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Abstract

In this paper we will establish a companion for the generalized Os-
trowski and the generalized trapezoid inequalities, including functions
of bounded variation, Lipschitzian, convex and absolutely continuous
functions, which generalizes Barnett et al.’s some results (N.S. Barnett
et al., Math. Comput. Modeling 50 (2009) 179-187). Applications for
weighted means are also given.
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1. Introduction

In 2000, Dragomir [2] answered to the problem of approximating the Stieltjes

integral
∫ b
a
f(x)du(x) by the quantity [u(b) − u(a)]f(x), which is a natural

generalization of the Ostrowski problem [3] analysed in 1937. He obtained the
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following result:∣∣∣∣∫ b

a

f(t)du(x)− [u(b)− u(a)]f(x)

∣∣∣∣
≤ H

[
(x− a)r

x∨
a

(f) + (b− x)r
b∨
x

(f)

]
(1.1)

≤ H



[(x− a)r + (b− x)r]

[
1
2

b∨
a

(f) + 1
2

∣∣∣∣ x∨
a

(f)−
b∨
x

(f)

∣∣∣∣] ;

[(x− a)qr + (b− x)qr]
1
q

[(
x∨
a

(f)

)p
+

(
b∨
x

(f)

)p] 1
p

,

if p > 1, 1
p

+ 1
q

= 1;[
1
2
(b− a) +

∣∣x− a+b
2

∣∣]r b∨
a

(f),

for each x ∈ [a, b], provided f is of bounded variation on [a, b], while u : [a, b]→
R is r-H-Hölder continuous, i.e., we recall that:

|u(x)− u(y)| ≤ H|x− y|r for each x, y ∈ [a, b].

From a different view point, the problem of approximating the Stieltjes
integral

∫ b
a
f(x)du(x) by the generalized trapezoid rule [(u(b) − u(x))f(b) +

(u(x) − u(a))f(a)] was considered by Dragomir et al. [4]. The following in-
equality was obtained:∣∣∣∣∫ b

a

f(x)du(x)− [(u(b)− u(x))f(b) + (u(x)− u(a))f(a)]

∣∣∣∣
≤ H

[
1

2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣]r b∨
a

(f) ≤ H(b− a)r
b∨
a

(f)

for each x ∈ [a, b], provided f is of bounded variation on [a, b] while u : [a, b]→
R is r-H-Hölder continuous.

For a Riemann-Stieltjes integrable function f : [a, b] → R and for a given
x ∈ [a, b], it is natural to investigate the distances between the quantities

f(x),
1

u(b)− u(a)

∫ b

a
f(x)du(x) and

(u(b)− u(x))f(b) + (u(x)− u(a))f(a)

u(b)− u(a)
(1.2)
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respectively, and to seek sharp upper bounds for these distances in terms of
different measure that can be associated with f , where f is restricted to partic-
ular classes of functions including functions of bounded variation, Lipschitzian,
convex and absolutely continuous functions.

The authors of [2, 4] have been given sharp upper bounds for absolute value
between the first quantity and the second, the second and the third in (1.2).

The main aim of this paper is to provide sharp upper bounds for absolute
value of the remaining difference between the first quantity and the third in
(1.2), that is,

Ψf (x) := f(x)− (u(b)− u(x))f(b) + (u(x)− u(a))f(a)

u(b)− u(a)
, x ∈ [a, b]. (1.3)

As applications, some bounds for the absolute value of the difference

Φf (x) :=
n∑
i=1

pif(xi)−
(u(b)−

∑n
i=1 piu(xi))f(b) + (

∑n
i=1 piu(xi)− u(a))f(a)

u(b)− u(a)
,

(1.4)

where xi ∈ [a, b], pi ≥ 0, i ∈ {1, 2, · · · , n} and Σn
i=1pi = 1, are also given.

