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Abstract 

The purpose of this paper is to study some properties of 

W2-curvature tensor in Riemannian and Kenmotsu manifolds. 
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1. Introduction 
 

In 1958, Boothby and Wong [1] studied odd dimensional manifolds with contact 

and almost contact structures from topological point of view. Sasaki and Hatakeyama 

[11] re-investigated them using tensor calculus in 1961. In 1972, K. Kenmotsu studied 

a class of contact Riemannian manifold and call them Kenmotsu manifold [7]. He 

proved that if Kenmotsu manifold satisfies the condition R(X, Y).R = 0, then the 
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manifold is of negative curvature -1, where R is the Riemannian curvature tensor of 

type (1, 3) and R(X, Y) denotes the derivation of the tensor algebra at each point of 

the tangent space. The properties of Kenmotsu manifold have been studied by several 

authors such as De [4], Sinha and Shrivastava [12], Jun, De and Pathak [6], De and 

Pathak [3], De, Yildiz and Yaliniz [5], Ö zgur and De [10] and many others. In this 

paper, we consider Kenmotsu manifold satisfying the conditions R(ξ, X).W2 = 0, 

W2(ξ, X).R =0, P(ξ, X).W2 = 0 and W2(ξ, X).P = 0, where W2 and P denotes the W2-

curvature tensor and projective curvature tensor respectively. Also we have studied 

the W2-curvature tensor in a Riemannian manifold and obtained the relation between 

different curvature tensors. In last section, we have shown that the W2-curvature 

tensor in a Kenmotsu manifold M
n
 is irrotational if and only if R(X, Y)Z = g(X, Z)Y- 

g(Y, Z)X + 
1

1

n
{ η(X)( Z Q)(Y) - η(Y)( Z Q)(X)}. 

 

2. Preliminaries 
 

If on an odd dimensional differentiable manifold M
n
 (n = 2m+1), of 

differentiability class C
r+1

, there exists a vector valued real linear function φ, a 1-form 

η, the associated vector field ξ and the Riemannian metric g satisfying 

 φ
2
X = -X + η(X)ξ,          (1) 

 η(φX) = 0,           (2) 

 g(φX, φY) = g(X, Y) - η(X) η(Y),                   (3) 

for arbitrary vector fields X and Y, then (M
n
, g) is said to be an almost contact metric 

manifold [2] and the structure (φ, ξ, η, g) is called an almost contact metric structure 

to M
n
. 

In view of equations (1), (2) and (3), we have 

 η(ξ) = 1, g(X, ξ) = η(X), φ(ξ) = 0.                     (4) 

An almost contact metric manifold is called Kenmotsu manifold [7] if 

 ( Xφ) =  -η(Y)φX - g(X, φY)ξ,                   (5) 

 ( Xξ) =  X – η(X)ξ,          (6) 

 ( Xη)(Y) = g(X, Y) - η(X) η(Y),                   (7) 

where   is the Levi-Civita connection of g. Also the following relations hold in 

Kenmotsu manifold [3], [5], [6] 
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 R(X, Y)ξ = η(X)Y - η(Y)X,                    (8) 

 R(ξ, X)Y =  η(Y)X - g(X, Y)ξ = - R(X, ξ)Y,                          (9) 

 η(R(X, Y)Z) =  η(Y)g(X, Z) – η(X)g(Y, Z),                (10) 

 S(X, ξ) = -(n-1) η(X),                   (11) 

 Qξ =  - (n-1)ξ,                    (12) 

where Q is the Ricci operator, i.e. g(QX, Y) = S(X, Y) and 

 S(φX, φY) = S(X, Y) + (n-1) η(X)η(Y),                (13) 

for arbitrary vector fields X, Y, Z on M
n
. 

A Kenmotsu manifold is said to be η-Einstein if its Ricci tensor S is of the form 

 S(X, Y) = ag(X, Y) + b η(X)η(Y)                 (14) 

for arbitrary vector fields X and Y, where a and b are smooth functions on M
n
. 

