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Bilal Şeker‡

Department of Mathematics, Faculty of Science and Letters

Batman University TR-72060 Batman, Turkey

and

Shigeyoshi Owa§

Department of Mathematics, Kinki University

Higashi-Osaka, Osaka 577-8502, Japan

Received September 9, 2010, Accepted January 18, 2013.

Tamsui Oxford Journal of Information and Mathematical Sciences 29(1) (2013) 1-17
Aletheia University

∗2010 Mathematics Subject Classification. Primary 30C45, 30C50, 30C80, 26A33, 33C20.
†E-mail: sevtaps@dicle.edu.tr
‡E-mail: bilalseker1980@gmail.com
§Corresponding author. E-mail: owa@math.kindai.ac.jp
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Abstract

Motivated by the success of the familiar Dziok-Srivastava and the
Owa-Srivastava linear operators, we introduce here a unified presenta-
tion of them. By means of this new linear operator, we then define and
investigate a class of analytic functions. Finally, we determine coeffi-
cient estimates, sufficient condition in terms of coefficients, maximiza-
tion theorem concerning of coefficients and radius problem of functions
belonging to this class.

Keywords and Phrases: Dziok-Srivastava Operator, Owa-Srivastava Oper-
ator, Subordination, Hadamard product, Generalized hypergeometric function,
Complex order, maximization.

1. Introduction

Let A denote the class of functions f(z) of the form

f (z) = z +
∞∑
k=2

akz
k, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}.
Given two functions f, g ∈ A, where f(z) is given by (1.1) and g(z) is given

by

g (z) = z +
∞∑
k=2

bkz
k,

the Hadamard product (or convolution) f ∗ g is defined (as usual) by

(f ∗ g) (z) = z +
∞∑
k=2

akbkz
k = (g ∗ f)(z) , z ∈ U.

For two analytic functions f and g, we say that the function f(z) is sub-
ordinate to g(z) in U, and write

f(z) ≺ g(z) (z ∈ U),
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if there exists a Schwarz function w(z), analytic in U with w(0) = 0 and
|w(z)| < 1 such that

f(z) = g(w(z)) (z ∈ U).

In particular, if the function g is univalent in U, the above subordination
is equivalent to

f(0) = g(0) and f(U) ⊂ g(U).

See also Duren [8].
For αj ∈ C (j = 1, 2, ...q) and βj ∈ C \ Z−

0 ; Z−
0 = {0,−1,−2, ...} (j =

1, 2, ...s) the generalized hypergeometric function qFs(α1, ..., αq; β1, ..., βs; z) is
defined by

qFs(α1, ..., αq; β1, ..., βs; z) =
∞∑
k=0

(α1)k...(αq)k
(β1)k...(βs)k

zk

k!

(q ≤ s+ 1, q, s ∈ N0 = {0, 1, 2, ...} = N ∪ {0}) .
Here, and in what follows, (κ)n denotes the Pochhammer symbol (or shifted

factorial) defined, in terms of the Gamma function Γ, by

(κ)n =
Γ(κ+ n)

Γ(κ)
= { 1 n = 0, κ �= 0

κ(κ+ 1)...(κ+ n− 1) n ∈ N.

For the function

h(α1, ..., αq; β1, ..., βs; z) = zqFs(α1, ..., αq; β1, ..., βs; z)

the Dziok-Srivastava linear operator [5] (see also [6] Hq
s (α1, ..., αq; β1, ..., βs; z)

is defined by the following Hadamard product (or convolution) :

Hq
s (α1, ..., αq; β1, ..., βs; z)f(z) = h(α1, ..., αq; β1, ..., βs; z) ∗ f(z)

= z +
∞∑
k=2

(α1)k−1...(αq)k−1

(β1)k−1...(βs)k−1

1

(k − 1)!
akz

k.

For notational simplicity, we write

Hq
s (α1, ..., αq; β1, ..., βs; z)f(z) = Hq

s (α1, β1; z)f(z).
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The fractional derivative of order γ is defined [9], for a function f , by

Dγ
zf(z) =

1

Γ(1− γ)

d

dz

∫ z

0

f(ξ)

(z − ξ)γ
dξ (0 ≤ γ < 1)

where the function f is analytic in a simply-connected region of the complex
z-plane containing the origin and the multiplicity of (z − ξ)−γ is removed by
requiring log(z − ξ) to be real when (z − ξ) > 0.

Using Dγ
zf Owa and Srivastava [10] introduced the operator Ωγ : A → A,

which is known as extension of fractional derivative and fractional integral, as
follows

Ωγf(z) = Γ(2− γ)zγDγ
zf(z), γ �= 2, 3, 4, ...

= z +
∞∑
k=2

Γ(k + 1)Γ(2− γ)

Γ(k + 1− γ)
akz

k.

Note that Ω0f(z) = f(z).
We define the linear multiplier fractional differential operatorDm,γ

λ (α1, β)f :
A → A by

D0
λ(α1, β1)f(z) = Hq

s (α1, β1; z)∗f(z)

D1,γ
λ (α1, β1)f(z) = (1− λ)[Ωγ (Hq

s (α1, β1; z) ∗ f(z))]
+λz[Ωγ (Hq

s (α1, β1; z) ∗ f(z))]′ (1.2)

D2,γ
λ (α1, β1)f(z) = Dγ

λ

(
D1,γ

λ (α1, β1)f(z)
)

...

Dm,γ
λ (α1, β1)f(z) = Dγ

λ

(
Dm−1,γ

λ (α1, β1)f(z)
)
, (1.3)

where γ and λ aren’t zero at the same time and m ∈ N0.

If f is given by (1.1), then by (1.2) and (1.3), we see that

Dm,γ
λ (α1, β1)f(z)

= z +
∞∑
k=2

[
Γ(k+1)Γ(2−γ)

Γ(k+1−γ)
[1 + λ(k − 1)]

]m
(α1)k−1...(αq)k−1

(β1)k−1...(βs)k−1

1
(k−1)!

akz
k (1.4)
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where m ∈ N0, λ ≥ 0 and 0 ≤ γ < 1.
Thus, after some calculations we obtain

α1D
m,γ
λ (α1, β1)f(z) = z[Dm,γ

λ (α1, β1)f(z)]
′ + (α1 − 1)Dm,γ

λ (α1, β1)f(z).

We note that by specializing b, A,B, λ, γ, α, β and m, we obtain the follow-
ing subclasses studied by various authors:

(i) For a choice of the parameter m = 0, the operator D0,γ
λ (α1, β1) reduces

to the Dziok-Srivastava operator [5].
(ii) For γ = 0, q = 2, s = 1, α1 = β1 and α2 = 1, we get the operator

introduced by Al-Oboudi [2].
(iii) For q = 2, s = 1, α1 = β1, α2 = 1, λ = 0 and m = 1, we get

Owa-Srivastava fractional differential operator [10].
(iv) For γ = 0, q = 2, s = 1, α1 = β1, α2 = 1 and λ = 1, we get Sǎlǎgean

differential operator [4].

