Tamsui Oxford Journal of Information and Mathematical Sciences 2x(x) (201x) xxx-xxx Aletheia University

Weakly Prime Ideals in Near-Rings *

P. Dheena †

Department of Mathematics, Annamalai University, Annamalainagar - 608002, India

and

B. Elavarasan^{\ddagger}

Department of Mathematics, School of Science and Humanities, Karunya University, Coimbatore - 641 114, Tamilnadu, India

Received July 6, 2011, Accepted December 18, 2012.

Abstract

In this short note, we introduce the notion of prime ideals in nearring and obtain equivalent conditions for an ideal to be a weakly prime ideal.

Keywords and Phrases: Near-ring, Prime ideal, M-system, Weakly prime ideal.

1. Introduction

Throughout this paper, N denotes a zero-symmetric near-ring not necessarily with identity unless otherwise stated. For $x \in N$, $\langle x \rangle$ denote the ideal of N generated by x, and P(N) denotes the intersection of all prime ideals of N. In

^{*2000} Mathematics Subject Classification. Primary 16Y30.

[†]E-mail: dheenap@yahoo.com

[‡]Corresponding author. E-mail: belavarasan@gmail.com

[1], D. D. Anderson and E. Smith defined weakly prime ideals in commutative rings, an ideal P of a ring R is weakly prime if $0 \neq ab \in P$ implies $a \in P$ or $b \in P$. In this paper we define a notion of weakly prime ideal in near-ring (not necessarily commutative).

A proper ideal P (i.e., an ideal different from N) of N is prime if for ideals A and B of N, $AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. We define a proper ideal P of N to be weakly prime if $0 \neq AB \subseteq P$, A and B are ideals of N, implies $A \subseteq P$ or $B \subseteq P$. Clearly every prime ideal is weakly prime and $\{0\}$ is always weakly prime ideal of N. The following example shows that a weakly prime ideal need not be a prime ideal in general.

Example 1.1. Let $N = \{0, a, b, c, d, 1, 2, 3\}$. Define addition and multiplication in N as follows:

+	0	1	$\mathcal{2}$	3	a	b	С	d		0	1	$\mathcal{2}$	3	a	b	С	d
0	0	1	2	3	a	b	С	d	0	0	0	0	0	0	0	0	0
1	1	\mathcal{Z}	3	0	d	c	a	b	1	0	1	2	3	a	b	С	d
$\mathcal{2}$	2	3	0	1	b	a	d	С	2	0	\mathcal{Z}	0	\mathcal{Z}	\mathcal{Z}	\mathcal{Z}	0	0
\mathcal{B}	3	0	1	\mathcal{Z}	c	d	b	a	3	0	3	$\mathcal{2}$	1	b	a	С	d
a	a	d	b	С	\mathcal{Z}	0	1	3	a	0	a	2	b	a	b	С	d
b	b	С	a	d	0	\mathcal{Z}	3	1	b	0	b	2	a	b	a	С	d
c	c	a	d	b	1	3	0	\mathcal{Z}	С	0	С	0	c	0	0	0	0
d	d	b	С	a	3	1	2	0	d	0	d	0	d	2	2	0	0

Then (N, +, .) is a near-ring (see [2], Library Nearring (8/2, 857)). Here $\{0, c\}$ is a weakly prime ideal, but not a prime, since $\{0, 2\}^2 \subseteq \{0, c\}$.

For a less trivial example, let M be a unique maximal ideal of a near-ring N with $M^2 = 0$, then every proper ideal of N is easily seen to be weakly prime. Also in \mathbb{Z}_6 , $\{0\}$ is a weakly prime ideal, but not prime. For basic terminology in near-ring we refer to Pilz [3].

2. Main Results

Theorem 2.1. Let N be a near-ring and P a weakly prime ideal of N. If P is not a prime, then $P^2 = 0$.

Proof: Suppose that $P^2 \neq 0$. We show that P is prime. Let A and B be ideals of N such that $AB \subseteq P$. If $AB \neq 0$, then $A \subseteq P$ or $B \subseteq P$. So assume

that AB = 0. Since $P^2 \neq 0$, there exist $p_0, q_0 \in P$ such that $\langle p_0 \rangle \langle q_0 \rangle \neq 0$. Then $(A + \langle p_0 \rangle)(B + \langle q_0 \rangle) \neq 0$. Suppose $(A + \langle p_0 \rangle)(B + \langle q_0 \rangle) \notin P$. Then there exist $a \in A; b \in B$ and $p'_0 \in \langle p_0 \rangle; q'_0 \in \langle q_0 \rangle$ such that $(a + p'_0)(b + q'_0) \notin P$ which implies $a(b + q'_0) \notin P$, but $a(b + q'_0) = a(b + q'_0) - ab \in P$ since AB = 0, a contradiction. So $0 \neq (A + \langle p_0 \rangle)(B + \langle q_0 \rangle) \subseteq P$ which implies $A \subseteq P$ or $B \subseteq P$.

