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Abstract

An inequality of Ostrowski’s type for preinvex functions is intro-
duced. Applications to some special means are considered.
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1. Introduction

Let K be a nonempty closed set in Rn. Let f : K → R and η : K ×K → R
be continuous functions. Let x ∈ K. Then the set K is said to be invex at x
with respect to η (·, ·), if

x+ t · η (y, x) ∈ K, ∀x, y ∈ K, t ∈ [0, 1].
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K is said to be an invex set with respect to η, if K is invex at each x ∈ K.
The invex set K is also called a η-connected set. For the sake of simplicity, we
always assume that K = [a, a+ η (b, a)], unless otherwise specified.

Definition 1. [11] The function f on the invex set K is said to be preinvex
with respect to

f (x+ t · η (y, x)) ≤ (1− t) f (x) + tf (y) , ∀x, y ∈ K, t ∈ [0, 1].

The function f is said to be preconcave if and only if −f is preinvex.

It may be noted that every convex function is a preinvex function, but the
converse is not true [2].

Definition 2. [11] The differentiable function f on the invex set K is said to
be an invex function with respect to η (y, x), if

f (y)− f (x) ≥ 〈f ′ (x) , η (y, x)〉 , ∀x, y ∈ K,

where f ′(x) is the differential of f at x, and we denote 〈·, ·〉 to the inner
product.

It is clear that the differentiable preinvex functions are invex and the con-
verse is also true under certain conditions, see [11, 12]. Also, it is true that
every convex set is invex with respect to η (y, x) = y − x, but the converse
may not be true [7]. Extensive work has been reported in the literature on
generalized convex functions see [2, 3, 6, 10].

In the recent paper, Noor [8] has obtained the following Hermite-Hadamard
inequalities for the preinvex.

Theorem 1. Let f : K := [a, a+ η (b, a)] → (0,∞) be a preinvex function
on the interval of real numbers K◦ (the interior of K) and a, b ∈ K◦ with
a < a+ η (b, a). Then,

f

(
2a+ η (b, a)

2

)
≤ 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx ≤ f (a) + f (b)

2
(1.1)

Other results connected with (1.1) were established by Noor [9], where he
introduce a new inequalities involving two log-preinvex.

The main concern of this paper is to establish an Ostrowski’s type inequal-
ity for differentiable functions whose derivative in absolute value is preinvex
functions.
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2. Ostrowski Type Inequalities

In 1938, Ostrowski established a very interesting inequality for differentiable
functions with bounded derivatives, as follows: Let f : I ⊂ R → R be a
differentiable function on I◦, the interior of the interval I, such that f ′ ∈ L[a, b],
where a, b ∈ I with a < b. If |f ′ (x)| ≤M. Then,

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (u) du

∣∣∣∣ ≤M (b− a)

[
1

4
+

(
x− a+b

2

)2
(b− a)2

]
, (2.1)

holds for all x ∈ [a, b]. The constant 1
4

is the best possible in the sense that it
cannot be replaced by a smaller ones. For recent results and generalizations
concerning Ostrowski’s inequality we refer the reader to the comprehensive
book [5].

In order to prove our main inequality which is of Ostrowski’s type, we need
the following lemma:

Lemma 1. [1] Let f : K := [a, a+ η (b, a)] → R be a differentiable function
on K◦ (the interior of K) and a, b ∈ K◦ with a < a+ η (b, a). If f ′ is preinvex
and f ′ ∈ L[a, b]. Then,

f (2a− x+ η (b, a))− 1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

= η (b, a) ·
∫ 1

0
p (t) f ′ (a+ t · η (b, a)) dt, (2.2)

where,

p (t) =


t, t ∈

[
0, a+η(b,a)−x

η(b,a)

]
t− 1, t ∈

(
a+η(b,a)−x

η(b,a)
, 1
] ,

for each x ∈ K.