Projective curvature tensor P, concircular curvature tensor C and the conformal 

curvature tensor V are given by [8]  

 P(X, Y)Z = R(X, Y)Z - 
1

1

n
[S(Y, Z)X – S(X, Z)Y].              (15) 

 P(ξ, Y)Z = -{g(Y, Z) +
1

1n 
 S(Y, Z)}ξ,                (16) 

 P(X, Y)ξ = 0.                    (17) 

 C(X, Y)Z = R(X, Y)Z - 
)1( nn

r
{ g(Y, Z)X - g(X, Z)Y }.              (18) 

 V(X, Y)Z  

=  R(X, Y)Z - 
2

1

n
{S(Y, Z)X - S(X, Z)Y + g(Y, Z)QX - g(X, Z)QY}   

        + 
)2)(1(  nn

r
{g(Y, Z)X - g(X, Z)Y}.               (19) 
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3. W2 – Curvature Tensor of a Kenmotsu Manifold 

Pokhariyal and Mishra [10] have defined a new curvature tensor 'W2 as 

'W2(X, Y, Z, U) = 'R(X, Y, Z, U) + 
1

1

n
[g(X, Z)S(Y, U) – g(Y, Z)S(X, U)],  

(20) 

for arbitrary vector fields X, Y, Z and U, where S is the Ricci tensor of type (0, 2) and  

      'W2(X, Y, Z, U) = g(W2(X, Y)Z, U) and 'R(X, Y, Z, U) = g(R(X, Y)Z, U) 

called W2-curvature tensor of  M
n
. 

Proposition:  On an n- dimensional Kenmotsu manifold M
n
, 

       η(W2(X, Y)Z) = 0. 

Proof:  From equation (20), we have 

 W2(X, Y)Z = R(X, Y)Z + 
1

1

n
[g(X, Z)QY – g(Y, Z)QX].   (21) 

Taking the inner product of above equation with ξ and using equations (10), (11) 

and (12), we get 

 η(W2(X, Y)Z) = 0.         (22) 

Theorem 1:  On an n- dimensional Kenmotsu manifold M
n
, 

   R(ξ, X).W2 = 0 if and only if W2 = 0. 

Proof:  Let on an n- dimensional Kenmotsu manifold R(ξ, X).W2 = 0, then 

R(ξ, X)W2(Y, Z)U - W2(R(ξ, X)Y, Z) U - W2(Y, R(ξ, X)Z)U - W2(Y, Z)R(ξ, X)U =0. 

             (23) 

From equations (9) and (23), we have 

η(W2(Y, Z)U)X - 'W2(Y, Z, U, X)ξ  - η(Y)W2(X, Z)U  

 + g(X, Y)W2(ξ, Z)U - η(Z)W2(Y, X)U + g(X, Z)W2(Y, ξ)U 

  – η(U)W2(Y, Z)X + g(X, U)W2(Y, Z)ξ = 0.       (24) 
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Taking the inner product of above equation with ξ, we get 

 η(W2(Y, Z)U) η(X) - 'W2(Y, Z, U, X)  - η(Y) η(W2(X, Z)U)  

 + g(X, Y) η(W2(ξ, Z)U) - η(Z) η(W2(Y, X)U)  

 + g(X, Z) η(W2(Y, ξ)U) – η(U) η(W2(Y, Z)X) + g(X, U) η(W2(Y, Z)ξ) = 0, 

       (25) 

which on using equation (22) gives 

 'W2(Y, Z, U, X) = 0, 

i.e. W2 = 0. 

Conversely, suppose W2 = 0, then from equation (23), we have  

 R(ξ, X).W2 = 0. 

This completes the proof. 

 

Theorem 2:  An n-dimensional Kenmotsu manifold M
n
 satisfying W2(ξ, X).R =  0, is 

an Einstein manifold.  

Proof: Let W2(ξ, X).R =  0, then we have 

 W2(ξ, X).R(Y, Z)U – R(W2(ξ, X)Y, Z)U – R(Y, W2(ξ, X)Z)U 

 - R(Y, Z) W2(ξ, X)U  =  0.        (26) 

 

Now putting X = ξ in equation (21) and using equations (9) and (12), we obtain 

W2(ξ, Y)Z = η(Z)[Y + 
1

1

n
QY].      