For various investigations based upon the Dziok-Srivastava linear operator
and Owa-Srivastava linear operator, the interested reader may be refereed to
many recent papers (see [5,6,10], [11,12,13]).

Using the operator Dm,γ
λ (α1, β1), we define following class. Let

Hm,γ
λ (b, α, β;A,B) be the class of functions f ∈ A satisfying

1 +
1

b

(
Dm+1,γ

λ (α1, β1)f(z)

Dm,γ
λ (α1, β1)f(z)

− 1

)
≺ 1 + Az

1 + Bz
, z ∈ U, (1.5)

where ≺ denotes subordination, b �= 0 is any complex number, A and B are
arbitrary fixed numbers, −1 ≤ B < A ≤ 1 and m ∈ N0.

By specializing b, A,B, λ, γ, α, β and m we obtain several subclasses stud-
ied by various authors in earlier papers (see for details [7], [1] ; see also the
references cited in each of these recent works).

We use Λ to denote the class of bounded analytic functions w(z) in U which
satisfy the conditions w(0) = 0 and |w(z)| < 1 for z ∈ U.
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2. Coefficient Estimates

Theorem 1. Let the function f(z) defined by (1.1) be in the class
Hm,γ

λ (b, α, β;A,B) and let

G =
(A− B)2|b|2

2(Γk − 1)B(A− B)Re{b}+ (1− B2)(Γk − 1)2
, k = 2, 3, ...,m− 1

M = [G] (Gauss symbol), and [G] is the greatest integer not greater than
G.

(a) If (A− B)2|b|2 > 2(Γk − 1)B(A− B)Re{b}+ (1−B2)(Γk − 1)2, then

|aj| ≤
1

Ψj(Γj)m

j∏
k=2

|(A− B)b− B(Γk−1 − 1)|
Γk − 1

, (2.1)

for j = 2, 3, ...,M + 2; and

|aj| ≤
1

Ψj(Γj)m

M+3∏
k=2

|(A− B)b− B(Γk−1 − 1)|
Γk − 1

, (2.2)

for j > M + 2.

(b) If (A−B)2|b|2 ≤ 2(Γk − 1)B(A−B)Re{b}+ (1−B2)(Γk − 1)2, then

|aj| ≤
|(A− B)b|
Ψj(Γj)m

j ≥ 2, (2.3)

where

Γk =
Γ(k + 1)Γ(2− γ)

Γ(k + 1− γ)
[1 + λ(k − 1)] and Ψk =

(α1)k−1...(αq)k−1

(β1)k−1...(βs)k−1

1

(k − 1)!
.

(2.4)
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Proof. Since f(z) ∈ Hm,γ
λ (b, α, β;A,B), (1.5) gives

Dm+1,γ
λ (α1, β)f(z)−Dm,γ

λ (α1, β)f(z)

=
{
[(A− B)b+B]Dm,γ

λ (α1, β)f(z)− BDm+1,γ
λ (α1, β)f(z)

}
w(z) (2.5)

Now (2.5) may be written as

∞∑
k=2

(Γk)
m(Γk − 1)Ψkakz

k

=

{
(A−B)bz +

∞∑
k=2

[(A−B)b−B(Γk − 1)] (Γk)
mΨkakz

k

}
w(z),

which is equivalent to

j∑
k=2

(Γk)
m(Γk − 1)Ψkakz

k +

∞∑
k=j+1

dkz
k

=

{
(A−B)bz +

j−1∑
k=2

[(A−B)b−B(Γk − 1)] (Γk)
mΨkakz

k

}
w(z),

Since |w(z)| < 1, we have∣∣∣∣∣∣
j∑

k=2

(Γk)
m(Γk − 1)Ψkakz

k +

∞∑
k=j+1

dkz
k

∣∣∣∣∣∣
≤

∣∣∣∣∣(A−B)bz +

j−1∑
k=2

[(A−B)b−B(Γk − 1)] (Γk)
mΨkakz

k

∣∣∣∣∣ . (2.6)

It follows that∫ 2π

0

∣∣∣∣∣
j∑

k=2

(Γk)
m(Γk − 1)Ψkakz

k +
∞∑

k=j+1

dkz
k

∣∣∣∣∣
2

dθ

≤
∫ 2π

0

∣∣∣∣∣(A− B)bz +

j−1∑
k=2

[(A− B)b− B(Γk − 1)] (Γk)
mΨkakz

k

∣∣∣∣∣
2

dθ
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for z = reiθ (0 ≤ r < 1). This gives us that

j∑
k=2

(Γk)
2m(Γk − 1)2(Ψk)

2|ak|2r2k +
∞∑

k=j+1

|dk|2r2k

≤ (A− B)2|b|2r2 +
j−1∑
k=2

|(A− B)b− B(Γk − 1)|2 (Γk)
2m(Ψk)

2|ak|2r2k.

Let r → 1−, then on simplification we obtain

(Γj)
2m((Γj)

m − 1)2(Ψj)
2|aj |2

≤ (A−B)2|b|2 +
j−1∑
k=2

{
|(A−B)b−B(Γk − 1)|2 − (Γk − 1)2

}
(Γk)

2m(Ψk)
2|ak|2,

(2.7)

for j ≥ 2. Now there may be following two cases :

(a) Let (A−B)2|b|2 > 2(Γk−1)B(A−B)Re{b}+(1−B2)(Γk−1)2, suppose
that j ≤ M + 2, then for j = 2, (2.7) gives

|a2| ≤
(A− B)|b|

Γm
2 (Γ2 − 1)Ψ2

which gives (2.1) for j = 2. We establish (2.1) for j ≤ M + 2, from (2.7), by
mathematical induction. Suppose (2.1) is valid for j = 2, 3, ..., (k − 1). Then
it follows from (2.7)

(Γj)
2m(Γj − 1)2(Ψj)

2|aj|2

≤ (A− B)2|b|2 +
j−1∑
k=2

{
|(A− B)b− B(Γk − 1)|2 − (Γk − 1)2

}
(Γk)

2m(Ψk)
2|ak|2
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≤ (A−B)2|b|2+
j−1∑
k=2

{
|(A− B)b− B(Γk − 1)|2 − (Γk − 1)2

}
(Γk)

2m(Ψk)
2

×
{

1

(Ψk)2(Γk)2m

k∏
n=2

|(A− B)b− B(Γn−1 − 1)|2
(Γn − 1)2

}

= (A−B)2|b|2+
{
|(A− B)b− B(Γ2 − 1)|2 − (Γ2 − 1)2

} |(A− B)b|2
(Γ2 − 1)2

+
{
|(A− B)b− B(Γ3 − 1)|2 − (Γ3 − 1)2

} |(A− B)b|2
(Γ2 − 1)2

|(A− B)b− B(Γ2 − 1)|2
(Γ3 − 1)2

+...

