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1. Introduction

Let H(U) be the class of analytic functions in the unit disk U = {z ∈ C : |z| <
1} and let H[a, n] be the subclass of H(U) consisting of functions of the form:

f(z) = a+ anz
n + an+1z

n+1... (a ∈ C) . (1.1)

Also, let A be the subclass of H(U) consisting of functions of the form:

f(z) = z + a2z
2 + ..., (1.2)

and Let S∗ denote the starlike subclass of A.If f , g ∈ H (U), we say that f is
subordinate to g or f is superordinate to g, written f(z) ≺ g(z) if there exists
a Schwarz function ω, which (by definition) is analytic in U with ω(0) = 0
and |ω(z)| < 1 for all z ∈ U, such that f(z) = g(ω(z)), z ∈ U. Furthermore, if
the function g is univalent in U, then we have the following equivalence, (cf.,
e.g.,[3], [13] and [14]):

f(z) ≺ g(z)⇔ f(0) = g(0) and f(U) ⊂ g(U).

Let φ : C2 × U → C and h (z) be univalent in U. If p (z) is analytic in U
and satisfies the first order differential subordination:

φ
(
p (z) , zp

′
(z) ; z

)
≺ h (z) , (1.3)

then p (z) is a solution of the differential subordination (1.3). The univalent
function q (z) is called a dominant of the solutions of the differential subordi-
nation (1.3) if p (z) ≺ q (z) for all p (z) satisfying (1.3). A univalent dominant
q̃ that satisfies q̃ ≺ q for all dominants of (1.3) is called the best dominant. If
p (z) and φ

(
p (z) , zp

′
(z) ; z

)
are univalent in U and if p(z) satisfies first order

differential superordination:

h (z) ≺ φ
(
p (z) , zp

′
(z) ; z

)
, (1.4)

then p (z) is a solution of the differential superordination (1.4). An analytic
function q (z) is called a subordinant of the solutions of the differential su-
perordination (1.4) if q (z) ≺ p (z) for all p (z) satisfying (1.4). A univalent
subordinant q̃ that satisfies q ≺ q̃ for all subordinants of (1.4) is called the
best subordinant.
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For complex parameters a1, ..., aq; b1, ..., bs (bj /∈ Z−0 = {0,−1,−2, ...}; j =
1, ..., s ), we define the generalized hypergeometric function

qFs (a1, ..., ai, ..., aq; b1, ..., bs; z) by ( see [18] )the following infinite series:

qFs (a1, ..., ai, ..., aq; b1, ..., bs; z) =
∞∑
n=0

(a1)n .... (aq)n
(b1)n ... (bs)n

zn

n!
(1.5)

(q ≤ s+ 1; q, s ∈ N0 = N ∪ {0} ; z ∈ U) ,

where (x)n is the Pochhammer symbol ( or the shift factorial ) defined, in
terms of the Gamma function Γ, by

(x)n =
Γ(x+ n)

Γ(x)
=

{
1

x (x+ 1) ... (x+ n− 1)

(n = 0),

(n ∈ N).

Dziok and Srivastava [7] ( see also [8]) considered a linear operator

H(a1, ..., aq; b1, ..., bs) : A → A

defined by the following Hadamard product:

H(a1, ..., aq; b1, ..., bs)f (z) = h (a1, ..., ai, ..., aq; b1, ..., bs; z) ∗ f (z) , (1.6)

where

h (a1, ..., ai, ..., aq; b1, ..., bs; z) = z qFs (a1, ..., ai, ..., aq; b1, ..., bs; z) (1.7)

(q ≤ s+ 1; q, s ∈ N0; z ∈ U) .

if f (z) ∈ A is given by (1.2) ,then we have

H(a1, ..., aq; b1, ..., bs)f(z) = z +
∞∑
n=2

(a1)n−1 .... (aq)n−1
(b1)n−1 ... (bs)n−1 (1)n−1

a nz
n, (1.8)

If, for convenience, we write

Hq,s [a1; b1] = H(a1, ..., aq; b1, ..., bs),

then one can easily verify from the definition (1.6) or (1.8) that

z (Hq,s [a1; b1] f(z))
′
= a1Hq,s [a1 + 1; b1] f(z)− (a1− 1)Hq,s [a1; b1] f(z), (1.9)
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and

z (Hq,s [a1; b1 + 1] f(z))
′
= b1Hq,s [a1; b1] f(z)− (b1 − 1)Hq,s [a1; b1 + 1] f(z).