           (27) 

Now from equations (26) and (27), we have 

 η(R(Y,Z)U){X + 
1

1

n
QX} – η(Y){R(X, Z)U + 

1

1

n
R(QX, Z)U} 

 - η(Z){R(Y, X)U +
1

1

n
R(Y, QX)U} - η(U){R(Y, Z)X  + 

1

1

n
R(Y,  Z)QX} 

= 0,                                                                                                              (28) 
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which on taking the inner product with ξ and using equations (4), (11) and (12) gives 

- η(U){ η(Z)g(X, Y) - η(Y)g(X, Z)} - 
1

1

n
{η(Z)S(X, Y) - η(Y)S(X, Z)}η(U) = 0. 

      (29) 

Putting U = Z = ξ in above equation and using equations (4) and (11), we get 

 S(X, Y) = (1-n) g(X, Y),            (30) 

which shows that M
n
 is an Einstein Manifold. 

Theorem 3: An n-dimensional Kenmotsu manifold M
n 
satisfying P(ξ, X).W2 = 0, is an 

Einstein manifold. 

Proof: Let P(ξ, X).W2 = 0, then  

 P(ξ, X)W2(Y,Z)U - W2(P(ξ, X)Y, Z)U - W2(Y, P(ξ, X)Z)U 

  - W2(Y,Z)P(ξ, X)U = 0.       (31) 

Using equations (11) and (16) in above equation, we have 

-'W2(Y, Z, U, X)ξ - 
1

1

n
'W2(Y, Z, U, QX)ξ  

+ {g(X, Y)  +  
1

1

n
S(X, Y)}W2(ξ, Z)U  

+ {g(X, Z) +
1

1

n
S(X, Z )}W2(Y, ξ)U  

+{g(X, U) + 
1

1

n
S(X, U)}W2(Y, Z)ξ =0.                                                  (32) 

Now taking the inner product of above equation with ξ and using equation (22), 

we get 

 'W2(Y, Z, U, QX) = (1-n) 'W2(Y, Z, U, X), 

which on using equation (21), gives 

 g(QX, R(Y, Z)U) + 
1

1

n
{g(Y, U)g(QX, QZ) – g(Z, U)g(QX, QY)} 

= (1-n)[ g(X, R(Y, Z)U) + 
1

1

n
{g(Y, U)g(X, QZ) – g(Z, U)g(X, QY)}]. 

Putting Z = U = ξ in above equation and using equations (4), (8) and (11), we get 

 -S(X, QY) = 2(n-1)S(X, Y) + (n-1)
2
g(X, Y), 
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which on using equation (11), gives 

 S(X, Y) = (1-n)g(X, Y). 

This completes the proof. 

Theorem 4:  An n-dimensional Kenmotsu manifold M
n
 satisfying W2(ξ, X).P = 0, is 

an Einstein manifold. 

Proof: Let W2(ξ, X).P = 0, then we have 

 W2(ξ, X)P(Y, Z)U – P(W2(ξ, X)Y, Z)U – P(Y, W2(ξ, X)Z)U  

   – P(Y, Z)W2(ξ, X)U = 0,                  (33) 

which on using equation (27), gives 

 η(P(Y, Z)U){X + 
1

1

n
QX} - η(Y){P(X, Z)U + 

1

1

n
P(QX, Z)U} 

- η(Z){ P(Y, X)U + 
1

1

n
 P(Y, QX)U} - η(U){P(Y, Z)X + 

1

1

n
P(Y, Z)QX} = 0. (34) 

Now taking the inner product of above equation with ξ and using equation (11), 

we get 

 η(Y){ η(P(X, Z)U) + 
1

1

n
 η (P(QX, Z)U)} 

 + η(Z){ η(P(Y, X)U) + 
1

1

n
 η(P(Y, QX)U)}  

 +  η(U){ η(P(Y, Z)X) + 
1

1

n
 η(P(Y, Z)QX)} = 0.      (35) 

Putting U = Z = ξ in above equation and using equations (15), (16) and (17), we 

get 

S(QX, Y) = (n-1)
2
g(X, Y), 

which on using equation (11), gives 

  S(X, Y) = (1-n)g(X, Y). 

