrm{Y}, \mathrm{Z})=\frac{r}{n} \mathrm{~g}(\mathrm{Y}, \mathrm{Z})$ and $\mathrm{QY}=$ $\frac{r}{n} \mathrm{Y}$, then from equations (15) and (21), we have

$$
\mathrm{W}_{2}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\alpha \mathrm{P}(\mathrm{X}, \mathrm{Y}) \mathrm{Z} .
$$

Theorem 6: A necessary and sufficient condition for a Riemannian manifold M^{n} to be an Einstein manifold is that the W_{2}-curvature tensor and concircular curvature tensor C are linearly dependent.
Proof: Let $\mathrm{W}_{2}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\alpha \mathrm{C}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}$,
where α being any non-zero constant. In consequence of equations (18) and (21), we have

$$
(1-\alpha) \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\frac{1}{n-1}\{\mathrm{~g}(\mathrm{X}, \mathrm{Z}) \mathrm{QY}-\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{QX}\}
$$

$$
+\frac{\alpha r}{n(n-1)}\{\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}\}=0
$$

from which, we get

$$
\begin{aligned}
(1-\alpha)^{\prime} \mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U})+ & \frac{1}{n-1}\{\mathrm{~g}(\mathrm{X}, \mathrm{Z}) \mathrm{S}(\mathrm{Y}, \mathrm{U})-\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{S}(\mathrm{X}, \mathrm{U})\} \\
& +\frac{\alpha r}{n(n-1)}\{\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{g}(\mathrm{X}, \mathrm{U})-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{g}(\mathrm{Y}, \mathrm{U})\}=0
\end{aligned}
$$

Now putting $\mathrm{X}=\mathrm{U}=\mathrm{e}_{\mathrm{i}}$ in above equation and taking the summation over $\mathrm{i}, 1 \leq \mathrm{i}$ $\leq n$, we get

$$
\frac{(n-1)(1-\alpha)+1}{(n-1)} \mathrm{S}(\mathrm{Y}, \mathrm{Z})+\frac{\{(n-1) \alpha-n\} r}{n(n-1)} \mathrm{g}(\mathrm{Y}, \mathrm{Z})=0
$$

which can be written as

$$
\mathrm{S}(\mathrm{Y}, \mathrm{Z})=\frac{k}{n} \mathrm{~g}(\mathrm{Y}, \mathrm{Z})
$$

where $k=\frac{\{(n-1) \alpha-n\} r}{\{(n-1)(\alpha-1)+1\}}$. This shows that Riemannian manifold is an Einstein manifold. Converse part is obvious from the equations (18) and (21).
Theorem 7: A Riemannian manifold M^{n} becomes an Einstein manifold if and only if conformal curvature tensor and W_{2}-curvature tensor of the manifold are linearly dependent.
Proof: Let $\mathrm{W}_{2}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\alpha \mathrm{V}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}$.
The above equation on straight forward calculations, gives

$$
\begin{aligned}
& (1-\alpha) \text { 'R(X,Y, Z, U) }+\frac{1}{n-1}\{g(X, Z) S(Y, U)-g(Y, Z) S(X, U)\} \\
& +\frac{\alpha}{(n-2)}\{S(Y, Z) g(X, U)-S(X, Z) g(Y, U)+g(Y, Z) S(X, U) \\
& \quad-g(X, Z) S(Y, U)\}-\frac{\alpha r}{(n-1)(n-2)}\{g(Y, Z) g(X, U)-g(X, Z) g(Y, U)\}=0 .
\end{aligned}
$$

Now putting $\mathrm{X}=\mathrm{U}=\mathrm{e}_{\mathrm{i}}$ in above equation and taking summation over $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$, we get

$$
\begin{aligned}
(1-\alpha) \mathrm{S}(\mathrm{Y}, \mathrm{Z})+ & \frac{1}{n-1}\{\mathrm{~S}(\mathrm{Y}, \mathrm{Z})-\mathrm{rg}(\mathrm{Y}, \mathrm{Z})\} \\
+ & \frac{\alpha}{(n-2)}\{\mathrm{nS}(\mathrm{Y}, \mathrm{Z})-\mathrm{S}(\mathrm{Y}, \mathrm{Z})+\mathrm{rg}(\mathrm{Y}, \mathrm{Z})-\mathrm{S}(\mathrm{Y}, \mathrm{Z})\} \\
& -\frac{\alpha r}{(n-1)(n-2)}\{\mathrm{ng}(\mathrm{Y}, \mathrm{Z})-\mathrm{g}(\mathrm{Y}, \mathrm{Z})\}=0,
\end{aligned}
$$

which reduces to

$$
\mathrm{S}(\mathrm{Y}, \mathrm{Z})=\frac{r}{n} \mathrm{~g}(\mathrm{Y}, \mathrm{Z}) \Rightarrow \mathrm{QY}=\frac{r}{n} \mathrm{Y}
$$