+
{
|(A− B)b− B(Γj−1 − 1)|2 − (Γj−1 − 1)2

} j−1∏
k=2

|(A− B)b− B(Γk−1 − 1)|2
(Γk − 1)2

Thus, we get

|aj| ≤
1

Ψj(Γj)m

j∏
k=2

|(A− B)b− B(Γk−1 − 1)|
Γk − 1

which completes the proof of (2.1).
Next, we suppose j > M + 2. Then (2.7) gives

(Γj)
2m(Γj−1)2(Ψj)

2|aj|2 ≤ (A−B)2|b|2

+
M+2∑
k=2

{
|(A− B)b− B(Γk − 1)|2 − (Γk − 1)2

}
(Γk)

2m(Ψk)
2|ak|2

+

j−1∑
k=M+3

{
|(A− B)b− B(Γk − 1)|2 − (Γk − 1)2

}
(Γk)

2m(Ψk)
2|ak|2
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On substituting upper estimates for a2, a3, ..., aM+2 obtained above, and
simplifying, we obtain (2.2).

(b) Let (A−B)2|b|2 ≤ 2(Γk − 1)B(A−B)Re{b}+(1−B2)(Γk − 1)2, then
it follows from (2.7)

(Γj)
2m((Γj)

m − 1)2(Ψj)
2|aj|2 ≤ (A− B)2|b|2(j ≥ 2),

which proves (2.3).

The bounds in (2.1) are sharp for the functions f(z) given by

Dm,γ
λ (α1, β)f(z) =

⎧⎨
⎩

z(1 +Bz)
(A−B)b

Bλ ; B �= 0

zexp
(
Abz
λ

)
; B = 0

⎫⎬
⎭ .

Also, the bounds in (2.3) are sharp for the functions fk(z) given by

Dm,γ
λ (α1, β)fk(z) =

⎧⎪⎨
⎪⎩

z(1 +Bz)
(A−B)b
Bλ(k−1) ; B �= 0

zexp
(

Ab
λ(k−1)z

k−1
)
; B = 0

⎫⎪⎬
⎪⎭ .

3. A Sufficient Condition for a Function to be

in Hm,γ
λ (b, α, β;A,B)

Theorem 2. Let the function f(z) defined by (1.1) and let

∞∑
k=2

(Γk)
m {(1− B)(Γk − 1) + (A− B)|b|}Ψk|ak| ≤ (A− B)|b| (3.1)

holds where Γk and Ψk are given by (2.4), then f(z) belongs to

Hm,γ
λ (b, α, β;A,B).
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Poorf. Suppose that the inequality (3.1) holds. Then we have for z ∈ U

∣∣Dm+1,γ
λ (α1, β)f(z)−Dm,γ

λ (α1, β)f(z)
∣∣

−
∣∣(A− B)bDm,γ

λ (α1, β)f(z)− B[Dm+1,γ
λ (α1, β)f(z)−Dm,γ

λ (α1, β)f(z)]
∣∣

=

∣∣∣∣∣
∞∑
k=2

(Γk)
m (Γk − 1)Ψkakz

k

∣∣∣∣∣
−
∣∣∣∣∣(A− B)bz + (A− B)b

∞∑
k=2

(Γk)
m Ψkakz

k − B

∞∑
k=2

(Γk)
m (Γk − 1)Ψkakz

k

∣∣∣∣∣

≤
∞∑
k=2

(Γk)
m (Γk − 1)Ψk |ak| rk−(A−B) |b| r+(A−B) |b|

∞∑
k=2

(Γk)
m Ψk |ak| rk

+B
∞∑
k=2

(Γk)
m (Γk − 1)Ψk |ak| rk

Letting r → 1−, then we have

∣∣Dm+1,γ
λ (α1, β)f(z)−Dm,γ

λ (α1, β)f(z)
∣∣

−
∣∣(A− B)bDm,γ

λ (α1, β)f(z)− B[Dm+1,γ
λ (α1, β)f(z)−Dm,γ

λ (α1, β)f(z)]
∣∣

≤
∞∑
k=2

(Γk)
m [(1− B)(Γk − 1) + (A− B)|b|] Ψk|ak|−(A−B)|b| ≤ 0

Hence it follows that∣∣∣∣∣∣
Dm+1,γ

λ (α1,β)f(z)

Dm,γ
λ (α1,β)f(z)

− 1

(A− B)b− B
[
Dm+1,γ

λ (α1,β)f(z)

Dm,γ
λ (α1,β)f(z)

− 1
]
∣∣∣∣∣∣ < 1, z ∈ U
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Letting

w(z) =

Dm+1,γ
λ (α1,β)f(z)

Dm,γ
λ (α1,β)f(z)

− 1

(A− B)b− B
[
Dm+1,γ

λ (α1,β)f(z)

Dm,γ
λ (α1,β)f(z)

− 1
] ,

then w(0) = 0, w(z) is analytic in |z| < 1 and |w(z)| < 1. Hence we have

Dm+1,γ
λ (α1, β)f(z)

Dm,γ
λ (α1, β)f(z)

=
1 + [B + b(A− B)]w(z)

1 + Bw(z)
,

which shows that f(z) belong to Hm,γ
λ (b, α, β;A,B).

4. Maximization of |a3 − μa22|
We shall need in our discussion the following lemma:
Lemma 1.([3]) Let w (z) =

∑∞
k=1 ckz

k be analytic with w(0) = 0 and
|w(z)| < 1 in U. If μ is any complex number , then∣∣c2 − μc21

∣∣ ≤ max {1, |μ|} . (4.1)

Equailty in (4.1) may be attained with the function w(z) = z2 and w(z) = z
for |μ| < 1 and |μ| ≥ 1, respectively.

Theorem 3. If a function f(z) defined by (1.1) be in the class Hm,γ
λ (b, α, β;A,B)

and μ is any complex number, then

∣∣a3 − μa22
∣∣ ≤ (A− B)|b|

(Γ2 − 1)(Γ3 − 1)(Γ3)mΨ3

max {1, |d|} , (4.2)

where

d = (A− B)b μ
(Γ3)

m

(Γ2)2m
Γ3 − 1

(Γ2 − 1)2
Ψ3

(Ψ2)2
− (A− B)b− B(Γ2 − 1)

Γ2 − 1
.