This completes the proof. 

Theorem 5: The W2-curvature tensor and projective curvature tensor of the 

Riemannian manifold M
n
 are linearly dependent if and only if M

n
 is an Einstein 

Manifold. 
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Proof: Let 

 W2(X, Y)Z = α P(X, Y)Z, 

where α being any non-zero constant. In view of equations (15) and (21), above 

equation assumes the form 

(1- α) R(X, Y)Z + 
1

1

n
 {g(X, Z)QY - g(Y, Z)QX} + 

1n


{S(Y, Z)X - S(X, Z)Y} = 0, 

which can be written as  

 (1- α) 'R(X, Y, Z, U) + 
1

1

n
{g(X, Z)S(Y, U) - g(Y, Z)S(X, U)}  

     + 
1n


{S(Y, Z)g(X, U) - S(X, Z)g(Y, U) } = 0. 

Now putting X = U = ei in above equation and taking summation over i, 1 ≤ i ≤ n, 

we get 

 (1- α) S(Y, Z) + 
1

1

n
{S(Y, Z) - r g(Y, Z)}+ 

1n


{n S(Y, Z)- S(Y, Z)} = 0, 

i.e. S(Y, Z) = 
n

r
g(Y, Z)   QY = 

n

r
Y, 

which shows that M
n
 is an Einstein manifold. 

Conversely, let M
n
 be an Einstein manifold, i.e. S(Y, Z) = 

n

r
g(Y, Z) and QY = 

n

r
Y, then from equations (15) and (21), we have 

 W2(X, Y)Z = α P(X, Y)Z. 

Theorem 6:  A necessary and sufficient condition for a Riemannian manifold M
n
 to 

be an Einstein manifold is that the W2-curvature tensor and concircular curvature 

tensor C are linearly dependent. 

Proof:  Let W2(X, Y)Z = α C(X, Y)Z, 

where α being any non-zero constant. In consequence of equations (18) and (21), we 

have 

  (1- α) R(X, Y)Z + 
1

1

n
{ g(X, Z)QY - g(Y, Z)QX } 
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     + 
)1( nn

r
{ g(Y, Z)X - g(X, Z)Y }= 0, 

from which, we get 

 (1- α) 'R(X, Y, Z, U) + 
1

1

n
{ g(X, Z)S(Y, U) - g(Y, Z)S(X, U) } 

     + 
)1( nn

r
{ g(Y, Z)g(X, U) - g(X, Z)g(Y, U) }= 0. 

Now putting X = U = ei in above equation and taking the summation over i, 1 ≤ i 

≤ n, we get 

 
)1(

1)1)(1(





n

n 
 S(Y, Z) + 

)1(

})1{(





nn

rnn 
g(Y, Z) = 0, 

which can be written as 

 S(Y, Z) = 
n

k
g(Y, Z), 

where 
}1)1)(1{(

})1{(










n

rnn
k . This shows that Riemannian manifold is an Einstein 

manifold. Converse part is obvious from the equations (18) and (21). 

Theorem 7:  A Riemannian manifold M
n
 becomes an Einstein manifold if and only if 

conformal curvature tensor and W2-curvature tensor of the manifold are linearly 

dependent. 

Proof:  Let W2(X, Y)Z = α V(X, Y)Z. 

The above equation on straight forward calculations, gives 

 (1- α) 'R(X, Y, Z, U) + 
1

1

n
{g(X, Z) S(Y, U) – g(Y, Z) S(X, U)} 

   + 
)2( n


{ S(Y, Z) g(X, U) - S(X, Z) g(Y, U) + g(Y, Z)S(X, U)  

- g(X, Z)S(Y, U)} - 
)2)(1(  nn

r
{g(Y, Z)g(X, U) - g(X, Z)g(Y, U)}= 0. 