Proof. Let I =
∫ 1

0
p (t) f (ta+ t · η (b, a)) dt. Using integration by parts, we
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get

I =

∫ 1

0

p (t) f ′ (a+ t · η (b, a)) dt

=

∫ a+η(b,a)−x
η(b,a)

0

tf ′ (a+ t · η (b, a)) dt+

∫ 1

a+η(b,a)−x
η(b,a)

(t− 1) f ′ (a+ t · η (b, a)) dt

=
1

η (b, a)
· a+ η (b, a)− x

η (b, a)
· f
(
a+ a+η(b,a)−x

η(b,a)
· η (b, a)

)
− 1

η (b, a)

∫ a+η(b,a)−x
η(b,a)

0

f (a+ t · η (b, a)) dt

+
1

η (b, a)
· x− a
η (b, a)

· f
(
a+ a+η(b,a)−x

η(b,a)
· η (b, a)

)
− 1

η (b, a)

∫ 1

a+η(b,a)−x
η(b,a)

f (a+ t · η (b, a)) dt

=
1

η (b, a)
f (2a− x+ η (b, a))− 1

η (b, a)

∫ 1

0

f (a+ t · η (b, a)) dt,

i.e.,

η (b, a) · I = f (2a− x+ η (b, a))− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx,

which completes the proof.

The following theorem gives an Ostrowski type inequality for differentiable
functions whose derivative in absolute value is preinvex.

Theorem 2. Let f : K := [a, a+ η (b, a)]→ R be a differentiable function on
K◦ (the interior of K) and a, b ∈ K◦ with a < a+η (b, a). If |f ′| is a preinvex.
Then,
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∣∣∣∣∣f (2a− x+ η (b, a))− 1

η (b, a)

∫ a+η(b,a)

a
f (u) du

∣∣∣∣∣
≤ |η (b, a)| ·

{[
3

2
·
(
a− x
η (b, a)

+ 1

)2

− 2

3
·
(

1 +
a− x
η (b, a)

)3

+
x− a
η (b, a)

− 2

3

] ∣∣f ′ (a)
∣∣

+

[
1

6
− 1

2

(
a− x
η (b, a)

+ 1

)2

+
2

3

(
a− x
η (b, a)

+ 1

)3
] ∣∣f ′ (b)∣∣} , (2.3)

for each x ∈ K.

Proof. Form Lemma 1 and preinvexity of |f ′| we have∣∣∣∣∣f (2a− x+ η (b, a))− 1

η (b, a)

∫ a+η(b,a)

a

f (u) du

∣∣∣∣∣
=

∣∣∣∣η (b, a) ·
∫ 1

0

p (t) f ′ (a+ t · η (b, a)) dt

∣∣∣∣
≤ |η (b, a)| ·

∫ a+η(b,a)−x
η(b,a)

0

t |f ′ (a+ t · η (b, a))| dt

+

∫ 1

a+η(b,a)−x
η(b,a)

(1− t) |f ′ (a+ t · η (b, a))| dt

]

≤ |η (b, a)| ·


∫ a+η(b,a)−x

η(b,a)

0

t [(1− t) |f ′ (a)|+ t |f ′ (b)|] dt

+

∫ 1

a+η(b,a)−x
η(b,a)

(1− t) [(1− t) |f ′ (a)|+ t |f ′ (b)|] dt

}

= |η (b, a)| ·

{[
3

2
·
(
a− x
η (b, a)

+ 1

)2

− 2

3
·
(

1 +
a− x
η (b, a)

)3

+
x− a
η (b, a)

− 2

3

]
|f ′ (a)|

+

[
1

6
− 1

2

(
a− x
η (b, a)

+ 1

)2

+
2

3

(
a− x
η (b, a)

+ 1

)3
]
|f ′ (b)|

}
,

which completes the proof.
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Corollary 1. In Theorem 2, for

(1) x = a, we have:∣∣∣∣∣f (a+ η (b, a))− 1

η (b, a)

