Weakly Prime Ideals in Near-Rings *

P. Dheena ${ }^{\dagger}$
Department of Mathematics, Annamalai University, Annamalainagar - 608002, India
and
\section*{B. Elavarasan ${ }^{\ddagger}$}
Department of Mathematics, School of Science and Humanities, Karunya University, Coimbatore - 641 114, Tamilnadu, India

Received July 6, 2011, Accepted December 18, 2012.

Abstract

In this short note, we introduce the notion of prime ideals in nearring and obtain equivalent conditions for an ideal to be a weakly prime ideal.

Keywords and Phrases: Near-ring, Prime ideal, M-system, Weakly prime ideal.

1. Introduction

Throughout this paper, N denotes a zero-symmetric near-ring not necessarily with identity unless otherwise stated. For $x \in N,\langle x\rangle$ denote the ideal of N generated by x, and $P(N)$ denotes the intersection of all prime ideals of N. In

[^0][1], D. D. Anderson and E. Smith defined weakly prime ideals in commutative rings, an ideal P of a ring R is weakly prime if $0 \neq a b \in P$ implies $a \in P$ or $b \in P$. In this paper we define a notion of weakly prime ideal in near-ring (not necessarily commutative).

A proper ideal P (i.e., an ideal different from N) of N is prime if for ideals A and B of $N, A B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. We define a proper ideal P of N to be weakly prime if $0 \neq A B \subseteq P, A$ and B are ideals of N, implies $A \subseteq P$ or $B \subseteq P$. Clearly every prime ideal is weakly prime and $\{0\}$ is always weakly prime ideal of N. The following example shows that a weakly prime ideal need not be a prime ideal in general.

Example 1.1. Let $N=\{0, a, b, c, d, 1,2,3\}$. Define addition and multiplication in N as follows:

+	0	1	2	3	a	b	c	d
0	0	1	2	3	a	b	c	d
1	1	2	3	0	d	c	a	b
2	2	3	0	1	b	a	d	c
3	3	0	1	2	c	d	b	a
a	a	d	b	c	2	0	1	3
b	b	c	a	d	0	2	3	1
c	c	a	d	b	1	3	0	2
d	d	b	c	a	3	1	2	0

.	0	1	2	3	a	b	c	d
0	0	0	0	0	0	0	0	0
1	0	1	2	3	a	b	c	d
2	0	2	0	2	2	2	0	0
3	0	3	2	1	b	a	c	d
a	0	a	2	b	a	b	c	d
b	0	b	2	a	b	a	c	d
c	0	c	0	c	0	0	0	0
d	0	d	0	d	2	2	0	0

Then $(N,+,$.$) is a near-ring (see [2], Library Nearring (8/2, 857)). Here$ $\{0, c\}$ is a weakly prime ideal, but not a prime, since $\{0,2\}^{2} \subseteq\{0, c\}$.

For a less trivial example, let M be a unique maximal ideal of a near-ring N with $M^{2}=0$, then every proper ideal of N is easily seen to be weakly prime. Also in $\mathbb{Z}_{6},\{0\}$ is a weakly prime ideal, but not prime. For basic terminology in near-ring we refer to Pilz [3].

2. Main Results

Theorem 2.1. Let N be a near-ring and P a weakly prime ideal of N. If P is not a prime, then $P^{2}=0$.

Proof: Suppose that $P^{2} \neq 0$. We show that P is prime. Let A and B be ideals of N such that $A B \subseteq P$. If $A B \neq 0$, then $A \subseteq P$ or $B \subseteq P$. So assume
that $A B=0$. Since $P^{2} \neq 0$, there exist $p_{0}, q_{0} \in P$ such that $<p_{0}><q_{0}>\neq 0$. Then $\left(A+<p_{0}>\right)\left(B+<q_{0}>\right) \neq 0$. Suppose $\left(A+<p_{0}>\right)\left(B+<q_{0}>\right) \nsubseteq P$. Then there exist $a \in A ; b \in B$ and $p_{0}^{\prime} \in<p_{0}>; q_{0}^{\prime} \in<q_{0}>$ such that $\left(a+p_{0}^{\prime}\right)\left(b+q_{0}^{\prime}\right) \notin P$ which implies $a\left(b+q_{0}^{\prime}\right) \notin P$, but $a\left(b+q_{0}^{\prime}\right)=a\left(b+q_{0}^{\prime}\right)-a b \in P$ since $A B=0$, a contradiction. So $0 \neq\left(A+<p_{0}>\right)\left(B+<q_{0}>\right) \subseteq P$ which implies $A \subseteq P$ or $B \subseteq P$.

Corollary 2.2. Let N be a near-ring and P an ideal of N. If $P^{2} \neq 0$, then P is prime if and only if P is weakly prime.

