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Abstract

In this paper, we derive a one-parameter family of Chebyshev’s
method for finding simple roots of nonlinear equations. Further, we
present a new fourth-order variant of Chebyshev’s method from this
family without adding any functional evaluation to the previously used
three functional evaluations. Chebyshev-Halley type methods are seen
as the special cases of the proposed family. New classes of higher (third
and fourth) order multipoint iterative methods free from second-order
derivative are also derived by semi-discrete modifications of cubically
convergent methods. Fourth-order multipoint iterative methods are op-
timal, since they require three functional evaluations per step. The new
methods are tested and compared with other well-known methods on
the number of problems.
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1. Introduction

One of the most important and challenging problem in computational mathe-
matics is to compute approximate solutions of the nonlinear equation

f(x) = 0. (1)

Newton’s method for multiple roots appears in the work of Schröder [1], which
is given as

xn+1 = xn −
f(xn)f ′′(xn)

{f ′(xn)}2 − f(xn)f ′′(xn)
. (2)

This method has quadratic convergence, including the case of simple root.
Another well-known third-order modification of Newton’s method is the clas-
sical Chebyshev’s method [2, 3], given by

xn+1 = xn −
f(xn)

f ′(xn)
− 1

2

{f(xn)}2f ′′(xn)

{f ′(xn)}3
. (3)

In this paper, we obtain a new general family of Chebyshev’s method
for finding simple roots of nonlinear equations numerically. The classical
Chebyshev-Halley methods [4] are obtained as the particular cases of our pro-
posed scheme. Further, we have also developed a new fourth order variant of
Chebyshev’s method. The beauty of this method is that it uses the same num-
ber of functional evaluations as that of classical Chebyshev’s method. There-
fore, the efficiency of our proposed fourth-order method in terms of functional
evaluations is better than the existing classical Chebyshev’s method. Further-
more, we also develop two new optimal fourth-order multipoint methods free
from second-order derivative.

2. Family of Chebyshev’s Method and Conver-

gence Analysis

Let r be the required root of equation (1) and x = x0 be the initial guess
known for the required root. Assume

x1 = x0 + h, |h| << 1, (4)
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be the first approximation to the root. Therefore

f(x1) = 0. (5)

Expanding the function f(x1) by Taylor’s theorem about x0 and retaining the
terms up to O(h2), we get

f(x0) + hf ′(x0) +
h2

2
f ′′(x0) = 0. (6)

Further simplifying, we get

h = − f(x0)

f ′(x0)
− h2

2

f ′′(x0)

f ′(x0)
. (7)

Approximating h on the right-hand side of equation (7) by the correction term

− f(xn)f ′′(xn)
{f ′(x)}2−af(xn)f ′′(xn)

, a ∈ R (free disposable parameter) given in formula (2),
we obtain

h = − f(x0)

f ′(x0)
− 1

2

{f(x0)}2f ′(x0)f ′′(x0)[
{f ′(x0)}2 − af(x0)f ′′(x0)

]2 . (8)

Thus the first approximation to the required root is given by

x1 = x0 −
f(x0)

f ′(x0)
− 1

2

{f(x0)}2f ′(x0)f ′′(x0)[
{f ′(x0)}2 − af(x0)f ′′(x0)

]2 . (9)

Therefore, the general formula for successive approximations can be written
as

xn+1 = xn −
f(xn)

f ′(xn)
− 1

2

{f(xn)}2f ′(xn)f ′′(xn)[
{f ′(xn)}2 − af(xn)f ′′(xn)

]2 ,
or

xn+1 = xn −
f(xn)

f ′(xn)
− 1

2

{f(xn)}2f ′(xn)f ′′(xn)

{f ′(xn)}4 + a2{f(xn)}2{f ′′(xn)}2 − 2af(xn){f ′(xn)}2f ′′(xn)
.