The result is sharp.
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Poorf. Since f(z) ∈ Hm,γ
λ (b, α, β;A,B), we have

1 +
1

b

(
Dm+1,γ

λ (α1, β)f(z)

Dm,γ
λ (α1, β)f(z)

− 1

)
=

1 + Aw(z)

1 + Bw(z)
, (4.3)

where w (z) =
∑∞

k=1 ckz
k is analytic in U satisfies the condition w(0) = 0 and

|w(z)| < 1 for z ∈ U. From we have (4.3)

w(z) =
Dm+1,γ

λ (α1, β)f(z)−Dm,γ
λ (α1, β)f(z)

[(A− B)b+B]Dm,γ
λ (α1, β)f(z)− BDm+1,γ

λ (α1, β)f(z)

=

∞∑
k=2

(Γk)
m(Γk − 1)Ψkakz

k−1

(A− B)b+
∞∑
k=2

[(A− B)b− B(Γk − 1)] (Γk)
mΨkakz

k−1

=

∞∑
k=2

(Γk)
m(Γk − 1)Ψkakz

k−1

(A−B)b

⎡
⎢⎢⎢⎢⎣1 +

∞∑
k=2

[(A−B)b−B(Γk − 1)] (Γk)
mΨkakz

k−1

(A−B)b

⎤
⎥⎥⎥⎥⎦

−1

and then comparing the coefficients of z and z2 on both sides, we have

a2 =
(A− B)b

(Γ2)m(Γ2 − 1)Ψ2

c1

and

a3 =
(A− B)b

(Γ3 − 1)(Γ3)mΨ3

{
c2 +

[(A− B)b− B(Γ2 − 1)]

(Γ2 − 1)
c21

}
.

Hence,

a3 − μa22 =
(A− B)b

(Γ2 − 1)(Γ3 − 1)(Γ3)mΨ3

max
{
c2 − dc21

}
, (4.4)

where

d = (A− B)bμ
(Γ3)

m

(Γ2)2m
Γ3 − 1

(Γ2 − 1)2
Ψ3

(Ψ2)2
− [(A− B)b− B(Γ2 − 1)]

(Γ2 − 1)
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Taking modulus both sides in (4.4), we have

∣∣a3 − μa22
∣∣ ≤ (A− B)|b|

(Γ2 − 1)(Γ3 − 1)(Γ3)mΨ3

∣∣c2 − dc21
∣∣ . (4.5)

Using Lemma 1 in (4.5), we have

∣∣a3 − μa22
∣∣ ≤ (A− B)|b|

(Γ2 − 1)(Γ3 − 1)(Γ3)mΨ3

max {1, |d|} ,

which is (4.2) of Theorem 3.

Finally, the assertion (4.2) of Theorem 3 is sharp in view of the fact that
the assertion (4.1) of Lemma 1 is sharp.

5. Radius Theorem

Theorem 4 . Let the function f(z) defined by (1.1) be in the class
Hm,γ

λ (b, α, β;A,B). Then

Re

{
Dm+1,γ

λ (α1, β)f(z)

Dm,γ
λ (α1, β)f(z)

}
> 0 for |z| < rm,

where

rm =
2

|b|(A− B) + [|b|2(A− B)2 + 4B{(A− B)Re(b) + B}]
1
2

, (5.1)

such that

|b|2(A− B)2 + 4B{(A− B)Re(b) + B} ≥ 0. (5.2)

The result is sharp.
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Poorf. Since f(z) ∈ Hm,γ
λ (b, α, β;A,B), we have

1 +
1

b

(
Dm+1,γ

λ (α1, β)f(z)

Dm,γ
λ (α1, β)f(z)

− 1

)
=

1 + Aw(z)

1 + Bw(z)

= P (z). (5.3)

It is well know that every function in the class P (A,B) is subordinate to
1+Az
1+Bz

and the transformation

P (z) =
1 + Aw(z)

1 + Bw(z)

maps the circle |w(z)| ≤ 1 onto the circle∣∣∣∣P (z)− 1− ABr2

1− B2r2

∣∣∣∣ ≤ (A− B)r

1− B2r2
. (5.4)

Equations (5.3) and (5.4) yield∣∣∣∣Dm+1,γ
λ (α1, β)f(z)

Dm,γ
λ (α1, β)f(z)

− 1− B[B + b(A− B)]r2

1− B2r2

∣∣∣∣ ≤ |b|(A− B)r

1− B2r2
. (5.5)

Therefore, from (5.5) we have

Re

{
Dm+1,γ

λ (α1, β)f(z)

Dm,γ
λ (α1, β)f(z)

}
≥ 1− |b|(A− B)r − B [(A− B)Re(b) + B] r2

1− B2r2
.

(5.6)

Hence Re
{

Dm+1,γ
λ (α1,β)f(z)

Dm,γ
λ (α1,β)f(z)

}
> 0 for |z| < rm defined by (5.1).

To show (5.1) is sharp, we let

Dm,γ
λ (α1, β)f(z) =

⎧⎨
⎩

z(1 +Bz)
(A−B)b

Bλ ; B �= 0

zexp
(
Abz
λ

)
; B = 0

⎫⎬
⎭

and

t =
−r

(
Br + ( b

b
)
1
2

)
1 + Br( b

b
)
1
2
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and obtain

Dm+1,γ
λ (α1, β)f0(t)

Dm,γ
λ (α1, β)f0(t)

=
1− |b|(A− B)r − B[B + b(A− B)]r2

1− B2r2
. (5.7)
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Abstract

A relation between Shannon entropy and Kerridge inaccuracy, which
is known as Shannon inequality, is well known in information theory. In
this communication, first we generalized Shannon inequality and then
given its application in coding theory and discuss some particular cases.
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1. Introduction

Let Δn = {P = (p1, p2, ..., pn) ; pk ≥ 0,
∑n

k=1 pk = 1} , n ≥ 2 be a set of n-
complete probability distributions.

For P∈ Δn, Shannon’s measure of information [9] is defined as

H (P ) = −
n∑

k=1

pk logD pk. (1.1)

The measure (1.1) has been generalized by various authors and has found
applications in various disciplines such as economics, accounting, crime and
physics etc.
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Sharma and Mittal [10] generalized (1.1) in the following form:

H (P ;α, β) =
1

21−β − 1

⎡
⎣( n∑

k=1

pαk

) β−1
α−1

− 1

⎤
⎦ , (1.2)

where α, β > 0, α �= β, α �= 1 �= β.
For P,Q ∈ Δn, Kerridge [6] introduced a quantity known as inaccuracy defined
as:

H (P,Q) = −
n∑

k=1

pk logD qk. (1.3)

There is well known relation between H(P ) and H(P,Q) which is given by

H(P) ≤ H(P,Q). (1.4)

The relation (1.4) is known as Shannon inequality and its importance is well
known in coding theory.

In the literature of information theory, there are many approaches to extend
the relation (1.4) for other measures. Nath and Mittal [7] extended the relation
(1.4) in the case of entropy of type β.

Using the method of Nath and Mittal [7], Lubbe [14] generalized (1.4) in
the case of Renyi’s entropy. On the other hand, using the method of Camp-
bell, Lubbe [14] generalized (1.4) for the case of entropy of type β. Using
these generalizations, coding theorems are proved by these authors for these
measures.

The objective of this communication is to generalize (1.4) for (1.2) and give
its application in coding theory.