(1.10)

It should be remarked that the linear operator Hq,s [a1; b1] is a generaliza-
tion of many other linear operators considered earlier. In particular, for f ∈ A,
we have

(i) H2,1(a, b; c)f(z) =
(
Ia,bc f

)
(z)
(
a, b ∈ C; c /∈ Z−0

)
, where the linear opera-

tor Ia,bc was investigated by Hohlov [9];

(ii) H2,1(δ + 1, 1; 1)f(z) = Dδf(z)(δ > −1), where Dδ is the Ruscheweyh
derivative of f(z) (see [16]);

(iii) H2,1(µ + 1, 1;µ + 2)f(z) = Fµ(f)(z) = µ+1
z µ

∫ z
0
tmu−1f(t)dt (µ > −1),

where Fµ is the Libera integral operator (see [11] and [1]);

(iv) H2,1(a, 1; c)f(z) = L(a, c)f(z)(a ∈ R; c ∈ R\Z−0 ), where L(a, c) is the
Carlson-Shaffer operator ( see [4]);

(vi) H2,1(λ+1, c; a)f(z) = Iλ(a, c)f(z)(a, c ∈ R\Z−0 ;λ > −1), where Iλ(a, c)f (z)
is the Cho–Kwon–Srivastava operator ( see [5]);

(vii) H2,1(µ, 1;λ + 1)f(z) = Iλ,µf(z)(λ > −1;µ > 0), where Iλ,µf(z) is
the Choi–Saigo–Srivastava operator [6] which is closely related to the
Carlson–Shaffer [4] operator L(µ, λ+ 1)f(z).

(vii) H2,1(1, 1;n+ 1)f(z) = Inf(z)(n ∈ N0), where Inf(z) is Noor operator of
n− th order (see [15]) .

Definition 1. The function f ∈ A belongs to the class S∗q.s (a1; b1) if and
only if Hq,s [a1; b1] f(z) ∈ S∗ for z ∈ U.
Definition 2. The function f ∈ A belongs to the class Cq.s (a1; b1) if and
only if there exists g ∈ S∗q.s (a1; b1) such that

<

{
z (Hq,s [a1; b1] f(z))

′

Hq,s [a1; b1] g(z)

}
> 0 (z ∈ U) .
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In this paper, we obtain sufficient conditions for normalized analytic func-
tions f, g satisfy

q1 (z) ≺ z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)
≺ q2 (z) ,

where q1 (z) and q2 (z) are given univalent functions in U .

2. Definitions and Preliminaries

In order to prove our subordinations and superordinations, we need the fol-
lowing definition and lemmas.

Definition 3. [14]. Denote by Q, the set of all functions f that are analytic
and injective on U\E(f), where

E(f) =

{
ζ ∈ ∂U : lim

z→ζ
f (z) =∞

}
,

and are such that f
′
(ζ) 6= 0 for ζ ∈ ∂U\E (f).

Lemma 1 [14]. Let q (z) be univalent in the unit disk U and θ and ϕ be
analytic in a domain D containing q(U) with ϕ (w) 6= 0 when w ∈ q(U). Set

ψ (z) = zq
′
(z)ϕ (q (z)) and h (z) = θ (q (z)) + ψ (z) . (2.1)

Suppose that

(i) ψ (z) is starlike univalent in U ,

(ii) <
{
zh

′
(z)

ψ(z)

}
> 0 for z ∈ U .

If p (z) is analytic with p(0) = q(0), p(U) ⊂ D and

θ (p (z)) + zp
′
(z)ϕ (p (z)) ≺ θ (q (z)) + zq

′
(z)ϕ (q (z)) , (2.2)

then p(z) ≺ q(z) and q (z) is the best dominant.