(10)
This formula looks like a Chebyshev’s formula and describes the one-

parameter family of Chebyshev’s method. Note that for a = 0 in (10), one
can immediately recover the classical Chebyshev’s formula.
Special cases
I. Chebyshev-Halley type methods
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If we remove the term
(
a2{f(xn)}2{f ′′(xn)}2

)
from the denominator: {f ′(x)}4+

a2{f(xn)}2{f ′′(xn)}2 − 2af(xn){f ′(xn)}2f ′′(xn) in formula (10), we obtain a
family of methods defined by

xn+1 = xn −
f(xn)

f ′(xn)
− 1

2

{f(xn)}2f ′′(xn)

{f ′(x)}3 − 2af(xn)f ′(xn)f ′′(xn)
.

This family resembles with the well-known cubically convergent family of
Chebyshev-Halley type methods [4].
II. Another new cubically convergent family of methods

If we remove the term
(
−2af(xn){f ′(xn)}2f ′′(xn)

)
from the denominator:

{f ′(x)}4 +a2{f(xn)}2{f ′′(xn)}2− 2af(xn){f ′(xn)}2f ′′(xn) in formula (10), we
obtain a family of methods defined by

xn+1 = xn −
f(xn)

f ′(xn)
− 1

2

{f(xn)}2f ′(xn)f ′′(xn)

{f ′(x)}4 + a2{f(xn)}2{f ′′(xn)}2
.

It is investigated that this family is also cubically convergent for all a ∈ R.

Theorem 2.1 Assume that f : D ⊂ R → R for an open interval D has a
simple root r ∈ D. Let f(x) be sufficently smooth in the neighborhood of the
root r, then the order of convergence of the methods defined by family (10) is
three for every value of a ∈ R.

Proof. Let en be the error at the nth iteration, then en = xn− r . Expanding
f(xn) and f ′(xn) about r and using the fact that f(r) = 0, f ′(r) 6= 0, we have

f(xn) = f ′(r)[en + c2e
2
n + c3e

3
n + c4e

4
n + c5 +O(e5n)], (11)

where ck = 1
k!

fk(r)
f ′(r)

, k = 2, 3, . . . Furthermore, we have

f ′(xn) = f ′(r)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c5e

4
n +O(e5n)], (12)

and
f ′′(xn) = f ′(r)[2c2 + 6c3en + 12c4e

2
n + 20c5e

3
n +O(e4n)]. (13)

Then

f(xn)

f ′(xn)
= [en − c2e2n + 2

(
c22 − c3

)
e3n +

(
−4c32 + 7c2c3 − 3c4

)
e4n +O(e5n)], (14)
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and {
f(xn)

f ′(xn)

}2
f ′′(xn)

f ′(xn)
= [2c2e

2
n +

(
6c3 − 8c22

)
e3n +O(e4n)]. (15)

Using (14) and (15) in equation (10) and simplifying, we get

en+1 =
{

2c22(1− 2a)− c3
}
e3n +O(e4n). (16)

Therefore, it can be concluded that for all a ∈ R, the family (10) converges
cubically. For a = 1

2
, error equation (16) reduces to

en+1 = −c3e3n +O(e4n). (17)

3. Fourth-order Variant of a Chebyshev’s Method

and Convergence Analysis

Here we intend to develop a new optimal fourth-order variant of Chebyshev’s
method. This method is very interesting because it has very higher order of
convergence and computational efficiency unlike Chebyshev’s method.
Considering the Newton-like iterative method with a parameter α ∈ R

yn = xn − α
f(xn)

f ′(xn)
. (18)

We now modify family (10) of Chebyshev’s method by using the second-order
derivative at yn instead of xn and obtain

xn+1 = xn −
f(xn)

f ′(xn)
− 1

2

{f(xn)}2f ′(xn)f ′′(yn)[
{f ′(x)}2 − af(xn)f ′′(yn)

]2 . (19)

Obviously, when we take (a, α) = (0, 0), we get classical Chebyshev’s method.