2. Generalization of Shannon Inequality

For P,Q ∈ Δn, Sharma and Gupta [4] defined a measure of inaccuracy, denoted
by H(P,Q;α, β) as

H (P,Q;α, β) =
1

21−β − 1

⎡
⎣( n∑

k=1

pkq
(α−1)
k

)( β−1
α−1)

− 1

⎤
⎦ , (2.1)
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where α, β > 0, α �= β, α �= 1 �= β.
Since H (P,Q;α, β) �= H (P ;α, β) , we will not interpret (2.1) as a measure of
inaccuracy. But H (P,Q;α, β) is a generalization of the measure of inaccuracy
defined in (1.2). In spite of the fact that H (P,Q;α, β) is not a measure of
inaccuracy in its usual sense, its study is justified because it leads to meaningful
new measures of length. In the following theorem, we will determine a relation
between (1.2) and (2.1) of the type (1.4).

Since (2.1) is not a measure of inaccuracy in its usual sense, we will call
the generalized relation as pseudo-generalization of the Shannon inequality.

Application of Holder’s Inequality

Theorem 1. If P,Q∈ Δn then it holds that

H (P ;α, β) ≤ H (P,Q;α, β) (2.2)

under the condition
n∑

k=1

qαk ≤
n∑

k=1

pαk (2.3)

and equality holds if
qk = pk; k = 1, 2, ..., n.

Proof: (a) If 0 < α < 1 < β.
By Holder’s inequality [11]

(
n∑

k=1

xp
k

) 1
p
(

n∑
k=1

yqk

) 1
q

≤
n∑

k=1

xkyk (2.4)

for all xk, yk > 0, i = 1, 2, ..., n and 1
p
+ 1

q
= 1, p < 1 ( �= 0) , q < 0 or q <

1 ( �= 0) , p < 0. We see that equality holds if and only if there exists a positive
constant c such that

xp
k = cyqk.

Making the substitutions

p =
α− 1

α
, q = 1− α
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xk = p
α

α−1

k qαk , yk = p
α

1−α

k

in (2.4), we get

(
n∑

k=1

pkq
α−1
k

) α
α−1

(
n∑

k=1

pαk

) 1
1−α

≤
n∑

k=1

qαk ; α > 0, α �= 1.

Using the condition (2.3), we get

(
n∑

k=1

pkq
α−1
k

) α
α−1

(
n∑

k=1

pαk

) 1
1−α

≤
n∑

k=1

pαk ; α > 0, α �= 1. (2.5)

Since 0 < α < 1 < β, (2.5) becomes

(
n∑

k=1

pkq
α−1
k

)( β−1
α−1)

≤
(

n∑
k=1

pαk

)( β−1
α−1)

(2.6)

using (2.6) and the fact that β > 1, we get (2.2).
(b) If α > 1, β > 1; 0 < α < 1; β > 1 (α < β or β < α) ; 0 < β < 1 <
α.

The proof follows on the similar lines.

Application in Coding Theory.
We will now give an application of Theorem 1 in coding theory. Let a finite

set of n-input symbols with probabilities p1, p2, ..., pn be encoded in terms of
symbols taken from the alphabet {a1, a2, ..., an} .

Then it is known Feinstein [3] that there always exist a uniquely decipher-
able code with lengths N1, N2, ..., Nn iff

n∑
k=1

D−Nk ≤ 1. (2.7)

If L =
∑n

k=1 pkNk is the average codeword length, then for a code which
satisfies (2.7), it has been shown that Feinstein [3],

L ≥ H (P ) (2.8)
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with equality iff Nk = − logD pk; k = 1, 2, ..., n
and that by suitable encoded into words of long sequences, the average length
can be made arbitrary close to H (P ) . This is Shannon’s noiseless coding theo-
rem. By considering Renyi’s [8] entropy, a coding theorem and analogous to the
above noiseless coding theorem has been established by Campbell [1] and the
authors obtained bounds for it in terms of Hα (P ) = 1

1−α
logD

∑n
k=1 p

α
k ; α �=

1, α > 0. It may be seen that the mean codeword length L =
∑n

k=1 pkNk had
been generalized parametrically and their bounds had been studied in terms
of generalized measures of entropies.

We define the measure of length L (α, β) by

L (α, β) =
1

21−β − 1

⎡
⎣( n∑

k=1

pkD
Nk(1−α)

)( β−1
α−1)

− 1

⎤
⎦ , (2.9)

where α, β > 0, α �= β, α �= 1 �= β.
Also, we have used the condition

n∑
k=1

D−Nkα ≤
n∑

k=1

pαk , α > 0 (2.10)

to find the bounds. It may be seen that in the case when α = 1, then (2.10)
reduces to Kraft Inequality (2.7).

Theorem 2. If Nk, k = 1, 2, ..., n are the lengths of codewords satisfying
(2.10), then

H (P ;α, β) ≤ L (α, β) < D1−βH (P ;α, β) +
1−D1−β

1− 21−β
. (2.11)

Proof: In (2.2) choose Q = (q1, q2, ..., qn) where

qk = D−Nk (2.12)

with choice of Q, (2.2) becomes

H (P ;α, β) ≤ 1

21−β − 1

⎡
⎣( n∑

k=1

pkD
Nk(1−α)

)( β−1
α−1)

− 1

⎤
⎦
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i.e., H (P ;α, β) ≤ L (α, β) which proves the first part of (2.11).
The equality holds iff D−Nk = pk, k = 1, 2, ..., n which is equivalent to

Nk = − logD pk; k = 1, 2, ..., n. (2.13)

Choose all Nk such that

− logD pk ≤ Nk < − logD pk + 1.

Using the above relation, it follows that

D−Nk > pkD
−1. (2.14)

We now have two possibilities:

1) If α > 1, (2.14) gives us(
n∑

k=1

pkD
Nk(1−α)

)
>

n∑
k=1

pαkD
1−α. (2.15)

Now consider two cases:

i) let 0 < β < 1. Raising both sides of (2.15) with (β − 1)/(α− 1), we get

(
n∑

k=1

pkD
Nk(1−α)

)( β−1
α−1)

<

(
n∑

k=1

pαk

)( β−1
α−1)

D1−β. (2.16)

Since 21−β − 1 > 0 for β < 1, we get from (2.16) the right hand side in (2.11).
ii) Let β > 1. The proof follows similarly.

2) If 0 < α < 1, The proof follows on the same lines.

Particular’s cases:
(1) Since D ≥ 2, we have

1−D1−β

1− 21−β
≥ 1.

It follows then the upper bound of L (α, β) in (2.11) is greater than unity.
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(2) If β = α, then (2.11) becomes

H (P ;α) ≤ L (α) < D1−αH (P ;α) +
1−D1−α

1− 21−α

where

H (P ;α) =
1

21−α − 1

[
n∑

k=1

pαk − 1

]
, α > 0, α �= 1

be the Havrda-Charvat [5] Entropy and later on it studied by Vajda [13],
Daroczy [2] and Tsallis [12].

L (α) =
1

21−α − 1

[(
n∑

k=1

pkD
−Nk(α−1)

)
− 1

]
, α > 0, α �= 1

be the new mean codeword length.
(3) If β → 1 then (2.11) becomes

H (P ;α) ≤ L (α) < H (P ;α) + logD.