Taking θ (w) = αw and ϕ (w) = γ in Lemma 1, Shanmugam et al. [17]
obtained the following lemma.
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Lemma 2 [17]. Let q (z) be univalent in U with q(0) = 1. Let α ∈ C;
γ ∈ C∗ = C\ {0}, further assume that

<
{

1 +
zq

′′
(z)

q′ (z)

}
> max

{
0,−<

(
α

γ

)}
. (2.3)

If p (z) is analytic in U , and

αp (z) + γzp
′
(z) ≺ αq (z) + γzq

′
(z) ,

then p (z) ≺ q (z) and q (z) is the best dominant.

Lemma 3 [2]. Let q (z) be convex univalent in U and ϑ and φ be analytic in
a domain D containing q(U). Suppose that

(i) <
{
ϑ
′
(q(z))

φ(q(z))

}
> 0 for z ∈ U ,

(ii) Ψ (z) = zq
′
(z)φ (q (z)) is starlike univalent in U.

If p(z) ∈ H[q(0), 1] ∩Q, with p(U) ⊆ D, and ϑ (p (z)) + zp
′
(z)φ (p (z)) is

univalent in U and

ϑ (q (z)) + zq
′
(z)φ (q (z)) ≺ ϑ (p (z)) + zp

′
(z)φ (p (z)) , (2.4)

then q(z) ≺ p(z) and q (z) is the best subordinant.

Taking ϑ (w) = αw and φ (w) = γ in Lemma 3, Shanmugam et al. [17]
obtained the following lemma.

Lemma 4 [17]. Let q (z) be convex univalent in U, q(0) = 1. Let α ∈ C;

γ ∈ C∗ and <
(
α
γ

)
> 0. If p(z) ∈ H[q(0), 1]∩Q, αp (z) + γzp

′
(z) is univalent

in U and
αq (z) + γzq

′
(z) ≺ αp (z) + γzp

′
(z) ,

then q (z) ≺ p (z) and q (z) is the best subordinant.

3. Sandwich Results

Theorem 1. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further
assume that

<
{

1 +
zq

′′
(z)

q′ (z)

}
> max

{
0,−<

(
1

γ

)}
. (3.1)
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If f, g ∈ A, Hq,s [a1; b1] g(z) 6= 0 , satisfy the following subordination condition:

z(Hq,s[a1;b1]f(z))
′

Hq,s[a1;b1]g(z)

{
1 + γ

[
1 + z(Hq,s[a1;b1]f(z))

′′

(Hq,s[a1;b1]f(z))
′ − z(Hq,s[a1;b1]g(z))

′

Hq,s[a1;b1]g(z)

]}
≺ q (z) + γzq

′
(z) ,

(3.2)

then
z (Hq,s [a1; b1] f(z))

′

Hq,s [a1; b1] g(z)
≺ q (z) (3.3)

and q (z) is the best dominant.

Proof. Define a function p (z) by

p (z) =
z (Hq,s [a1; b1] f(z))

′

Hq,s [a1; b1] g(z)
(z ∈ U) . (3.4)

Then the function p (z) is analytic in U and p(0) = 1. Therefore, differenti-
ating (3.4) logarithmically with respect to z and using the the subordination
condition (3.2), we get

p (z) + γzp
′
(z) ≺ q (z) + γzq

′
(z) .

Therefore, the assertion (3.3) of Theorem 1 now follows by an application of
Lemma 2.

Putting q(z) = 1+Az
1+Bz

(−1 ≤ B < A ≤ 1) in Theorem 1, we have the follow-
ing corollary.

Corollary 1. Let γ ∈ C∗ and

<
{

1−Bz
1 +Bz

}
> max

{
0,−<

(
1

γ

)}
.

If f, g ∈ A, Hq,s [a1; b1] g(z) 6= 0, satisfy the following subordination condition:

z(Hq,s[a1;b1]f(z))
′

Hq,s[a1;b1]g(z)

{
1 + γ

[
1 +

z (Hq,s [a1; b1] f(z))
′′

(Hq,s [a1; b1] f(z))
′ −

z (Hq,s [a1; b1] g(z))
′

Hq,s [a1; b1] g(z)

]}

≺ 1 + Az

1 +Bz
+ γ

(A−B) z

(1 +Bz)2
,
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then
z (Hq,s [a1; b1] f(z))

′

Hq,s [a1; b1] g(z)
≺ 1 + Az

1 +Bz

and the function 1+Az
1+Bz

is the best dominant.