Remark Using the Stieltjes integral by Dragomir [2], generalization of the
Ostrowski problem [3] was considered, so our results are natural to generalize
some results obtained by Barnett et al.’s some results [1].

2. The case when f is of bounded variation and

u Hölder continuous

The following representation holds.

Lemma 2.1 Let f is of bounded function on [a, b] and let T : [a, b]2 → R be
given by

T (x, s) :=

{
u(x)− u(a), if s ∈ [a, x],

u(x)− u(b), if s ∈ [x, b].
(2.1)
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Then we have the following representation,

Ψf (x) =
1

u(b)− u(a)

∫ b

a

T (x, s)df(s), x ∈ [a, b], (2.2)

where the integral is considered in the Riemann-Stieltjes sense.

Proof. If f is bounded on [a, b], the for any t ∈ [a, b], the Riemann-Stieltjes

integral
∫ x
a
df(s) = f(x)− f(a),

∫ b
x
df(s) = f(b)− f(x). It follows that∫ b

a

T (x, s)df(s) = (u(x)− u(a))

∫ x

a

df(s) + (u(x)− u(b))

∫ b

x

df(s)

= (u(b)− u(a))Ψf (x),

for any t ∈ [a, b]. 2

The following provides a sharp bound for the absolute value of Ψf where
f is of bounded variation and u is r-H-Hölder continuous.

Theorem 2.2 If f : [a, b] → R is of bounded variation and u : [a, b] → R is
r-H-Hölder continuous on the interval [a, b], i.e.,

|u(x)− u(y)| ≤ H|x− y|r for each x, y ∈ [a, b].

Then

|Ψf (x)| ≤ 1

|u(b)− u(a)|

[
|u(x)− u(a)|

x∨
a

(f) + |u(x)− u(b)|
b∨
x

(f)

]
(2.3)

≤ H

|u(b)− u(a)|

[
(x− a)r

x∨
a

(f) + (b− x)r
b∨
x

(f)

]
(2.4)

≤ H

|u(b)− u(a)|



[(x− a)r + (b− x)r]

[
1
2

b∨
a

(f) + 1
2

∣∣∣∣ x∨
a

(f)−
b∨
x

(f)

∣∣∣∣] ;

[(x− a)qr + (b− x)qr]
1
q

[(
x∨
a

(f)

)p

+

(
b∨
x

(f)

)p
] 1

p

,

if p > 1, 1
p + 1

q = 1;

[
1
2 (b− a) +

∣∣x− a+b
2

∣∣]r b∨
a

(f),

(2.5)



A companion for the generalized Ostrowski 117

for any x ∈ [a, b]. The constant 1/2 is also the best possible in both branches
of (2.5).

Proof. Utilizing the representation (2.2), we have

|Ψf (x)| =
1

|u(b)− u(a)|

∣∣∣∣(u(x)− u(a))

∫ x

a
df(s) + (u(x)− u(b))

∫ b

x
df(s)

∣∣∣∣
≤ 1

|u(b)− u(a)|

[
|u(x)− u(a)|

∣∣∣∣∫ x

a
df(s)

∣∣∣∣+ |u(x)− u(b)|
∣∣∣∣∫ b

x
df(s)

∣∣∣∣]
≤ 1

|u(b)− u(a)|

[
|u(x)− u(a)|

x∨
a

(f) + |u(x)− u(b)|
b∨
x

(f)

]

≤ H

|u(b)− u(a)|

[
(x− a)r

x∨
a

(f) + (b− x)r
b∨
x

(f)

]

which implies the inequalities (2.3) and (2.4).

Combination inequality (1.1) and the above inequality, we have inequality
(2.5).

Now, we prove that The constant 1/2 is also the best possible in both
branches of (2.5). Consider the function f0(t) = |t− (a+ b)/2| which is of
bounded variation on [a, b], with f0(a) = f0(b) = (b−a)/2 and

∨b
a(f0) = b−a.