∫ a+η(b,a)

a

f (u) du

∣∣∣∣∣
≤ |η (b, a)|

6
· (2 |f ′ (b)|+ |f ′ (a)|) , (2.4)

(2) x = 2a+η(b,a)
2

, we have:∣∣∣∣∣f
(

2a+ η (b, a)

2

)
− 1

η (b, a)

∫ a+η(b,a)

a

f (u) du

∣∣∣∣∣
≤ |η (b, a)|

8
· (|f ′ (a)|+ |f ′ (b)|) , (2.5)

(3) x = η (b, a), we have:∣∣∣∣∣f (2a)− 1

η (b, a)

∫ a+η(b,a)

a

f (u) du

∣∣∣∣∣
≤ |η (b, a)| ·

{[
3

2
· a2

η2 (b, a)
− 2

3
· a3

η3 (b, a)
+

1

3
− a

η (b, a)

]
|f ′ (a)|

+

[
1

6
− 1

2
· a2

η2 (b, a)
+

2

3
· a3

η3 (b, a)

]
|f ′ (b)|

}
. (2.6)

3. Applications to Special Means

In the following we study certain generalizations of some notions for a positive-
valued function of a positive variable.

Definition 3. ([4]) A function M : R2
+ → R+, is called a Mean function if it

has the following properties:

(1) Homogeneity: M (ax, ay) = aM (x, y), for all a > 0,

(2) Symmetry : M (x, y) = M (y, x),
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(3) Reflexivity : M (x, x) = x,

(4) Monotonicity: If x ≤ x′ and y ≤ y′, then M (x, y) ≤M (x′, y′),

(5) Internality: min{x, y} ≤M (x, y) ≤ max{x, y}.

We shall consider some means for arbitrary positive real numbers α, β
(α 6= β) [4].

(1) The arithmetic mean :

A := A (α, β) =
α + β

2
.

(2) The geometric mean :

G := G (α, β) =
√
αβ.

(3) The harmonic mean :

H := H (α, β) =
2

1
α

+ 1
β

(4) The power mean :

Pr (α, β) =

(
αr + βr

2

)1
r

, r ≥ 1.

(5) The identric mean:

I (α, β) =

 1
e

(
ββ

αα

) 1
β−α

, α 6= β

α, α = β.

(6) The logarithmic mean :

L := L (α, β) =
α− β

ln |α| − ln |β|
, |α| 6= |β| .
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(7) The generalized log-mean:

Lp := Lp (α, β) =

[
βp+1 − αp+1

(p+ 1) (β − α)

]1
p

, p ∈ R\ {−1, 0} .

It is well known that Lp is monotonic nondecreasing over p ∈ R, with L−1 := L
and L0 := I. In particular, we have the following inequality H ≤ G ≤ L ≤
I ≤ A.

Now, let a and b be positive real numbers such that a < b. Consider the
function

M := M(a, b) : [a, a+ η (b, a)]× [a, a+ η (b, a)]→ R+,

which is one of the above mentioned means, therefore one can obtained variant
inequalities for these means as follows:

Setting η (b, a) = M (b, a) and choose x = 2a in (2.3), provided that 2a �
η(b, a) = M(b, a), one can obtain the following interesting inequality involving
means:∣∣∣∣∣f (M (b, a))− 1

M (b, a)

∫ a+M(b,a)

a
f (u) du

∣∣∣∣∣
≤ |M (b, a)| ·

{[
3

2
·
(

1− a

M (b, a)

)2

− 2

3
·
(

1− a

M(b, a)

)3

+
a

M(b, a)
− 2

3

] ∣∣f ′ (a)
∣∣

+

[
1

6
− 1

2

(
1− a

M (b, a)

)2

+
2

3

(
1− a

M (b, a)

)3
] ∣∣f ′ (b)∣∣} . (3.1)

Letting M := A,G,H, Pr, I, L, Lp, we get the required inequalities, and the details
are left to the interested reader.
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