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Abstract

A relation between Shannon entropy and Kerridge inaccuracy, which
is known as Shannon inequality, is well known in information theory. In
this communication, first we generalized Shannon inequality and then
given its application in coding theory and discuss some particular cases.
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1. Introduction

Let ∆n = {P = (p1, p2, ..., pn) ; pk ≥ 0,
∑n

k=1 pk = 1} , n ≥ 2 be a set of n-
complete probability distributions.

For P∈ ∆n, Shannon’s measure of information [9] is defined as

H (P ) = −
n∑
k=1

pk logD pk. (1.1)

The measure (1.1) has been generalized by various authors and has found
applications in various disciplines such as economics, accounting, crime and
physics etc.
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Sharma and Mittal [10] generalized (1.1) in the following form:

H (P ;α, β) =
1

21−β − 1

( n∑
k=1

pαk

) β−1
α−1

− 1

 , (1.2)

where α, β > 0, α 6= β, α 6= 1 6= β.
For P,Q ∈ ∆n, Kerridge [6] introduced a quantity known as inaccuracy defined
as:

H (P,Q) = −
n∑
k=1

pk logD qk. (1.3)

There is well known relation between H(P ) and H(P,Q) which is given by

H(P) ≤ H(P,Q). (1.4)

The relation (1.4) is known as Shannon inequality and its importance is well
known in coding theory.

In the literature of information theory, there are many approaches to extend
the relation (1.4) for other measures. Nath and Mittal [7] extended the relation
(1.4) in the case of entropy of type β.

Using the method of Nath and Mittal [7], Lubbe [14] generalized (1.4) in
the case of Renyi’s entropy. On the other hand, using the method of Camp-
bell, Lubbe [14] generalized (1.4) for the case of entropy of type β. Using
these generalizations, coding theorems are proved by these authors for these
measures.

The objective of this communication is to generalize (1.4) for (1.2) and give
its application in coding theory.

2. Generalization of Shannon Inequality

For P,Q ∈ ∆n, Sharma and Gupta [4] defined a measure of inaccuracy, denoted
by H(P,Q;α, β) as

H (P,Q;α, β) =
1

21−β − 1

( n∑
k=1

pkq
(α−1)
k

)( β−1
α−1)

− 1

 , (2.1)
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where α, β > 0, α 6= β, α 6= 1 6= β.
Since H (P,Q;α, β) 6= H (P ;α, β) , we will not interpret (2.1) as a measure of
inaccuracy. But H (P,Q;α, β) is a generalization of the measure of inaccuracy
defined in (1.2). In spite of the fact that H (P,Q;α, β) is not a measure of
inaccuracy in its usual sense, its study is justified because it leads to meaningful
new measures of length. In the following theorem, we will determine a relation
between (1.2) and (2.1) of the type (1.4).

Since (2.1) is not a measure of inaccuracy in its usual sense, we will call
the generalized relation as pseudo-generalization of the Shannon inequality.

Application of Holder’s Inequality

Theorem 1. If P,Q∈ ∆n then it holds that

H (P ;α, β) ≤ H (P,Q;α, β) (2.2)

under the condition
n∑
k=1

qαk ≤
n∑
k=1

pαk (2.3)

and equality holds if
qk = pk; k = 1, 2, ..., n.

Proof: (a) If 0 < α < 1 < β.
By Holder’s inequality [11](

n∑
k=1

xpk

) 1
p
(

n∑
k=1

yqk

) 1
q

≤
n∑
k=1

xkyk (2.4)

for all xk, yk > 0, i = 1, 2, ..., n and 1
p

+ 1
q

= 1, p < 1 (6= 0) , q < 0 or q <

1 (6= 0) , p < 0. We see that equality holds if and only if there exists a positive
constant c such that

xpk = cyqk.

Making the substitutions

p =
α− 1

α
, q = 1− α
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xk = p
α
α−1

k qαk , yk = p
α

1−α
k

in (2.4), we get(
n∑
k=1

pkq
α−1
k

) α
α−1
(

n∑
k=1

pαk

) 1
1−α

≤
n∑
k=1

qαk ; α > 0, α 6= 1.

Using the condition (2.3), we get(
n∑
k=1

pkq
α−1
k

) α
α−1
(

n∑
k=1

pαk

) 1
1−α

≤
n∑
k=1

pαk ; α > 0, α 6= 1. (2.5)

Since 0 < α < 1 < β, (2.5) becomes(
n∑
k=1

pkq
α−1
k

)( β−1
α−1)

≤

(
n∑
k=1

pαk

)( β−1
α−1)

(2.6)

using (2.6) and the fact that β > 1, we get (2.2).
(b) If α > 1, β > 1; 0 < α < 1; β > 1 (α < β or β < α) ; 0 < β < 1 <
α.

The proof follows on the similar lines.

Application in Coding Theory.
We will now give an application of Theorem 1 in coding theory. Let a finite

set of n-input symbols with probabilities p1, p2, ..., pn be encoded in terms of
symbols taken from the alphabet {a1, a2, ..., an} .