And u0(x) = x which is 1-1-Hölder continuous. According to the proof of
the best possibility of the constant in Theorem 1 in [1], the sharpness of the
constant 1/2 in the inequality (2.5) is the best possible. 2

As application, we give the case when f and u have some slight variations
as follows.

Corollary 2.3 If f : [a, b]→ R is L1-Lipschitzian on [a, x] and L2-Lipschitzian
on [x, b], L1, L2 > 0, x ∈ [a, b], while the function u : [a, b]→ R satisfies some
local Hölder continuous, namely,

|u(t)− u(a)| ≤ H1|t− a|r1 for any t ∈ [a, x] (2.6)

and

|u(b)− u(t)| ≤ H2|b− t|r2 for any t ∈ [x, b] (2.7)
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where H1, H2 > 0, r1, r2 ∈ (−1,+∞), then

|Ψf (x)| ≤ 1

|u(b)− u(a)|
[L1|u(x)− u(a)|(x− a) + L2|u(x)− u(b)|(b− x)] (2.8)

≤ 1

|u(b)− u(a)|
[
H1L1(x− a)r1+1 + H2L2(b− x)r2+1

]
(2.9)

≤ 1

|u(b)− u(a)|



max{H1L1, H2L2}
[
(x− a)r1+1 + (b− x)r2+1

]
;

[(H1L1)p + (H2L2)p]
1
p [(x− a)qr1 + (b− x)qr2 ]

1
q ,

if p > 1, 1
p + 1

q = 1;

max{(x− a)r1+1, (b− x)r2+1}(H1L1 + H2L2),

(2.10)

for any x ∈ [a, b].

Proof. It is well known that if g : [α, β] → R is L-Lipschitzian, then g is
of bounded variation and

∨β
α(g) ≤ L(β − α). Therefore, by the first inequal-

ity (2.4), we get the corresponding inequality (2.8). Using the local Hölder
continuity of the function u, we have inequality (2.9) from (2.8). The other
inequalities follow by the Hölder inequality and the details are omitted. 2

Corollary 2.4 If f : [a, b]→ R is monotonic nondecreasing, while u : [a, b]→
R is L-Lipschitzian on [a, b], where L > 0, then

|Ψf (x)| ≤ 1

|u(b)− u(a)|
[|u(x)− u(a)|(f(x)− f(a)) + |u(x)− u(b)|(f(b)− f(x))]

≤ L

|u(b)− u(a)|
[(x− a)(f(x)− f(a)) + (b− x)(f(b)− f(x))]

≤ L

|u(b)− u(a)|



[
1
2 (b− a) +

∣∣x− a+b
2

∣∣] [f(b)− f(a)] ;

[(x− a)p + (b− x)p]
1
p [(f(x)− f(a))q + (f(b)− f(x))q]

1
q ,

if p > 1, 1
p + 1

q = 1;

(b− a)
[
1
2 (f(b)− f(a)) +

∣∣∣f(x)− f(a)+f(b)
2

∣∣∣] ,
for any x ∈ [a, b].

Proof. It is easy to observe that we obtain Corollary 2.4 by using Theorem
2.2 and Hölder inequality, so the details are omitted. 2
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3. The case when f is absolutely continuous

and u Hölder continuous

When f is absolutely continuous, the following representation holds.

Lemma 3.1 If f is of bounded function on [a, b]. Then we have the following
representation,

Ψf (x) =
1

u(b)− u(a)

∫ b

a

T (x, s)f ′(s)ds, x ∈ [a, b], (3.1)

where the integral is considered in the Lebesgue sense and where the kernel
T : [a, b]2 → R has been defined in (2.1).

We cite the following Lebesgue norms defined in Section 3 in [1] as follows.

‖ f ′ ‖[a,b],∞:= ess sup
x∈[a,b]

|f ′(x)|, ‖ f ′ ‖[a,b],p:=
(∫ b

a

|f ′(x)|pdx
) 1

p

, p ≥ 1.