Taking A = 1, B = −1 and g ∈ S∗q.s (a1; b1) in Corollary 1, we obtain

Corollary 2. Let γ ∈ C∗ with < (γ̄) > 0. If g ∈ A such that g ∈ S∗q.s (a1; b1),
and f, g ∈ A satisfy the following subordination condition:

z(Hq,s[a1;b1]f(z))
′

Hq,s[a1;b1]g(z)

{
1 + γ

[
1 +

z (Hq,s [a1; b1] f(z))
′′

(Hq,s [a1; b1] f(z))
′ −

z (Hq,s [a1; b1] g(z))
′

Hq,s [a1; b1] g(z)

]}
≺ 1 + z

1− z
+ γ

z

(1− z)2
,

then f(z) ∈ Cq,s (a1; b1) and this result best possible.

For q = 2, s = 1, a1 = a and b1 = c
(
a ∈ R; c ∈ R\Z−0

)
in Theorem 1, we

have the following subordination for Carlson-Shaffer operator.

Corollary 3. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further
assume that (3.1) holds. If f, g ∈ A, L (a, c) g(z) 6= 0 , satisfy the following
subordination condition:

z (L (a, c) f(z))
′

L (a, c) g(z)

{
1 + γ

[
1 +

z (L (a, c) f(z))
′′

(L (a, c) f(z))
′ −

z (L (a, c) g(z))
′

L (a, c) g(z)

]}

≺ q (z) + γzq
′
(z) ,

then
z (L (a, c) f(z))

′

L (a, c) g(z)
≺ q (z)

and q (z) is the best dominant.

For q = 2, s = 1, a1 = λ + 1, a2 = c and b1 = a
(
a, c ∈ R\Z−0 ;λ > −1

)
in

Theorem 1, we obtain the following subordination for Cho-Kwon-Srivastava
operator.
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Corollary 4. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further
assume that (3.1) holds. If f, g ∈ A, Iλ (a, c) g(z) 6= 0 , satisfy the following
subordination condition:

z
(
Iλ (a, c) f(z)

)′
Iλ (a, c) g(z)

1 + γ

1 +
z
(
Iλ (a, c) f(z)

)′′
(Iλ (a, c) f(z))

′ −
z
(
Iλ (a, c) g(z)

)′
Iλ (a, c) g(z)


≺ q (z) + γzq

′
(z) ,

then

z
(
Iλ (a, c) f(z)

)′
Iλ (a, c) g(z)

≺ q (z)

and q (z) is the best dominant.

For q = 2, s = 1, a1 = µ ,a2 = 1 and b1 = λ+1 (λ > −1;µ > 0) in Theorem
1, we have the following subordination for Choi-Saigo-Srivastava operator.

Corollary 5. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further
assume that (3.1) holds. If f, g ∈ A, Iλ,µg(z) 6= 0 , satisfy the following
subordination condition:

z (Iλ,µf(z))
′

Iλ,µg(z)

{
1 + γ

[
1 +

z (Iλ,µf(z))
′′

(Iλ,µf(z))
′ −

z (Iλ,µg(z))
′

Iλ,µg(z)

]}
≺ q (z) + γzq

′
(z) ,

then

z (Iλ,µf(z))
′

Iλ,µg(z)
≺ q (z)

and q (z) is the best dominant.

Remark 1. Taking q = 2, s = 1, a1 = a2 = 1 and b1 = n + 1 (n ∈ N0)
in Theorem 1, we obtain the subordination result of Ibrahim and Darus [
10,Theorem 2] for the Noor operator.

Now, by appealing to Lemma 4 it can be easily prove the following theorem.

Theorem 2. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C
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with < (γ̄) > 0. If f, g ∈ A such that z(Hq,s[a1;b1]f(z))
′

Hq,s[a1;b1]g(z)
∈ H [1, 1] ∩Q,

z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

1 + γ

1 +
z (Hq,s [a1; b1] f(z))

′′

(Hq,s [a1; b1] f(z))
′ −

z (Hq,s [a1; b1] g(z))
′

Hq,s [a1; b1] g(z)


is univalent in U , and the following superordination condition

q (z) + γzq
′
(z)

≺ z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

1 + γ

1 +
z (Hq,s [a1; b1] f(z))

′′

(Hq,s [a1; b1] f(z))
′ −

z (Hq,s [a1; b1] g(z))
′

Hq,s [a1; b1] g(z)


holds, then

q (z) ≺ z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

and q (z) is the best subordinant.