Corollary 2.2. Let N be a near-ring and P an ideal of N. If $P^2 \neq 0$, then P is prime if and only if P is weakly prime.

Corollary 2.3. Let P be a weakly prime ideal of N. Then either $P \subseteq P(N)$ or $P(N) \subseteq P$. If $P \subset P(N)$, then P is not prime, while if $P(N) \subset P$, then P is prime.

It should be noted that a proper ideal P with the property that $P^2 = \{0\}$ need not be weakly prime. Take $N = \mathbb{Z}_8$ and $P = \{\overline{0}, \overline{4}\}$. Clearly $P^2 = \{0\}$, yet P is not weakly prime.

Lemma 2.4. Let N be a near-ring and P an ideal of N. Then the following are equivalent:

- i) For any $a, b, c \in N$ with $0 \neq a(\langle b \rangle + \langle c \rangle) \subseteq P$, we have $a \in P$ or b and c in P
- *ii)* For $x \in N \setminus P$, we have $(P : \langle x \rangle + \langle y \rangle) = P \cup (0 : \langle x \rangle + \langle y \rangle)$ for any $y \in N$.
- *iii)* For $x \in N \setminus P$, we have $(P : \langle x \rangle + \langle y \rangle) = P$ or $(P : \langle x \rangle + \langle y \rangle) = (0 : \langle x \rangle + \langle y \rangle)$ for any $y \in N$.
- iv) P is weakly prime

Proof: (i) \Rightarrow (ii) Let $t \in (P : \langle x \rangle + \langle y \rangle)$ for any $x \in N \setminus P$ and $y \in N$. Then $t(\langle x \rangle + \langle y \rangle) \subseteq P$. If $t(\langle x \rangle + \langle y \rangle) = 0$, then $t \in (0 : \langle x \rangle + \langle y \rangle)$. Otherwise $0 \neq t(\langle x \rangle + \langle y \rangle) \subseteq P$. Then $t \in P$ by hypothesis. (ii) \Rightarrow (iii) follows from the fact that if an ideal is the union of two ideals, then it is equal to one of them. (iii) \Rightarrow (iv) Let A and B be ideals of N such that $AB \subseteq P$ and suppose $A \nsubseteq P$ and $B \nsubseteq P$. Then there exist $a \in A$ and $b \in B$ with $a, b \notin P$. Now we claim that AB = 0.

Let $b_1 \in B$. Then $A(\langle b \rangle + \langle b_1 \rangle) \subseteq P$ which implies $A \subseteq (P : \langle b \rangle + \langle b_1 \rangle)$. Then by assumption, $A(\langle b \rangle + \langle b_1 \rangle) = 0$ which gives $Ab_1 = 0$. Thus AB = 0 and hence P is weakly prime ideal of N. $(iv) \Rightarrow (i)$ is clear. **Theorem 2.5.** Let N be a near-ring and P an ideal of N. Then

- *i) P is weakly prime*
- ii) For any ideals I, J of N with $P \subset I$ and $P \subset J$, we have either IJ = 0 or $IJ \not\subseteq P$.
- iii) For any ideals I, J of N with $I \nsubseteq P$ and $J \nsubseteq P$, we have either IJ = 0 or $IJ \nsubseteq P$.

Proof: $(i) \Rightarrow (ii)$ and $(iii) \Rightarrow (i)$ are clear. $(ii) \Rightarrow (iii)$. Let I, J be ideals of N with $I \nsubseteq P$ and $J \nsubseteq P$. Then there exist $i_1 \in I$ and $j_1 \in J$ such that $i_1, j_1 \notin P$.