Theorem 3.2 If f is absolutely continuous on [a, b], u : [a, b] → R is r-H-
Hölder continuous on [a, b], where H > 0 and r ∈ (−1,∞). Then we have the
following inequalities:

|Ψf (x)| ≤ 1

|u(b)− u(a)|
[
|u(x)− u(a)| ‖ f ′ ‖[a,x],1 +|u(b)− u(x)| ‖ f ′ ‖[x,b],1

]
(3.2)

≤ H

|u(b)− u(a)|
[
(x− a)r ‖ f ′ ‖[a,x],1 +(b− x)r ‖ f ′ ‖[x,b],1

]
(3.3)

≤ H

|u(b)− u(a)|
W (x), x ∈ [a, b], (3.4)

where W (x) is defined by

W (x) :=

{
(x− a)r+1 ‖ f ′ ‖[a,x],∞, if f ′ ∈ L∞[a, b]

(x− a)r+
1
q ‖ f ′ ‖[a,x],p, if f ′ ∈ Lp[a, b], p > 1, 1

p
+ 1

q
= 1;

+

{
(b− x)r+1 ‖ f ′ ‖[x,b],∞, if f ′ ∈ L∞[a, b],

(b− x)r+
1
β ‖ f ′ ‖[x,b],α, if f ′ ∈ Lα[a, b], α > 1, 1

α
+ 1

β
= 1;

and W (x) should be seen as all four possible combinations.
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Proof. By Lemma 3.1, we have

|Ψf (x)| =

∣∣∣∣ 1

u(b)− u(a)
[(u(x)− u(a))(f(x)− f(a)) + (u(b)− u(x))(f(b)− f(x))]

∣∣∣∣
=

∣∣∣∣ 1

u(b)− u(a)

[
(u(x)− u(a))

∫ x

a
f ′(s)ds + (u(b)− u(x))

∫ b

x
f ′(s)ds

]∣∣∣∣
≤ 1

|u(b)− u(a)|

[
|u(x)− u(a)|

∫ x

a
|f ′(s)|ds + |u(b)− u(x)|

∫ b

x
|f ′(s)|ds

]
≤ 1

|u(b)− u(a)|
[
|u(x)− u(a)| ‖ f ′ ‖[a,x],1 +|u(b)− u(x)| ‖ f ′ ‖[x,b],1

]
≤ H

|u(b)− u(a)|
[
(x− a)r ‖ f ′ ‖[a,x],1 +(b− x)r ‖ f ′ ‖[x,b],1

]
,

for x ∈ [a, b], which implies inequalities (3.2) and (3.3).

Utilizing (3.4) and (3.5) in [1] and the above inequality, we obtain the
desired inequality (3.4). 2

Corollary 3.3 If f is absolutely continuous on [a, b], the function u : [a, b]→ R
satisfies some local Hölder continuous defined by (2.6) and (2.7). Then we have

|Ψf (x)| ≤ 1

|u(b)− u(a)|
[
|u(x)− u(a)| ‖ f ′ ‖[a,x],1 +|u(b)− u(x)| ‖ f ′ ‖[x,b],1

]
≤ 1

|u(b)− u(a)|
[
H1(x− a)r1 ‖ f ′ ‖[a,x],1 +H2(b− x)r2 ‖ f ′ ‖[x,b],1

]
≤ 1

|u(b)− u(a)|
W (x), x ∈ [a, b],

where W (x) is defined by

W (x) :=

{
H1(x− a)r1+1 ‖ f ′ ‖[a,x],∞, if f ′ ∈ L∞[a, b]

H1(x− a)r1+
1
q ‖ f ′ ‖[a,x],p, if f ′ ∈ Lp[a, b], p > 1, 1

p
+ 1

q
= 1;

+

{
H2(b− x)r2+1 ‖ f ′ ‖[x,b],∞, if f ′ ∈ L∞[a, b],

H2(b− x)r2+
1
β ‖ f ′ ‖[x,b],α, if f ′ ∈ Lα[a, b], α > 1, 1

α
+ 1

β
= 1;

and W (x) should be seen as all four possible combinations.