Now putting X = U = ei  in above equation and taking summation over i, 1 ≤ i ≤ n, 

we get 
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 (1- α) S(Y, Z) + 
1

1

n
{S(Y, Z) - r g(Y, Z)} 

   +
)2( n


{n S(Y, Z) - S(Y, Z) + r g(Y, Z) - S(Y, Z)}  

    - 
)2)(1(  nn

r
{n g(Y, Z) - g(Y, Z)} = 0, 

which reduces to  

 S(Y, Z) = 
n

r
 g(Y, Z)   QY = 

n

r
Y. 

This shows that Riemannian manifold is an Einstein manifold. Converse part is 

obvious from equations (19) and (21). 

Corollary:  In an n-dimensional Riemannian manifold M
n
, the following statements 

are equivalent- 

(i)  M
n
 is an Einstein manifold, 

(ii) W2- curvature tensor and projective curvatures are linearly dependent, 

(iii) W2- curvature tensor and concircular curvature tensors are linearly dependent, 

(iv) W2- curvature tensor and conformal curvature tensors are linearly dependent. 

 

4. The Irrotational W2-Curvature Tensor 

Definition: Let   be a Riemannian connection. The rotation (Curl) of W2-

curvature tensor on Riemannian manifold M
n
 is defined as 

 RotW2 = ( U W2)(X, Y)Z + ( X W2)(U, Y)Z  

   + ( Y W2)(X, U)Z - ( Z W2)(X, Y)U.    (36) 

In consequence of Bianchi's second identity for Riemannian connection  , 

equation (36) becomes 

 RotW2 =    - ( Z W2)(X, Y)U.                 (37) 

If the W2-curvature tensor is irrotational, then curl W2 = 0 and hence 

 ( Z W2)(X, Y)U = 0, 
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which gives 

 Z (W2(X, Y)U) = W2( Z X, Y)U + W2(X, Z Y)U  + W2(X, Y) Z U. (38) 

Theorem 8:  The W2-curvature tensor in a Kenmotsu manifold M
n
 is irrotational if 

and only if  

R(X, Y)Z = g(X, Z)Y- g(Y, Z)X + 
1

1

n
{ η(X)( Z Q)(Y) - η(Y)( Z Q)(X)  }.  

In particular, if η(X)( Z Q)(Y) = η(Y)( Z Q)(X), then the manifold is locally 

isometric to the hyperbolic space H
n
(-1). 

Proof:  Let W2-curvature tensor in M
n
 be irrotational then putting U = ξ in equation 

(38), we get 

 Z (W2(X, Y) ξ) = W2( Z X, Y)ξ + W2(X, Z Y)ξ  + W2(X, Y) Z ξ. (39) 

Putting Z = ξ in equation (21) and using equations (4) and (8), we get 

 W2(X, Y)ξ = { η(X)Y - η(Y)X} + 
1

1

n
{ η(X)QY - η(Y)QX }.  (40) 

Using above equation in equation (39), we obtain 

 ( Z  η)(X)Y - ( Z  η)(Y)X + 
1

1

n
{( Z  η)(X)QY - ( Z  η)(Y)QX  

    + η(X)( Z Q)(Y) - η(Y)( Z Q)(X) }  

 = W2(X, Y)Z - η(Z)[{ η(X)Y - η(Y)X}+ 
1

1

n
{ η(X)QY - η(Y)QX }],  (41) 

which on using equation (7) gives 

 g(X, Z)Y -g(Y, Z)X + 
1

1

n
{g(X, Z)QY - g(Y, Z)QX + η(X)( Z Q)(Y) 

        - η(Y)( Z Q)(X) } =  W2(X, Y)Z.     (42) 

Using equation (21) in above equation, we have 

R(X, Y)Z = g(X, Z)Y- g(Y, Z)X + 
1

1

n
{ η(X)( Z Q)(Y) - η(Y)( Z Q)(X) }.   (43) 

Conversely, retreating the steps, we can show that W2-curvature tensor is an 

irrotational. 
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Now if η(X)( Z Q)(Y) = η(Y)( Z Q)(X), then equation (43) reduces to 

 R(X, Y)Z = -(g(Y, Z)X - g(X, Z)Y), 

which shows that Kenmotsu manifold is locally isometric to hyperbolic space H
n
(-1). 
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