Where Hα (P ) = 1
1−α

logD
∑n

k=1 p
α
k , α > 0, α �= 1 be the Renyi’s [8] Entropy

and L(α) = 1
1−α

logD
∑n

k=1 pkD
−Nk(α−1), α > 0, α �= 1 be the new mean

codeword length.
(4) If β = α and α → 1 then (2.11) becomes

H(P )

logD
≤ L <

H(P )

logD
+ 1.

Which is the Shannon [9] classical noiseless coding theorem.

Conclusion:
We know that optimal code is that code for which the value L (α, β) is

equal to its lower bound. From the result of the theorem 2, it can be seen that
the mean codeword length of the optimal code is dependent on two parameters
α and β, while in the case of Shannon’s theorem it does not depend on any
parameter. So it can be reduced significantly by taking suitable values of
parameters.
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1. Introduction

Let K be a nonempty closed set in Rn. Let f : K → R and η : K ×K → R
be continuous functions. Let x ∈ K. Then the set K is said to be invex at x
with respect to η (·, ·), if

x+ t · η (y, x) ∈ K, ∀x, y ∈ K, t ∈ [0, 1].
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K is said to be an invex set with respect to η, if K is invex at each x ∈ K.
The invex set K is also called a η-connected set. For the sake of simplicity, we
always assume that K = [a, a+ η (b, a)], unless otherwise specified.

Definition 1. [11] The function f on the invex set K is said to be preinvex
with respect to

f (x+ t · η (y, x)) ≤ (1− t) f (x) + tf (y) , ∀x, y ∈ K, t ∈ [0, 1].

The function f is said to be preconcave if and only if −f is preinvex.

It may be noted that every convex function is a preinvex function, but the
converse is not true [2].

Definition 2. [11] The differentiable function f on the invex set K is said to
be an invex function with respect to η (y, x), if

f (y)− f (x) ≥ 〈f ′ (x) , η (y, x)〉 , ∀x, y ∈ K,

where f ′(x) is the differential of f at x, and we denote 〈·, ·〉 to the inner
product.

It is clear that the differentiable preinvex functions are invex and the con-
verse is also true under certain conditions, see [11, 12]. Also, it is true that
every convex set is invex with respect to η (y, x) = y − x, but the converse
may not be true [7]. Extensive work has been reported in the literature on
generalized convex functions see [2, 3, 6, 10].

In the recent paper, Noor [8] has obtained the following Hermite-Hadamard
inequalities for the preinvex.

Theorem 1. Let f : K := [a, a+ η (b, a)] → (0,∞) be a preinvex function
on the interval of real numbers K◦ (the interior of K) and a, b ∈ K◦ with
a < a+ η (b, a). Then,

f

(
2a+ η (b, a)

2

)
≤ 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx ≤ f (a) + f (b)

2
(1.1)

Other results connected with (1.1) were established by Noor [9], where he
introduce a new inequalities involving two log-preinvex.

The main concern of this paper is to establish an Ostrowski’s type inequal-
ity for differentiable functions whose derivative in absolute value is preinvex
functions.
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2. Ostrowski Type Inequalities

In 1938, Ostrowski established a very interesting inequality for differentiable
functions with bounded derivatives, as follows: Let f : I ⊂ R → R be a
differentiable function on I◦, the interior of the interval I, such that f ′ ∈ L[a, b],
where a, b ∈ I with a < b. If |f ′ (x)| ≤ M. Then,

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (u) du

∣∣∣∣ ≤ M (b− a)

[
1

4
+

(
x− a+b

2

)2
(b− a)2

]
, (2.1)

holds for all x ∈ [a, b]. The constant 1
4
is the best possible in the sense that it

cannot be replaced by a smaller ones. For recent results and generalizations
concerning Ostrowski’s inequality we refer the reader to the comprehensive
book [5].

In order to prove our main inequality which is of Ostrowski’s type, we need
the following lemma:

Lemma 1. [1] Let f : K := [a, a+ η (b, a)] → R be a differentiable function
on K◦ (the interior of K) and a, b ∈ K◦ with a < a+ η (b, a). If f ′ is preinvex
and f ′ ∈ L[a, b]. Then,

f (2a− x+ η (b, a))− 1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

= η (b, a) ·
∫ 1

0
p (t) f ′ (a+ t · η (b, a)) dt, (2.2)

where,

p (t) =

⎧⎪⎪⎨
⎪⎪⎩

t, t ∈
[
0, a+η(b,a)−x

η(b,a)

]

t− 1, t ∈
(

a+η(b,a)−x
η(b,a)

, 1
] ,

for each x ∈ K.

Proof. Let I =
∫ 1

0
p (t) f (ta+ t · η (b, a)) dt. Using integration by parts, we
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get

I =

∫ 1

0

p (t) f ′ (a+ t · η (b, a)) dt

=

∫ a+η(b,a)−x
η(b,a)

0

tf ′ (a+ t · η (b, a)) dt+
∫ 1

a+η(b,a)−x
η(b,a)

(t− 1) f ′ (a+ t · η (b, a)) dt

=
1

η (b, a)
· a+ η (b, a)− x

η (b, a)
· f
(
a+ a+η(b,a)−x

η(b,a)
· η (b, a)

)

− 1

η (b, a)

∫ a+η(b,a)−x
η(b,a)

0

f (a+ t · η (b, a)) dt

+
1

η (b, a)
· x− a

η (b, a)
· f
(
a+ a+η(b,a)−x

η(b,a)
· η (b, a)

)

− 1

η (b, a)

∫ 1

a+η(b,a)−x
η(b,a)

f (a+ t · η (b, a)) dt

=
1

η (b, a)
f (2a− x+ η (b, a))− 1

η (b, a)

∫ 1

0

f (a+ t · η (b, a)) dt,

i.e.,

η (b, a) · I = f (2a− x+ η (b, a))− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx,

which completes the proof.

The following theorem gives an Ostrowski type inequality for differentiable
functions whose derivative in absolute value is preinvex.

Theorem 2. Let f : K := [a, a+ η (b, a)] → R be a differentiable function on
K◦ (the interior of K) and a, b ∈ K◦ with a < a+η (b, a). If |f ′| is a preinvex.
Then,
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∣∣∣∣∣f (2a− x+ η (b, a))− 1

η (b, a)

∫ a+η(b,a)

a
f (u) du

∣∣∣∣∣
≤ |η (b, a)| ·

{[
3

2
·
(

a− x

η (b, a)
+ 1

)2

− 2

3
·
(
1 +

a− x

η (b, a)

)3

+
x− a

η (b, a)
− 2

3

] ∣∣f ′ (a)
∣∣

+

[
1

6
− 1

2

(
a− x

η (b, a)
+ 1

)2

+
2

3

(
a− x

η (b, a)
+ 1

)3
] ∣∣f ′ (b)

∣∣} , (2.3)

for each x ∈ K.