Proof. It is similar to the proof of Theorem 3.2, so the details are omitted. 2
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4. The case when f is convex and u monotonic

nondecreasing and bi-Hölder

Before giving the case when f is convex and u is monotonic nondecreasing
and bi-Hölder, we establish sharp lower and upper bounds for the remaining
differences as follows:

Ω1(x) :=

∫ b

a

f(x)du(x)− (u(b)− u(a))f(x) (4.1)

and

Ω2(x) := [(u(b)− u(x))f(b) + (u(x)− u(a))f(a)]−
∫ b

a

f(x)du(x). (4.2)

Theorem 4.1 If f : [a, b] → R is a convex function on [a, b] with f ′−(b) and
f ′+(a) finite, and u : [a, b] → R is monotonic nondecreasing and bi-Hölder
function on [a, b], that is,

L1(y − x)r ≤ u(y)− u(x) ≤ L2(y − x)r, for x ≤ y, x, y ∈ [a, b], (4.3)

where L1,L2 > 0 and r > −1. Then we have the following inequalities:

1

r + 1
[L1(b− x)r+1f ′+(x)−L2(x− a)r+1f ′−(x)]

≤ Ω1(x) ≤ 1

r + 1
[L2(b− x)r+1f ′−(b)−L1(x− a)r+1f ′+(a)] (4.4)

and

1

r + 1
[L1(b− x)r+1f ′+(x)−L2(x− a)r+1f ′−(x)]

≤ Ω2(x) ≤ 1

r + 1
[L2(b− x)r+1f ′−(b)−L1(x− a)r+1f ′+(a)], (4.5)

where Ω1(x) and Ω2(x) are defined by (4.1) and (4.2). The constant 1/(r+ 1)
is sharp in both inequalities.
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Proof. First of all, we give the proof of inequality (4.4). It is easy to see
that for any locally absolutely continuous function f : [a, b]→ R, we have the
identity ∫ x

a

(u(t)− u(a))f ′(t)dt+

∫ b

x

(u(t)− u(b))f ′(t)dt

= (u(b)− u(a))f(x)−
∫ b

a

f(t)du(t) (4.6)

for any x ∈ (a, b), where f ′ is the derivation of f which exists a.e. on (a, b).
Since f is convex, then it is locally Lipschitzian and thus (4.6) holds. More-

over, for any x ∈ (a, b), we have the inequalities

f ′(t) ≤ f ′−(x) for a.e. t ∈ [a, x] (4.7)

and

f ′(t) ≥ f ′+(x) for a.e. t ∈ [x, b]. (4.8)

If we multiply (4.7) by u(t) − u(a) ≥ 0, t ∈ [a, x] and integrate on [a, x], by
(4.3), we get∫ x

a
(u(t)− u(a))f ′(t)dt ≤ f ′−(x)

∫ x

a
(u(t)− u(a))dt ≤ 1

r + 1
L2(x− a)r+1f ′−(x)(4.9)

and if we multiply (4.8) by u(b)− u(x) ≥ 0, t ∈ [x, b] and integrate on [x, b],
by (4.3), we get∫ b

x

(u(b)− u(t))f ′(t)dt ≥ f ′+(x)

∫ b

x

(u(b)− u(t))dt ≥ 1

r + 1
L1(b− x)r+1f ′+(x). (4.10)

If we subtract (4.10) from (4.9) and use the representation (4.6), we deduce
the first inequality in (4.4).