Theorem 3.1 Assume that f : D ⊂ R → R for an open interval D has a
simple root r ∈ D. Let f(x) be sufficently smooth in the neighborhood of the
root r, then the order of convergence of the method defined by formula (19) is
of order four if (a, α) =

(
1
2
, 1

3

)
.
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Proof. The proof of said convergence of method (19) can be proved on similar

lines as in the Theorem (2.1). Expanding f ′′(yn) = f
(
xn − α f(xn)

f ′(xn)

)
about

x = r, we have

f ′′(yn) =f ′(r)[2c2 + 6c3(1− α)en + (6αc2c3 + 12c4(1− α)2e2n) + (12αc3(c3 − c22)
+ 24c2c4α(1− α) + 20c5(1− α)3)e3n +O(e4n)].

(20)
Using (11), (12) and (20) in formula (19) and simplifying, we get the final
error equation as

en+1 ={(1− 2a)2c22 − (1− 3α)c3}e3n + {(28a− 12a2 − 9)c32
+ (12− 24a− 15α + 24aα)c2c3 − (3− 12α + 6α2)c4}e4n +O(e5n).

(21)
For the method to be of fourth-order convergence, we must have

1− 2a = 0 and 1− 3α = 0,

which implies

a =
1

2
and α =

1

3
. (22)

Using (22) in equation (21), we obtain the following error equation for fourth-
order variant as

en+1 =

(
2c32 − c2c3 +

1

3
c4

)
e4n +O(e5n). (23)

The efficiency index [2] of the present method is equal to 3
√

4 ∼= 1.587 , which is
better than the ones of classical Chebyshev’s method 3

√
3 ∼= 1.442 and Newton’s

method 2
√

2 ∼= 1.414 respectively. Therefore, this method is very interesting
because it has higher order of convergence and computational efficiency than
Chebyshev’s method.

4. Families of Multipoint Iteration Methods

and their Convergence Analysis

The practical difficulty associated with the above mentioned methods given
by (10) or (19) may be the evaluation of second-order derivative. Recently,
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some new variants of Newton’s method free from second-order derivative have
been developed in [2, 3, 5, 6, 7, 8, 9] and the references cited theirin by dis-
cretization of second-order derivative or by predictor-corrector approach or
by considering different quadrature formulae for the computation of integral
arising from Newton’s theorem. These multipoint methods are of great prac-
tical importance since they overcome the limitations of one-point methods
regarding the convergence order and computational efficiency. According to
Kung-Traub conjecture [9], the order of convergence of any multipoint method
without memory consuming function evaluations per iteration, can not exceed
the bound (called optimal order). Thus, the optimal order for a method with
three functional evaluations per step would be four. Traub-Ostrowski’s method
[2, 3], Jarratt’s method [5], King’s method [6] and Maheswari’s method [7] etc.
are famous optimal fourth order methods, because they require three functions
evaluations per step. Nowadays, obtaining new optimal methods of order four
is still important, because they have very high efficiency index.

Here, we also intend to develop new fourth-order multipoint methods free
from second-order derivative. The main idea of proposed methods lies in the
discretization of second-order derivative involved in family (10) of Chebyshev’s
method.
a. First family

Expanding the function f(xn− βu), β 6= 0 ∈ R but finite, about the point
x = xn with f(xn) 6= 0, we have

f(xn − βu) = f(xn)− βuf ′(xn) +
β2u2

2!
f ′′(xn) +O(e3n). (24)

Let us take u = f(xn)
f ′(xn)

, and inserting this into (24), we obtain

f(xn)f ′′(xn) ≈ 2{f ′(xn)}2

β2f(xn)
{f(xn − βu)− (1− β)f(xn)}. (25)

Using the approximate value of f(xn)f ′′(xn) into formula (10), we have

xn+1 = xn −
f(xn)

f ′(xn)

[
1 + β2f(xn)

{f(xn − βu)− (1− β)f(xn)}
{(β2 + 2a(1− β))f(xn)− 2af(xn − βu)}2

]
.