Suppose that $\langle i \rangle \langle j \rangle \neq 0$ for some $i \in I$ and some $j \in J$. Then $(P + \langle i \rangle + \langle i_1 \rangle)(P + \langle j \rangle + \langle j_1 \rangle) \neq 0$ and $P \subset P + \langle i \rangle + \langle i_1 \rangle; P \subset P + \langle j \rangle + \langle j_1 \rangle$. By hypothesis, $(P + \langle i \rangle + \langle i_1 \rangle)(P + \langle j \rangle + \langle j_1 \rangle) \notin P$ which implies $\langle i \rangle (P + \langle j \rangle + \langle j_1 \rangle) + \langle i_1 \rangle (P + \langle j \rangle + \langle j_1 \rangle) \neq P$. So there exist $i' \in \langle i \rangle; i'_1 \in \langle i_1 \rangle; j', j'' \in \langle j \rangle; j'_1, j''_1 \in \langle j_1 \rangle$ and $p_1, p_2 \in P$ such that $i'(p_1 + j' + j'_1) + i'_1(p_2 + j'' + j''_1) \notin P$. Therefore $i'(p_1 + j' + j'_1) - i'(j' + j'_1) + i'(j' + j''_1) + i'_1(p_2 + j'' + j''_1) - i'_1(j'' + j''_1) \notin P$. But since $i'(p_1 + j' + j'_1) - i'(j' + j'_1) \in P$ and $i'_1(p_2 + j'' + j''_1) - i'_1(j'' + j''_1) \in P$, we have P does not contain either $i'(j' + j'_1)$ or $i'_1(j'' + j''_1)$ which shows that $IJ \notin P$.

From [3], a subset M of N is called m-system if $a, b \in M$, then there exist $a_1 \in \langle a \rangle$ and $b_1 \in \langle b \rangle$ such that $a_1b_1 \in M$. A subset M of N is called weakly m-system if $M \cap A \neq \phi$ and $M \cap B \neq \phi$ for any ideals A, B of N, then either $AB \cap M \neq \phi$ or AB = 0. Clearly every m-system is a weakly m-system, but a weakly m-system need not be a m-system, since in Example 1.1, $M = \{1, 2, 3, a, b, d\}$ is a weakly m-system, but not a m-system since $x_1x_2 \notin M$ for all $x_1, x_2 \in \langle 2 \rangle$. It is clear that, an ideal P of N is weakly prime if and only if $N \setminus P$ is weakly m-system. A well known result that, if M is a non-void m-system of N and I is an ideal of N with $I \cap M = \phi$, then there exist a prime ideal $P \neq N$ containing I with $P \cap M = \phi$. A similar result does hold for weakly m-system.

Theorem 2.6. Let $M \subseteq N$ be a non-void weakly m-system in N and I an ideal of N with $I \cap M = \phi$. Then I is contained in a weakly prime ideal $P \neq N$ with $P \cap M = \phi$.

Proof: Let $\mathbb{A} = \{J : J \text{ is an ideal of } N \text{ with } J \cap M = \phi\}$. Clearly $I \in \mathbb{A}$. Then by Zorn's Lemma, \mathbb{A} contains a maximal element (say) P with $P \cap M = \phi$. We show that P is weakly prime ideal of N. Let A and B be ideals of N with $P \subset A$ and $P \subset B$. Then by maximality of \mathbb{A} , $A \cap M \neq \phi$ and $B \cap M \neq \phi$. Since M is weakly m-system, we have AB = 0 or $AB \cap M \neq \phi$; that is AB = 0 or $AB \nsubseteq P$ since $P \cap M = \phi$. So by Theorem 2.5, P is weakly prime ideal of N and also containing I.

Theorem 2.7. Let N be a decomposable near-ring with identity. If P is a weakly prime ideal of N, then either P = 0 or P is prime.

Proof: Suppose that $N = N_1 \times N_2$ and let $P = P_1 \times P_2$ be a weakly prime ideal of N. We may assume that $P \neq 0$. Now, let A be a non-zero ideal of N_1 and B be a non-zero ideal of N_2 such that $0 \neq (A, B) \subseteq P$. Then $0 \neq (A, N_2)(N_1, B) \subseteq P$ which implies $(A, N_2) \subseteq P$ or $(N_1, B) \subseteq P$. Suppose that $(A, N_2) \subseteq P$. Then $(0, N_2) \subseteq P$ and so $P = P_1 \times N_2$. We show that P_1 is a prime ideal of N_1 . Let A_1 and B_1 be ideals of N_1 such that $A_1B_1 \subseteq P_1$. Then $(0, 0) \neq (A_1, N_2)(B_1, N_2) = (A_1B_1, N_2) \subseteq P$, so $(A_1, N_2) \subseteq P$ or $(B_1, N_2) \subseteq P$ and hence $A_1 \subseteq P_1$ or $B_1 \subseteq P_1$. So P is prime ideal of N. The case where $(N_1, B) \subseteq P$ is similar.

References

- D. D. Anderson and E. Smith, Weakly prime ideals, *Houston J. Math.*, 29 no. 4 (2003), 831-840.
- [2] F. Binder and C. Nöbauer, Table of All Nearrings with Identity Up to Order 15., http://verdi.algebra.uni-linz.ac.at/Sonata/encyclo/ (14 June 2003).
- [3] G. Pilz, *Near-Rings*, North-Holland, Amsterdam, 1983.