This shows that Riemannian manifold is an Einstein manifold. Converse part is obvious from equations (19) and (21).
Corollary: In an n-dimensional Riemannian manifold M^{n}, the following statements are equivalent-
(i) $\quad M^{n}$ is an Einstein manifold,
(ii) W_{2} - curvature tensor and projective curvatures are linearly dependent,
(iii) W_{2} - curvature tensor and concircular curvature tensors are linearly dependent,
(iv) W_{2} - curvature tensor and conformal curvature tensors are linearly dependent.

4. The Irrotational $\mathbf{W}_{\mathbf{2}}$-Curvature Tensor

Definition: Let ∇ be a Riemannian connection. The rotation (Curl) of $\mathrm{W}_{2}-$ curvature tensor on Riemannian manifold M^{n} is defined as

$$
\begin{align*}
\operatorname{RotW}_{2}=\left(\nabla_{U}\right. & \left.\mathrm{W}_{2}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\left(\nabla_{X} \mathrm{~W}_{2}\right)(\mathrm{U}, \mathrm{Y}) \mathrm{Z} \\
& +\left(\nabla_{Y} \mathrm{~W}_{2}\right)(\mathrm{X}, \mathrm{U}) \mathrm{Z}-\left(\nabla_{Z} \mathrm{~W}_{2}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{U} . \tag{36}
\end{align*}
$$

In consequence of Bianchi's second identity for Riemannian connection ∇, equation (36) becomes

$$
\begin{equation*}
\operatorname{Rot}_{2}=-\left(\nabla_{Z} W_{2}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{U} \tag{37}
\end{equation*}
$$

If the W_{2}-curvature tensor is irrotational, then curl $\mathrm{W}_{2}=0$ and hence

$$
\left(\nabla_{Z} \mathrm{~W}_{2}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{U}=0,
$$

which gives

$$
\begin{equation*}
\nabla_{Z}\left(\mathrm{~W}_{2}(\mathrm{X}, \mathrm{Y}) \mathrm{U}\right)=\mathrm{W}_{2}\left(\nabla_{Z} \mathrm{X}, \mathrm{Y}\right) \mathrm{U}+\mathrm{W}_{2}\left(\mathrm{X}, \nabla_{Z} \mathrm{Y}\right) \mathrm{U}+\mathrm{W}_{2}(\mathrm{X}, \mathrm{Y}) \nabla_{Z} \mathrm{U} . \tag{38}
\end{equation*}
$$

Theorem 8: The W_{2}-curvature tensor in a Kenmotsu manifold M^{n} is irrotational if and only if

$$
R(X, Y) Z=g(X, Z) Y-g(Y, Z) X+\frac{1}{n-1}\left\{\eta(X)\left(\nabla_{Z} Q\right)(Y)-\eta(Y)\left(\nabla_{Z} Q\right)(X)\right\}
$$

In particular, if $\eta(X)\left(\nabla_{Z} Q\right)(Y)=\eta(Y)\left(\nabla_{Z} Q\right)(X)$, then the manifold is locally isometric to the hyperbolic space $\mathrm{H}^{\mathrm{n}}(-1)$.
Proof: Let W_{2}-curvature tensor in M^{n} be irrotational then putting $\mathrm{U}=\xi$ in equation (38), we get

$$
\begin{equation*}
\nabla_{Z}\left(\mathrm{~W}_{2}(\mathrm{X}, \mathrm{Y}) \xi\right)=\mathrm{W}_{2}\left(\nabla_{Z} \mathrm{X}, \mathrm{Y}\right) \xi+\mathrm{W}_{2}\left(\mathrm{X}, \nabla_{Z} \mathrm{Y}\right) \xi+\mathrm{W}_{2}(\mathrm{X}, \mathrm{Y}) \nabla_{Z} \xi . \tag{39}
\end{equation*}
$$