Corollary 2.3. Let P be a weakly prime ideal of N. Then either $P \subseteq P(N)$ or $P(N) \subseteq P$. If $P \subset P(N)$, then P is not prime, while if $P(N) \subset P$, then P is prime.

It should be noted that a proper ideal P with the property that $P^{2}=\{0\}$ need not be weakly prime. Take $N=\mathbb{Z}_{8}$ and $P=\{\overline{0}, \overline{4}\}$. Clearly $P^{2}=\{0\}$, yet P is not weakly prime.

Lemma 2.4. Let N be a near-ring and P an ideal of N. Then the following are equivalent:
i) For any $a, b, c \in N$ with $0 \neq a(\langle b\rangle+\langle c\rangle) \subseteq P$, we have $a \in P$ or b and c in P
ii) For $x \in N \backslash P$, we have $(P:<x>+<y>)=P \cup(0:<x>+<y>)$ for any $y \in N$.
iii) For $x \in N \backslash P$, we have ($P:<x>+<y>)=P$ or $(P:<x>+<y>)=(0:<x>+<y>)$ for any $y \in N$.
iv) P is weakly prime

Proof: $(i) \Rightarrow(i i)$ Let $t \in(P:<x>+<y>)$ for any $x \in N \backslash P$ and $y \in N$. Then $t(<x>+<y>) \subseteq P$. If $t(<x>+<y>)=0$, then $t \in(0:<x>+<y>)$. Otherwise $0 \neq t(<x>+<y>) \subseteq P$. Then $t \in P$ by hypothesis. $(i i) \Rightarrow$ (iii) follows from the fact that if an ideal is the union of two ideals, then it is equal to one of them. $($ iiii $) \Rightarrow(i v)$ Let A and B be ideals of N such that $A B \subseteq P$ and suppose $A \nsubseteq P$ and $B \nsubseteq P$. Then there exist $a \in A$ and $b \in B$ with $a, b \notin P$. Now we claim that $A B=0$.

Let $b_{1} \in B$. Then $A\left(+<b_{1}>\right) \subseteq P$ which implies $A \subseteq(P:$ $\left.+<b_{1}>\right)$. Then by assumption, $A\left(+<b_{1}>\right)=0$ which gives $A b_{1}=0$. Thus $A B=0$ and hence P is weakly prime ideal of $N .(i v) \Rightarrow(i)$ is clear.

Theorem 2.5. Let N be a near-ring and P an ideal of N. Then
i) P is weakly prime
ii) For any ideals I, J of N with $P \subset I$ and $P \subset J$, we have either $I J=0$ or $I J \nsubseteq P$.
iii) For any ideals I, J of N with $I \nsubseteq P$ and $J \nsubseteq P$, we have either $I J=0$ or $I J \nsubseteq P$.

Proof: $(i) \Rightarrow(i i)$ and $(i i i) \Rightarrow(i)$ are clear. $(i i) \Rightarrow(i i i)$. Let I, J be ideals of N with $I \nsubseteq P$ and $J \nsubseteq P$. Then there exist $i_{1} \in I$ and $j_{1} \in J$ such that $i_{1}, j_{1} \notin P$.

Suppose that $<i><j>\neq 0$ for some $i \in I$ and some $j \in J$. Then $(P+<$ $\left.i>+<i_{1}>\right)\left(P+<j>+<j_{1}>\right) \neq 0$ and $P \subset P+<i>+<i_{1}>; P \subset$ $P+<j>+<j_{1}>$. By hypothesis, $\left(P+<i>+<i_{1}>\right)(P+<j>+<$ $\left.j_{1}>\right) \nsubseteq P$ which implies $<i>\left(P+<j>+<j_{1}>\right)+<i_{1}>(P+<j>$ $\left.+<j_{1}>\right) \nsubseteq P$. So there exist $i^{\prime} \in<i>; i_{1}^{\prime} \in<i_{1}>; j^{\prime}, j^{\prime \prime} \in<j>; j_{1}^{\prime}, j_{1}^{\prime \prime} \in<$ $j_{1}>$ and $p_{1}, p_{2} \in P$ such that $i^{\prime}\left(p_{1}+j^{\prime}+j_{1}^{\prime}\right)+i_{1}^{\prime}\left(p_{2}+j^{\prime \prime}+j_{1}^{\prime \prime}\right) \notin P$. Therefore $i^{\prime}\left(p_{1}+j^{\prime}+j_{1}^{\prime}\right)-i^{\prime}\left(j^{\prime}+j_{1}^{\prime}\right)+i^{\prime}\left(j^{\prime}+j_{1}^{\prime}\right)+i_{1}^{\prime}\left(p_{2}+j^{\prime \prime}+j_{1}^{\prime \prime}\right)-i_{1}^{\prime}\left(j^{\prime \prime}+j_{1}^{\prime \prime}\right)+i_{1}^{\prime}\left(j^{\prime \prime}+j_{1}^{\prime \prime}\right) \notin P$. But since $i^{\prime}\left(p_{1}+j^{\prime}+j_{1}^{\prime}\right)-i^{\prime}\left(j^{\prime}+j_{1}^{\prime}\right) \in P$ and $i_{1}^{\prime}\left(p_{2}+j^{\prime \prime}+j_{1}^{\prime \prime}\right)-i_{1}^{\prime}\left(j^{\prime \prime}+j_{1}^{\prime \prime}\right) \in P$, we have P does not contain either $i^{\prime}\left(j^{\prime}+j_{1}^{\prime}\right)$ or $i_{1}^{\prime}\left(j^{\prime \prime}+j_{1}^{\prime \prime}\right)$ which shows that $I J \nsubseteq P$.
From [3], a subset M of N is called m-system if $a, b \in M$, then there exist $a_{1} \in\langle a\rangle$ and $b_{1} \in$ such that $a_{1} b_{1} \in M$. A subset M of N is called weakly m-system if $M \cap A \neq \phi$ and $M \cap B \neq \phi$ for any ideals A, B of N, then either $A B \cap M \neq \phi$ or $A B=0$. Clearly every m-system is a weakly msystem, but a weakly m-system need not be a m-system, since in Example 1.1, $M=\{1,2,3, a, b, d\}$ is a weakly m -system, but not a m-system since $x_{1} x_{2} \notin M$ for all $\left.x_{1}, x_{2} \in<2\right\rangle$. It is clear that, an ideal P of N is weakly prime if and only if $N \backslash P$ is weakly m - system. A well known result that, if M is a non-void m-system of N and I is an ideal of N with $I \cap M=\phi$, then there exist a prime ideal $P \neq N$ containing I with $P \cap M=\phi$. A similar result does hold for weakly m-system.