Since f is convex, then we have the inequalities

f ′(t) ≥ f ′+(a) for a.e. t ∈ [a, x] (4.11)

and

f ′(t) ≤ f ′−(b) for a.e. t ∈ [x, b]. (4.12)
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If we multiply (4.11) by u(t) − u(a) ≥ 0, t ∈ [a, x] and integrate on [a, x], by
(4.3), we get∫ x

a

(u(t)− u(a))f ′(t)dt ≥ f ′+(a)

∫ x

a

(u(t)− u(a))dt ≥ 1

r + 1
L1(x− a)r+1f ′+(a) (4.13)

and if we multiply (4.12) by u(b)− u(x) ≥ 0, t ∈ [x, b], integrate on [x, b] and
integrate on [a, x], by (4.3), we get∫ b

x

(u(b)− u(t))f ′(t)dt ≤ f ′−(b)

∫ b

x

(u(b)− u(t))dt ≤ 1

r + 1
L2(b− x)r+1f ′−(b). (4.14)

If we subtract (4.14) from (4.13) and use the representation (4.6), we deduce
the second inequality in (4.4).

Now we prove that the constant 1/(r + 1) is also the best possible in
inequalities (4.4). Consider the function f0(t) = k |t− (a+ b)/2| which is a
convex function on the interval [a, b], where k > 0, t ∈ [a, b]. Then

f ′0−

(
a+ b

2

)
= −k, f ′0+

(
a+ b

2

)
= k and f0

(
a+ b

2

)
= 0.

And u0(x) = x, then L1 = L2 = r = 1. Thus we have
∫ b
a
f0(t)dt = k(b−a)2/2.

If in (4.4) we choose f = f0, u = u0 and x = (a+ b)/2. According to the proof
of the best possibility of the constant in Lemma 2.1 in [5], the sharpness of
the constant 1/(r + 1) in the inequality (4.4) is the best possible.

Secondly, we give the proof of inequality (4.5). It is easy to see that for
any locally absolutely continuous function f : [a, b]→ R, we have the identity∫ b

a

(u(t)− u(x))f ′(t)dt = (u(b)− u(x))f(b)

+(u(x)− u(a))f(a)−
∫ b

a

f(t)du(t) (4.15)

for any x ∈ (a, b), where f ′ is the derivation of f which exists a.e. on (a, b).
Since f is convex, then it is locally Lipschitzian and thus (4.15) holds. The

following proof is similar to the proof of inequalities (4.4) and Lemma 2.1 in
[6], so the details are omitted. 2

In the following we give sharp lower and upper bounds for the remaining
difference (1.4) when f is convex and u is monotonic nondecreasing and bi-
Hölder.
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Theorem 4.2 If f : [a, b] → R is a convex function on [a, b] with f ′−(b) and
f ′+(a) finite, and u : [a, b] → R is monotonic nondecreasing and bi-Hölder
function on [a, b] defined by (4.3). Then we have the following inequalities:

1

u(b)− u(a)
[L1(x− a)r+1f ′+(a)−L2(b− x)r+1f ′−(b)] ≤ Ψf (x)

≤ 1

u(b)− u(a)
[L2(x− a)r+1f ′−(x)−L1(b− x)r+1f ′+(x)] (4.16)

where Ψf (x) is defined by (1.3). The constant 1 is the best possible on both
sides of (4.16).

Proof. From Lemma 2.1,

(u(b)− u(a))Φf (x) = (u(x)− u(a))(f(x)− f(a))

−(u(b)− u(x))(f(b)− f(x)), x ∈ [a, b]. (4.17)

Let x ∈ (a, b), then, by the convexity of f , we have

(x− a)f ′−(x) ≥ f(x)− f(a) ≥ (x− a)f ′+(a) (4.18)

and

(b− x)f ′−(b) ≥ f(b)− f(x) ≥ (b− x)f ′+(x). (4.19)

If we multiply (4.18) by u(x) − u(a) > 0 and (4.19) by u(b) − u(x) > 0, we
obtain

(u(x)− u(a))(x− a)f ′−(x) ≥ (u(x)− u(a))(f(x)− f(a))