Then it is known Feinstein [3] that there always exist a uniquely decipher-
able code with lengths N1, N2, ..., Nn iff

n∑
k=1

D−Nk ≤ 1. (2.7)

If L =
∑n

k=1 pkNk is the average codeword length, then for a code which
satisfies (2.7), it has been shown that Feinstein [3],

L ≥ H (P ) (2.8)



Sharma-Mittal Entropy and Coding Theorem 23

with equality iff Nk = − logD pk; k = 1, 2, ..., n
and that by suitable encoded into words of long sequences, the average length
can be made arbitrary close to H (P ) . This is Shannon’s noiseless coding theo-
rem. By considering Renyi’s [8] entropy, a coding theorem and analogous to the
above noiseless coding theorem has been established by Campbell [1] and the
authors obtained bounds for it in terms of Hα (P ) = 1

1−α logD
∑n

k=1 p
α
k ; α 6=

1, α > 0. It may be seen that the mean codeword length L =
∑n

k=1 pkNk had
been generalized parametrically and their bounds had been studied in terms
of generalized measures of entropies.

We define the measure of length L (α, β) by

L (α, β) =
1

21−β − 1

( n∑
k=1

pkD
Nk(1−α)

)( β−1
α−1)

− 1

 , (2.9)

where α, β > 0, α 6= β, α 6= 1 6= β.
Also, we have used the condition

n∑
k=1

D−Nkα ≤
n∑
k=1

pαk , α > 0 (2.10)

to find the bounds. It may be seen that in the case when α = 1, then (2.10)
reduces to Kraft Inequality (2.7).

Theorem 2. If Nk, k = 1, 2, ..., n are the lengths of codewords satisfying
(2.10), then

H (P ;α, β) ≤ L (α, β) < D1−βH (P ;α, β) +
1−D1−β

1− 21−β . (2.11)

Proof: In (2.2) choose Q = (q1, q2, ..., qn) where

qk = D−Nk (2.12)

with choice of Q, (2.2) becomes

H (P ;α, β) ≤ 1

21−β − 1

( n∑
k=1

pkD
Nk(1−α)

)( β−1
α−1)

− 1
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i.e., H (P ;α, β) ≤ L (α, β) which proves the first part of (2.11).
The equality holds iff D−Nk = pk, k = 1, 2, ..., n which is equivalent to

Nk = − logD pk; k = 1, 2, ..., n. (2.13)

Choose all Nk such that

− logD pk ≤ Nk < − logD pk + 1.

Using the above relation, it follows that

D−Nk > pkD
−1. (2.14)

We now have two possibilities:

1) If α > 1, (2.14) gives us(
n∑
k=1

pkD
Nk(1−α)

)
>

n∑
k=1

pαkD
1−α. (2.15)

Now consider two cases:

i) let 0 < β < 1. Raising both sides of (2.15) with (β − 1)/(α− 1), we get(
n∑
k=1

pkD
Nk(1−α)

)( β−1
α−1)

<

(
n∑
k=1

pαk

)( β−1
α−1)

D1−β. (2.16)

Since 21−β − 1 > 0 for β < 1, we get from (2.16) the right hand side in (2.11).
ii) Let β > 1. The proof follows similarly.

2) If 0 < α < 1, The proof follows on the same lines.

Particular’s cases:
(1) Since D ≥ 2, we have

1−D1−β

1− 21−β ≥ 1.

It follows then the upper bound of L (α, β) in (2.11) is greater than unity.
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(2) If β = α, then (2.11) becomes

H (P ;α) ≤ L (α) < D1−αH (P ;α) +
1−D1−α

1− 21−α

where

H (P ;α) =
1

21−α − 1

[
n∑
k=1

pαk − 1

]
, α > 0, α 6= 1

be the Havrda-Charvat [5] Entropy and later on it studied by Vajda [13],
Daroczy [2] and Tsallis [12].

L (α) =
1

21−α − 1

[(
n∑
k=1

pkD
−Nk(α−1)

)
− 1

]
, α > 0, α 6= 1

be the new mean codeword length.
(3) If β → 1 then (2.11) becomes

H (P ;α) ≤ L (α) < H (P ;α) + logD.

Where Hα (P ) = 1
1−α logD

∑n
k=1 p

α
k , α > 0, α 6= 1 be the Renyi’s [8] Entropy

and L(α) = 1
1−α logD

∑n
k=1 pkD

−Nk(α−1), α > 0, α 6= 1 be the new mean
codeword length.
(4) If β = α and α→ 1 then (2.11) becomes

H(P )

logD
≤ L <

H(P )

logD
+ 1.

Which is the Shannon [9] classical noiseless coding theorem.

Conclusion:
We know that optimal code is that code for which the value L (α, β) is

equal to its lower bound. From the result of the theorem 2, it can be seen that
the mean codeword length of the optimal code is dependent on two parameters
α and β, while in the case of Shannon’s theorem it does not depend on any
parameter. So it can be reduced significantly by taking suitable values of
parameters.
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