(26)
Special cases

For different specific values of parameters a and α, the following various
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multipoint methods can be deduced from (26), e.g.
i. For (a, β) =

(
−1

2
, 1
)
, we get the new formula

xn+1 = xn −
f(xn)

f ′(xn)

[
1 +

f(xn)f(xn − u)

{f(xn) + f(xn − u)}2

]
. (27)

ii. For (a, β) = (−1, 1), we get the new formula

xn+1 = xn −
f(xn)

f ′(xn)

[
1 +

f(xn)f(xn − u)

{f(xn) + 2f(xn − u)}2

]
. (28)

iii. For (a, β) =
(
1
2
, 1
)
, we get the new formula

xn+1 = xn −
f(xn)

f ′(xn)

[
1 +

f(xn)f(xn − u)

{f(xn)− f(xn − u)}2

]
. (29)

Note that the family (26) can produce many more new multipoint methods by
choosing different values of the parameters.
b. Second family

Replacing the second-order derivative in (10) by the following definition

f ′′(xn) ≈ f ′(xn)− f ′(xn − βu)

βu
, β 6= 0 ∈ R,

we get the following new family as

xn+1 = xn −
f(xn)

f ′(xn)

[
1 +

1

2

βf ′(xn){f ′(xn)− f ′(xn − βu)}
{(β − a)f ′(xn) + af ′(xn − βu)}2

]
. (30)

Special cases
For different specific values of parameters a and β, the following various

multipoint methods can be obtained from (30), e.g.
i. For (a, β) = (1, 1), we get the new formula

xn+1 = xn −
f(xn)

f ′(xn)

[
1 +

f ′(xn){f ′(xn)− f ′(xn − u)}
2{f ′(xn − u)}2

]
. (31)

ii. For (a, β) =
(
1
2
, 2

3

)
, we get the new formula

xn+1 = xn −
f(xn)

f ′(xn)

[
1 +

12f ′(xn)
{
f ′(xn)− f ′

(
xn − 2

3
u
)}{

f ′(xn) + 3f ′
(
xn − 2

3
u
)}2

]
. (32)



Variants of Chebyshev’s Method with Optimal Order of Convergence 47

Other modifications can be obtained from formula (10) by replacing the second-
order derivative by other finite difference approximations.

The order of convergence of family (26) and (30) will be studied in Theorem
4.1 in the subsequent section.

Theorem 4.1 Let f : D ⊆ R → R be a continuous and sufficiently differ-
entiable function defined in D. If f(x) has a simple root r ∈ D, then for
sufficiently close initial guess x0 to r,

(i) the family (26) has 3rd order of convergence, for

a 6= 1

2
& β = 1, a =

1

2
& β 6= 1, a 6= 1

2
& β 6= 1,

and 4th order of convergence for a =
1

2
& β = 1.

(ii) the family (30) has 3rd order of convergence, for

a 6= 1

2
& β =

2

3
, a =

1

2
& β 6= 2

3
, a 6= 1

2
& β 6= 2

3
,

and 4th order of convergence for a =
1

2
& β =

2

3
.

Proof. Since f(x) is sufficiently differentiable, expanding f(xn) and f ′(xn)
about x = r by Taylor’s expansion, we have

f(xn) = f ′(r)[en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n +O(e5n)], (33)

and
f ′(xn) = f ′(r)[1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n +O(e5n)], (34)

where ck and en are defined earlier.

f(xn−βu) = (1−β)en+{(1−β+β2)c2}e2n−{2β2c22−((1−β)3+2β)c3}e3n+O(e4n).
(35)

Using symbolic computation in the programming package Mathematica, we
get the following error equation for the family (26):

en+1 ={2(1− 2a)c22 − (1− β)c3}e3n + {(28a− 12a2 − 9)c32
+ (12− 24a− 5β + 8aβ)c2c3 − (3− 4β + β2)c4}e4n +O(e5n).

(36)

For a = 1
2

and β = 1, in equation (36), we get

en+1 = (2c32 − c2c3)e4n +O(e5n). (37)
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Similarly for scheme (30), we have the following error equation

en+1 =

{
2(1− 2a)c22 −

(
1− 3β

2

)
c3

}
e3n +

{
(28a− 12a2 − 9)c32

+

(
12− 24a− 15β

2
+ 12aβ

)
c2c3 − (3− 6β + 2β2)c4

}
e4n +O(e5n).