≥ (u(x)− u(a))(x− a)f ′+(a) (4.20)

and

(u(b)− u(x))(b− x)f ′−(b) ≥ (u(b)− u(x))(f(b)− f(x))

≥ (u(b)− u(x))(b− x)f ′+(x). (4.21)

By (4.3), the above inequalities can rewrite

L2(x− a)r+1f ′−(x) ≥ (u(x)− u(a))(f(x)− f(a)) ≥ L1(x− a)r+1f ′+(a) (4.22)
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and

−L1(b− x)r+1f ′+(x) ≥ −(u(b)− u(x))(f(b)− f(x)) ≥ −L2(b− x)r+1f ′−(b). (4.23)

Finally, on adding (4.22) to (4.23), we deduce the desired result (4.16).
Now we prove that The constant 1 is also the best possible in inequali-

ties (4.16). Consider the function f0(t) = k |t− (a+ b)/2| which is a convex
function on [a, b], where k > 0, t ∈ [a, b]. Then

f ′0− (b) = −k, f ′0+ (a) = k, f ′0−

(
a+ b

2

)
= −k, f ′0+

(
a+ b

2

)
= k,

f0

(
a+ b

2

)
= 0 and f0(a) = f0(b) =

k(b− a)

2
.

And u0(x) = x, then L1 = L2 = r = 1. If in (4.4) we choose f = f0, u = u0
and x = (a+b)/2. According to the proof of the best possibility of the constant
in Theorem 3 in [1], the sharpness of the constant 1 in the inequality (4.16) is
the best possible. 2

5. Some applications

As applications, some bounds for the absolute value of the difference (1.4).

Proposition 5.1 If f : [a, b] → R is of bounded variation and u : [a, b] → R
is r-H-Hölder continuous on [a, b]. Then

|Φf (x)| ≤ H

|u(b)− u(a)|

[
1

2
(b− a) +

n∑
i=1

pi

∣∣∣∣xi − a+ b

2

∣∣∣∣
]r b∨

a

(f), (5.1)

where pi ≥ 0,
∑n

i=1 pi = 1, the constant 1/2 is also the best possible in both
branches of (5.1).

Proof. We use the third inequality in (2.5) to state:∣∣∣∣f(xi)−
(u(b)− u(xi))f(b) + (u(xi)− u(a))f(a)

u(b)− u(a)

∣∣∣∣
≤ H

|u(b)− u(a)|

[
1

2
(b− a) +

∣∣∣∣xi − a+ b

2

∣∣∣∣]r b∨
a

(f) (5.2)
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for i = 1, 2, · · · , n.
If we multiply (5.2) by pi ≥ 0, sum over i = 1 to n, we deduce the desired

result (5.1).
The fact that 1/2 is the best possible follows from the fact that it is the

best possible for n = 1. 2

In a similar manner, on utilizing the third inequality in (2.10), we can state
the following result:

Proposition 5.2 If f : [a, b]→ R is L-Lipschitzian on [a, b] and u : [a, b]→ R
is r-H-Hölder continuous on [a, b]. Then

|Φf (x)| ≤ HL(b− a)

|u(b)− u(a)|

[
1

2
(b− a) +

n∑
i=1

pi

∣∣∣∣xi − a+ b

2

∣∣∣∣
]r
,

where pi ≥ 0,
∑n

i=1 pi = 1.

Finally, on utilizing the inequality in (3.3), we can also state that:

Proposition 5.3 If f is absolutely continuous on [a, b], u : [a, b] → R is
r-H-Hölder continuous on [a, b]. Then

|Φf (x)| ≤ H

|u(b)− u(a)|

[
n∑
i=1

(xi − a)r ‖ f ′ ‖[a,xi],1 +
n∑
i=1

(b− xi)r ‖ f ′ ‖[xi,b],1

]
,

where pi ≥ 0,
∑n

i=1 pi = 1.
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