Proof. Form Lemma 1 and preinvexity of |f ′| we have∣∣∣∣∣f (2a− x+ η (b, a))− 1

η (b, a)

∫ a+η(b,a)

a

f (u) du

∣∣∣∣∣
=

∣∣∣∣η (b, a) ·
∫ 1

0

p (t) f ′ (a+ t · η (b, a)) dt
∣∣∣∣

≤ |η (b, a)| ·

⎡
⎣∫ a+η(b,a)−x

η(b,a)

0

t |f ′ (a+ t · η (b, a))| dt

+

∫ 1

a+η(b,a)−x
η(b,a)

(1− t) |f ′ (a+ t · η (b, a))| dt
]

≤ |η (b, a)| ·

⎧⎨
⎩
∫ a+η(b,a)−x

η(b,a)

0

t [(1− t) |f ′ (a)|+ t |f ′ (b)|] dt

+

∫ 1

a+η(b,a)−x
η(b,a)

(1− t) [(1− t) |f ′ (a)|+ t |f ′ (b)|] dt
}

= |η (b, a)| ·
{[

3

2
·
(

a− x

η (b, a)
+ 1

)2

− 2

3
·
(
1 +

a− x

η (b, a)

)3

+
x− a

η (b, a)
− 2

3

]
|f ′ (a)|

+

[
1

6
− 1

2

(
a− x

η (b, a)
+ 1

)2

+
2

3

(
a− x

η (b, a)
+ 1

)3
]
|f ′ (b)|

}
,

which completes the proof.
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Corollary 1. In Theorem 2, for

(1) x = a, we have:

∣∣∣∣∣f (a+ η (b, a))− 1

η (b, a)

∫ a+η(b,a)

a

f (u) du

∣∣∣∣∣
≤ |η (b, a)|

6
· (2 |f ′ (b)|+ |f ′ (a)|) , (2.4)

(2) x = 2a+η(b,a)
2

, we have:

∣∣∣∣∣f
(
2a+ η (b, a)

2

)
− 1

η (b, a)

∫ a+η(b,a)

a

f (u) du

∣∣∣∣∣
≤ |η (b, a)|

8
· (|f ′ (a)|+ |f ′ (b)|) , (2.5)

(3) x = η (b, a), we have:

∣∣∣∣∣f (2a)− 1

η (b, a)

∫ a+η(b,a)

a

f (u) du

∣∣∣∣∣
≤ |η (b, a)| ·

{[
3

2
· a2

η2 (b, a)
− 2

3
· a3

η3 (b, a)
+

1

3
− a

η (b, a)

]
|f ′ (a)|

+

[
1

6
− 1

2
· a2

η2 (b, a)
+

2

3
· a3

η3 (b, a)

]
|f ′ (b)|

}
. (2.6)

3. Applications to Special Means

In the following we study certain generalizations of some notions for a positive-
valued function of a positive variable.

Definition 3. ([4]) A function M : R2
+ → R+, is called a Mean function if it

has the following properties:

(1) Homogeneity: M (ax, ay) = aM (x, y), for all a > 0,

(2) Symmetry : M (x, y) = M (y, x),



Inequalities of Ostrowski Type 35

(3) Reflexivity : M (x, x) = x,

(4) Monotonicity: If x ≤ x′ and y ≤ y′, then M (x, y) ≤ M (x′, y′),

(5) Internality: min{x, y} ≤ M (x, y) ≤ max{x, y}.

We shall consider some means for arbitrary positive real numbers α, β
(α �= β) [4].

(1) The arithmetic mean :

A := A (α, β) =
α + β

2
.

(2) The geometric mean :

G := G (α, β) =
√
αβ.

(3) The harmonic mean :

H := H (α, β) =
2

1
α
+ 1

β

(4) The power mean :

Pr (α, β) =

(
αr + βr

2

)1
r

, r ≥ 1.

(5) The identric mean:

I (α, β) =

⎧⎨
⎩ 1

e

(
ββ

αα

) 1
β−α

, α �= β

α, α = β.

(6) The logarithmic mean :

L := L (α, β) =
α− β

ln |α| − ln |β| , |α| �= |β| .
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(7) The generalized log-mean:

Lp := Lp (α, β) =

[
βp+1 − αp+1

(p+ 1) (β − α)

]1
p

, p ∈ R\ {−1, 0} .

It is well known that Lp is monotonic nondecreasing over p ∈ R, with L−1 := L
and L0 := I. In particular, we have the following inequality H ≤ G ≤ L ≤
I ≤ A.

Now, let a and b be positive real numbers such that a < b. Consider the
function

M := M(a, b) : [a, a+ η (b, a)]× [a, a+ η (b, a)] → R+,

which is one of the above mentioned means, therefore one can obtained variant
inequalities for these means as follows:

Setting η (b, a) = M (b, a) and choose x = 2a in (2.3), provided that 2a �
η(b, a) = M(b, a), one can obtain the following interesting inequality involving
means:

∣∣∣∣∣f (M (b, a))− 1

M (b, a)

∫ a+M(b,a)

a
f (u) du

∣∣∣∣∣
≤ |M (b, a)| ·

{[
3

2
·
(
1− a

M (b, a)

)2

− 2

3
·
(
1− a

M(b, a)

)3

+
a

M(b, a)
− 2

3

] ∣∣f ′ (a)
∣∣

+

[
1

6
− 1

2

(
1− a

M (b, a)

)2

+
2

3

(
1− a

M (b, a)

)3
] ∣∣f ′ (b)

∣∣} . (3.1)

Letting M := A,G,H, Pr, I, L, Lp, we get the required inequalities, and the details
are left to the interested reader.

Acknowledgment. The authors would like to thank the anonymous referee for the
valuable comments that have been implemented in the final version of the paper.
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1. Introduction

One of the most important and challenging problem in computational mathe-
matics is to compute approximate solutions of the nonlinear equation

f(x) = 0. (1)

Newton’s method for multiple roots appears in the work of Schröder [1], which
is given as

xn+1 = xn −
f(xn)f

′′(xn)

{f ′(xn)}2 − f(xn)f ′′(xn)
. (2)

This method has quadratic convergence, including the case of simple root.
Another well-known third-order modification of Newton’s method is the clas-
sical Chebyshev’s method [2, 3], given by

xn+1 = xn −
f(xn)

f ′(xn)
− 1

2

{f(xn)}2f ′′(xn)

{f ′(xn)}3
. (3)

In this paper, we obtain a new general family of Chebyshev’s method
for finding simple roots of nonlinear equations numerically. The classical
Chebyshev-Halley methods [4] are obtained as the particular cases of our pro-
posed scheme. Further, we have also developed a new fourth order variant of
Chebyshev’s method. The beauty of this method is that it uses the same num-
ber of functional evaluations as that of classical Chebyshev’s method. There-
fore, the efficiency of our proposed fourth-order method in terms of functional
evaluations is better than the existing classical Chebyshev’s method. Further-
more, we also develop two new optimal fourth-order multipoint methods free
from second-order derivative.