(38)

For a = 1
2

and β = 2
3
, in equation (36), we get

en+1 =

(
2c32 − c2c3 +

1

9
c4

)
e4n +O(e5n). (39)

5. Numerical Results

In this section, we shall present the numerical results obtained by employing
the methods namely Newton’s method (NM), Chebyshev’s method (CM), cu-
bically convergent variant of Chebyshev’s method (10) for a = 1 (CVCM) and
quartically convergent variant of Chebyshev’s method (19) (QVCM) respec-
tively to solve the nonlinear equations given in Table 1. The results are summa-
rized in Table 2. We also compare Newton’s method (NM), Traub-Ostrowski’s
method (TOM), Jarratt’s method (JM), Maheswari’s method (MM) with our
optimal multipoint methods (29) (MTOM) and (32) (MJM) introduced in this
contribution. The results are summarized in Table 3. Computations have been
performed using C++ in double precision arithmetic. We use ε = 10−15. The
following stopping criteria are used for computer programs:

(i) |xn+1 − xn| < ε, (ii) |f(xn+1)| < ε.
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Table 1: Test Problems

No Problems [a, b] Initial guess Root (r)

1. ex − 4x2 = 0 [0.5, 2] 0.5 0.714805901050568

2.0

2. x3 + 4x2 − 10 = 0 [1, 2] 1.0 1.3652300134140969

2.0

3. cos x− x = 0 [0, 2] 0.0 0.7390851332151600

2.0

4. x2 − ex − 3x+ 2 = 0 [0, 1] 0.0 0.000000000000000

1.0

5. xex
2 − sinx2 + 3 cosx+ 5 = 0 [−1.5, − 0.5] −1.5 1.207647800445557

−0.5

6. sin2 x− x2 + 1 = 0 [1, 3] 1.0 1.404491662979126

3.0

7. ex
2+7x−30 − 1 = 0 [2.9, 3.5] 2.9 3.000000000000000

3.5
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Table 2: Results of problems (Number of Iterations)

Problem Initial guess NM CM CVCM QVCM

1. 0.5 4 3 3 2

2.0 5 4 4 3

2. 1.0 4 3 3 2

2.0 4 3 3 2

3. 0.0 4 3 3 3

2.0 3 3 3 2

4. 0.0 3 2 2 2

1.0 3 3 2 2

5. −1.5 5 3 4 3

−0.5 9 Divergent 7 5

6. 1.0 5 4 4 3

3.0 5 4 4 3

7. 2.9 6 Divergent 5 3

3.5 11 7 9 6



Variants of Chebyshev’s Method with Optimal Order of Convergence 51

Table 3: Results of problems (D below-stands for divergent)
Number of iterations

Problem Initial guess NM TOM JM MM MTOM MJM

1. 0.5 4 2 2 3 2 3

2.0 5 3 3 3 3 3

2. 1.0 4 2 2 3 2 3

2.0 4 2 2 3 2 3

3. 0.0 4 2 3 3 3 3

2.0 3 2 2 2 2 2

4. 0.0 3 2 2 3 2 2

1.0 3 2 2 2 2 2

5. −1.5 5 2 3 3 3 3

−0.5 9 4 3 D 6 7

6. 1.0 5 3 3 4 3 3

3.0 5 3 3 3 3 3

7. 2.9 6 3 3 36 3 4

3.5 11 5 5 6 6 6
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6 . Conclusions

In this paper, we obtained a new simple and elegant root-finding family of
Chebyshev’s method. Chebyshev-Halley type methods are seen as the special
cases of our proposed family. Furthermore, we presented a new fourth-order
variant of Chebyshev’s method. Then we introduced two new multipoint
optimal methods of order four. The additional advantage of the presented
multipoint methods is similar to that of Traub-Ostrowski’s method, Jarratt’s
method etc. because they do not require the computation of second-order
derivative to reach such a high convergence order. Finally, we provide numeri-
cal tests showing that these methods are equally competitive to other methods
available in literature for finding simple roots of nonlinear equations.

Acknowledgement. Ramandeep Behl gratefully acknowledges the financial
support of CSIR, New Delhi.
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