Theorem 2.6. Let $M \subseteq N$ be a non-void weakly m-system in N and I an ideal of N with $I \cap M=\phi$. Then I is contained in a weakly prime ideal $P \neq N$ with $P \cap M=\phi$.

Proof: Let $\mathbb{A}=\{J: J$ is an ideal of N with $J \cap M=\phi\}$. Clearly $I \in \mathbb{A}$. Then by Zorn's Lemma, \mathbb{A} contains a maximal element (say) P with $P \cap M=\phi$. We show that P is weakly prime ideal of N. Let A and B be ideals of N with
$P \subset A$ and $P \subset B$. Then by maximality of $\mathbb{A}, A \cap M \neq \phi$ and $B \cap M \neq \phi$. Since M is weakly m-system, we have $A B=0$ or $A B \cap M \neq \phi$; that is $A B=0$ or $A B \nsubseteq P$ since $P \cap M=\phi$. So by Theorem $2.5, P$ is weakly prime ideal of N and also containing I.

Theorem 2.7. Let N be a decomposable near-ring with identity. If P is a weakly prime ideal of N, then either $P=0$ or P is prime.

Proof: Suppose that $N=N_{1} \times N_{2}$ and let $P=P_{1} \times P_{2}$ be a weakly prime ideal of N. We may assume that $P \neq 0$. Now, let A be a non-zero ideal of N_{1} and B be a non-zero ideal of N_{2} such that $0 \neq(A, B) \subseteq P$. Then $0 \neq\left(A, N_{2}\right)\left(N_{1}, B\right) \subseteq P$ which implies $\left(A, N_{2}\right) \subseteq P$ or $\left(N_{1}, B\right) \subseteq P$. Suppose that $\left(A, N_{2}\right) \subseteq P$. Then $\left(0, N_{2}\right) \subseteq P$ and so $P=P_{1} \times N_{2}$. We show that P_{1} is a prime ideal of N_{1}. Let A_{1} and B_{1} be ideals of N_{1} such that $A_{1} B_{1} \subseteq P_{1}$. Then $(0,0) \neq\left(A_{1}, N_{2}\right)\left(B_{1}, N_{2}\right)=\left(A_{1} B_{1}, N_{2}\right) \subseteq P$, so $\left(A_{1}, N_{2}\right) \subseteq P$ or $\left(B_{1}, N_{2}\right) \subseteq P$ and hence $A_{1} \subseteq P_{1}$ or $B_{1} \subseteq P_{1}$. So P is prime ideal of N. The case where $\left(N_{1}, B\right) \subseteq P$ is similar.

References

[1] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 no. 4 (2003), 831-840.
[2] F. Binder and C. Nöbauer, Table of All Nearrings with Identity Up to Order 15., http://verdi.algebra.uni-linz.ac.at/Sonata/encyclo/ (14 June 2003).
[3] G. Pilz, Near-Rings, North-Holland, Amsterdam, 1983.

[^0]: *2000 Mathematics Subject Classification. Primary 16Y30.
 †E-mail: dheenap@yahoo.com
 ${ }^{\ddagger}$ Corresponding author. E-mail: belavarasan@gmail.com