Taking q(z) = 1+Az
1+Bz

(−1 ≤ B < A ≤ 1) in Theorem 2, we have the following
corollary.

Corollary 6. Let γ ∈ C with < (γ̄) > 0. If f, g ∈ A such that

z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)
∈ H [1, 1] ∩Q,

z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

1 + γ

1 +
z (Hq,s [a1; b1] f(z))

′′

(Hq,s [a1; b1] f(z))
′ −

z (Hq,s [a1; b1] g(z))
′

Hq,s [a1; b1] g(z)


is univalent in U , and the following superordination condition

1+Az
1+Bz

+ γ (A−B)z

(1+Bz)2

≺ z(Hq,s[a1;b1]f(z))
′

Hq,s[a1;b1]g(z)

{
1 + γ

[
1 + z(Hq,s[a1;b1]f(z))

′′

(Hq,s[a1;b1]f(z))
′ − z(Hq,s[a1;b1]g(z))

′

Hq,s[a1;b1]g(z)

]}
holds,

then
1 + Az

1 +Bz
≺ z (Hq,s [a1; b1] f(z))

′

Hq,s [a1; b1] g(z)

and q (z) is the best subordinant.

For q = 2, s = 1, a1 = a and b1 = c
(
a ∈ R; c ∈ R\Z−0

)
in Theorem 1, we

have the following superordination result for Carlson-Shaffer operator.
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Corollary 7. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C
with < (γ̄) > 0. If f, g ∈ A such that z(L(a,c)f(z))

′

L(a,c)g(z)
∈ H [1, 1] ∩Q,

z (L (a, c) f(z))
′

L (a, c) g(z)

{
1 + γ

[
1 +

z (L (a, c) f(z))
′′

(L (a, c) f(z))
′ −

z (L (a, c) g(z))
′

L (a, c) g(z)

]}

is univalent in U , and the following superordination condition

q (z) + γzq
′
(z)

≺ z (L (a, c) f(z))
′

L (a, c) g(z)

{
1 + γ

[
1 +

z (L (a, c) f(z))
′′

(L (a, c) f(z))
′ −

z (L (a, c) g(z))
′

L (a, c) g(z)

]}
holds,
then

q (z) ≺ z (L (a, c) f(z))
′

L (a, c) g(z)

and q (z) is the best subordinant.

For q = 2, s = 1, a1 = λ + 1, a2 = c and b1 = a
(
a, c ∈ R\Z−0 ;λ > −1

)
in Theorem 2, we obtain the following superordination result for Cho-Kwon-
Srivastava operator.

Corollary 8. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C

with < (γ̄) > 0. If f, g ∈ A such that
z(Iλ(a,c)f(z))

′

Iλ(a,c)g(z)
∈ H [1, 1] ∩Q,

z
(
Iλ (a, c) f(z)

)′
Iλ (a, c) g(z)

1 + γ

1 +
z
(
Iλ (a, c) f(z)

)′′
(Iλ (a, c) f(z))

′ −
z
(
Iλ (a, c) g(z)

)′
Iλ (a, c) g(z)


is univalent in U , and the following superordination condition

q (z) + γzq
′
(z)

≺
z
(
Iλ (a, c) f(z)

)′
Iλ (a, c) g(z)

1 + γ

1 +
z
(
Iλ (a, c) f (z)

)′′
(Iλ (a, c) f(z))

′ −
z
(
Iλ (a, c) g(z)

)′
Iλ (a, c) g(z)


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holds, then

q (z) ≺
z
(
Iλ (a, c) f(z)

)′
Iλ (a, c) g(z)

and q (z) is the best subordinant.

For q = 2, s = 1, a1 = µ ,a2 = 1 and b1 = λ + 1 (λ > −1;µ > 0) in Theo-
rem 2, we have the following superordination result for Choi-Saigo-Srivastava
operator.