Putting $Z=\xi$ in equation (21) and using equations (4) and (8), we get

$$
\begin{equation*}
\mathrm{W}_{2}(\mathrm{X}, \mathrm{Y}) \xi=\{\eta(\mathrm{X}) \mathrm{Y}-\eta(\mathrm{Y}) \mathrm{X}\}+\frac{1}{n-1}\{\eta(\mathrm{X}) \mathrm{QY}-\eta(\mathrm{Y}) \mathrm{QX}\} \tag{40}
\end{equation*}
$$

Using above equation in equation (39), we obtain

$$
\begin{align*}
& \left(\nabla_{Z} \eta\right)(X) Y-\left(\nabla_{Z} \eta\right)(Y) X+\frac{1}{n-1}\left\{\left(\nabla_{Z} \eta\right)(X) Q Y-\left(\nabla_{Z} \eta\right)(Y) \mathrm{QX}\right. \\
& \left.+\eta(X)\left(\nabla_{Z} Q\right)(Y)-\eta(Y)\left(\nabla_{Z} Q\right)(X)\right\} \\
& \quad=W_{2}(X, Y) Z-\eta(Z)\left[\{\eta(X) Y-\eta(Y) X\}+\frac{1}{n-1}\{\eta(X) Q Y-\eta(Y) Q X\}\right] \tag{41}
\end{align*}
$$

which on using equation (7) gives

$$
\begin{align*}
& g(X, Z) Y-g(Y, Z) X+\frac{1}{n-1}\left\{g(X, Z) Q Y-g(Y, Z) Q X+\eta(X)\left(\nabla_{Z} Q\right)(Y)\right. \\
& \left.\quad-\eta(Y)\left(\nabla_{Z} Q\right)(X)\right\}=W_{2}(X, Y) Z . \tag{42}
\end{align*}
$$

Using equation (21) in above equation, we have

$$
\begin{equation*}
R(X, Y) Z=g(X, Z) Y-g(Y, Z) X+\frac{1}{n-1}\left\{\eta(X)\left(\nabla_{Z} Q\right)(Y)-\eta(Y)\left(\nabla_{Z} Q\right)(X)\right\} \tag{43}
\end{equation*}
$$

Conversely, retreating the steps, we can show that W_{2}-curvature tensor is an irrotational.

Now if $\eta(X)\left(\nabla_{Z} Q\right)(Y)=\eta(Y)\left(\nabla_{Z} Q\right)(X)$, then equation (43) reduces to $R(X, Y) Z=-(g(Y, Z) X-g(X, Z) Y)$, which shows that Kenmotsu manifold is locally isometric to hyperbolic space $\mathrm{H}^{\mathrm{n}}(-1)$.

References

[1] Boothby, M. M., and Wong, R. C., On contact manifolds, Ann. Math., 68 (1958), 421-450.
[2] Blair, D. E. , Contact manifolds in Riemannian geometry, Lecture notes in Math, 509, Springer Verlag, 1976.
[3] De, U. C., and Pathak, G., On 3-dimensional Kenmotsu manifolds, Indian J. Pure Appl. Math., 35 (2004), 159-165.
[4] De, U. C., On φ-symmetric Kenmotsu Manifolds, International Electronic Journal of Geometry, 1 no. 1 (2008), 33-38.
[5] De, U. C., Yildiz, A., and Yaliniz, Funda, On φ-recurrent Kenmotsu manifolds, Turk J. Math., 33 (2009), 17-25.
[6] Jun, J. B., De, U.C., and Pathak, G., On Kenmotsu manifolds, J. Korean Math. Soc., 42 (2005), 435-445.
[7] Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93-103.
[8] Mishra, R.S., Structures on a differentiable manifolds and their applications, Chandrama Prakashan, 50-A, Bairampur House, Allahabad, 1984.
[9] Özgur, C. and De, U.C., On the quasi conformal curvature tensor of a Kenmotsu manifold, Mathematica Pannonica, 17 no. 2 (2006), 221-228.
[10] Pokhariyal, G. P. and Mishra R.S., The curvature tensors and their relativistic significance, Yokohoma Math. J., 18 (1970), 105-108.
[11] Sasaki. S. and Hatakeyama, Y., On differentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Math. J., 13 (1961), 281-294.
[12] Sinha, B. B. and Shrivastava, A. K., Curvatures on Kenmotsu manifold, Indian J. Pure Appl. Math., 22 no. 1 (1991), 23-28.

[^0]: * 2000 Mathematics Subject Classification. Primary 53C25.
 ${ }^{\dagger}$ Email: rnsinghmp@rediffmail.com
 * Corresponding author. E-mail: shravan.math@gmail.com
 ${ }^{\text {§ }}$ Email: math.giteshwari@gmail.com