Corollary 9. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C

with < (γ̄) > 0. If f, g ∈ A such that
z(Iλ,µf(z))

′

Iλ,µg(z)
∈ H [1, 1] ∩Q,

z (Iλ,µf(z))
′

Iλ,µg(z)

{
1 + γ

[
1 +

z (Iλ,µf(z))
′′

(Iλ,µf(z))
′ −

z (Iλ,µg(z))
′

Iλ,µg(z)

]}
is univalent in U , and the following superordination condition

q (z) + γzq
′
(z) ≺ z (Iλ,µf(z))

′

Iλ,µg(z)

{
1 + γ

[
1 +

z (Iλ,µf (z))
′′

(Iλ,µf(z))
′ −

z (Iλ,µg(z))
′

Iλ,µg(z)

]}
holds, then

q (z) ≺ z (Iλ,µf(z))
′

Iλ,µg(z)

and q (z) is the best subordinant.

Remark 2. Taking q = 2, s = 1, a1 = a2 = 1 and b1 = n + 1 (n ∈ N0)
in Theorem 2, we obtain the superordination result of Ibrahim and Darus [
10,Theorem 4] for the Noor operator.

Combining Theorem 1 and Theorem 2, we get the following sandwich the-
orem.

Theorem 3. Let qi (z) be convex univalent in U with qi (0) = 1 (i = 1, 2),

γ ∈ C with < (γ̄) > 0. If f, g ∈ A such that z(Hq,s[a1;b1]f(z))
′

Hq,s[a1;b1]g(z)
∈ H [1, 1] ∩Q,

z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

1 + γ

1 +
z (Hq,s [a1; b1] f(z))

′′

(Hq,s [a1; b1] f(z))
′ −

z (Hq,s [a1; b1] g(z))
′

Hq,s [a1; b1] g(z)


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is univalent in U , and

q1 (z) + γzq
′

1 (z)

≺ z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

1 + γ

1 +
z (Hq,s [a1; b1] f(z))

′′

(Hq,s [a1; b1] f(z))
′ −

z (Hq,s [a1; b1] g(z))
′

Hq,s [a1; b1] g(z)


≺ q2 (z) + γzq

′

2 (z)

holds, then

q1 (z) ≺ z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)
≺ q2 (z)

and q1 (z) and q2 (z) are, respectively, the best subordinant and the best domi-
nant.

Taking qi(z) = 1+Aiz
1+Biz

(i = 1, 2;−1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1) in Theorem
3, we have the following corollary.

Corollary 10. Let γ ∈ C with < (γ̄) > 0. If f, g ∈ A such that
z(Hq,s[a1;b1]f(z))

′

Hq,s[a1;b1]g(z)
∈ H [1, 1] ∩Q,

z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

1 + γ

1 +
z (Hq,s [a1; b1] f(z))

′′

(Hq,s [a1; b1] f(z))
′ −

z (Hq,s [a1; b1] g(z))
′

Hq,s [a1; b1] g(z)


is univalent in U , and

1 +A1z

1 +B1z
+ γ

(A1 −B1) z

(1 +B1z)
2

≺ z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

1 + γ

1 +
z (Hq,s [a1; b1] f(z))

′′

(Hq,s [a1; b1] f(z))
′ −

z (Hq,s [a1; b1] g(z))
′

Hq,s [a1; b1] g(z)


≺ 1 +A2z

1 +B2z
+ γ

(A2 −B2) z

(1 +B2z)
2

holds, then

1 + A1z

1 +B1z
≺ z (Hq,s [a1; b1] f(z))

′

Hq,s [a1; b1] g(z)
≺ 1 + A2z

1 +B2z

and 1+A1z
1+B1z

and 1+A2z
1+B2z

are, respectively, the best subordinant and the best domi-
nant.
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Remark 3. Combining (i) Corollary 3 and Corollary 7; (ii) Corollary 4 and
Corollary 8; (iii) Corollary 5 and Corollary 9, we obtain similar sandwich
theorems for the corresponding linear operators.

Remark 4. Taking q = 2, s = 1, a1 = a2 = 1 and b1 = n + 1 (n ∈ N0) in
Theorem 3, we obtain the sandwich result of Ibrahim and Darus [ 10,Theorem
6] for the Noor operator.

Acknowledgement: The authors are grateful to the referees for their valu-
able suggestions.
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