2. Family of Chebyshev’s Method and Conver-

gence Analysis

Let r be the required root of equation (1) and x = x0 be the initial guess
known for the required root. Assume

x1 = x0 + h, |h| << 1, (4)
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be the first approximation to the root. Therefore

f(x1) = 0. (5)

Expanding the function f(x1) by Taylor’s theorem about x0 and retaining the
terms up to O(h2), we get

f(x0) + hf ′(x0) +
h2

2
f ′′(x0) = 0. (6)

Further simplifying, we get

h = − f(x0)

f ′(x0)
− h2

2

f ′′(x0)

f ′(x0)
. (7)

Approximating h on the right-hand side of equation (7) by the correction term

− f(xn)f ′′(xn)
{f ′(x)}2−af(xn)f ′′(xn)

, a ∈ R (free disposable parameter) given in formula (2),
we obtain

h = − f(x0)

f ′(x0)
− 1

2

{f(x0)}2f ′(x0)f
′′(x0)[

{f ′(x0)}2 − af(x0)f ′′(x0)
]2 . (8)

Thus the first approximation to the required root is given by

x1 = x0 −
f(x0)

f ′(x0)
− 1

2

{f(x0)}2f ′(x0)f
′′(x0)[

{f ′(x0)}2 − af(x0)f ′′(x0)
]2 . (9)

Therefore, the general formula for successive approximations can be written
as

xn+1 = xn −
f(xn)

f ′(xn)
− 1

2

{f(xn)}2f ′(xn)f
′′(xn)[

{f ′(xn)}2 − af(xn)f ′′(xn)
]2 ,

or

xn+1 = xn −
f(xn)

f ′(xn)
− 1

2

{f(xn)}2f ′(xn)f
′′(xn)

{f ′(xn)}4 + a2{f(xn)}2{f ′′(xn)}2 − 2af(xn){f ′(xn)}2f ′′(xn)
.

(10)
This formula looks like a Chebyshev’s formula and describes the one-

parameter family of Chebyshev’s method. Note that for a = 0 in (10), one
can immediately recover the classical Chebyshev’s formula.
Special cases
I. Chebyshev-Halley type methods
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If we remove the term
(
a2{f(xn)}2{f ′′(xn)}2

)
from the denominator: {f ′(x)}4+

a2{f(xn)}2{f ′′(xn)}2 − 2af(xn){f ′(xn)}2f ′′(xn) in formula (10), we obtain a
family of methods defined by

xn+1 = xn −
f(xn)

f ′(xn)
− 1

2

{f(xn)}2f ′′(xn)

{f ′(x)}3 − 2af(xn)f ′(xn)f ′′(xn)
.

This family resembles with the well-known cubically convergent family of
Chebyshev-Halley type methods [4].
II. Another new cubically convergent family of methods

If we remove the term
(
−2af(xn){f ′(xn)}2f ′′(xn)

)
from the denominator:

{f ′(x)}4+a2{f(xn)}2{f ′′(xn)}2− 2af(xn){f ′(xn)}2f ′′(xn) in formula (10), we
obtain a family of methods defined by

xn+1 = xn −
f(xn)

f ′(xn)
− 1

2

{f(xn)}2f ′(xn)f
′′(xn)

{f ′(x)}4 + a2{f(xn)}2{f ′′(xn)}2
.

It is investigated that this family is also cubically convergent for all a ∈ R.

Theorem 2.1 Assume that f : D ⊂ R → R for an open interval D has a
simple root r ∈ D. Let f(x) be sufficently smooth in the neighborhood of the
root r, then the order of convergence of the methods defined by family (10) is
three for every value of a ∈ R.

Proof. Let en be the error at the nth iteration, then en = xn− r . Expanding
f(xn) and f ′(xn) about r and using the fact that f(r) = 0, f ′(r) �= 0, we have

f(xn) = f ′(r)[en + c2e
2
n + c3e

3
n + c4e

4
n + c5 +O(e5n)], (11)

where ck =
1
k!

fk(r)
f ′(r) , k = 2, 3, . . . Furthermore, we have

f ′(xn) = f ′(r)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c5e

4
n +O(e5n)], (12)

and
f ′′(xn) = f ′(r)[2c2 + 6c3en + 12c4e

2
n + 20c5e

3
n +O(e4n)]. (13)

Then

f(xn)

f ′(xn)
= [en − c2e

2
n + 2

(
c22 − c3

)
e3n +

(
−4c32 + 7c2c3 − 3c4

)
e4n +O(e5n)], (14)
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and {
f(xn)

f ′(xn)

}2
f ′′(xn)

f ′(xn)
= [2c2e

2
n +

(
6c3 − 8c22

)
e3n +O(e4n)]. (15)

Using (14) and (15) in equation (10) and simplifying, we get

en+1 =
{
2c22(1− 2a)− c3

}
e3n +O(e4n). (16)

Therefore, it can be concluded that for all a ∈ R, the family (10) converges
cubically. For a = 1

2
, error equation (16) reduces to

en+1 = −c3e
3
n +O(e4n). (17)

3. Fourth-order Variant of a Chebyshev’s Method

and Convergence Analysis

Here we intend to develop a new optimal fourth-order variant of Chebyshev’s
method. This method is very interesting because it has very higher order of
convergence and computational efficiency unlike Chebyshev’s method.
Considering the Newton-like iterative method with a parameter α ∈ R

yn = xn − α
f(xn)

f ′(xn)
. (18)

We now modify family (10) of Chebyshev’s method by using the second-order
derivative at yn instead of xn and obtain

xn+1 = xn −
f(xn)

f ′(xn)
− 1

2

{f(xn)}2f ′(xn)f
′′(yn)[

{f ′(x)}2 − af(xn)f ′′(yn)
]2 . (19)

Obviously, when we take (a, α) = (0, 0), we get classical Chebyshev’s method.

Theorem 3.1 Assume that f : D ⊂ R → R for an open interval D has a
simple root r ∈ D. Let f(x) be sufficently smooth in the neighborhood of the
root r, then the order of convergence of the method defined by formula (19) is
of order four if (a, α) =

(
1
2
, 1

3

)
.



44 Ramandeep Behl and V. Kanwar

Proof. The proof of said convergence of method (19) can be proved on similar

lines as in the Theorem (2.1). Expanding f ′′(yn) = f
(
xn − α f(xn)

f ′(xn)

)
about

x = r, we have

f ′′(yn) =f ′(r)[2c2 + 6c3(1− α)en + (6αc2c3 + 12c4(1− α)2e2n) + (12αc3(c3 − c22)

+ 24c2c4α(1− α) + 20c5(1− α)3)e3n +O(e4n)].
(20)

Using (11), (12) and (20) in formula (19) and simplifying, we get the final
error equation as

en+1 ={(1− 2a)2c22 − (1− 3α)c3}e3n + {(28a− 12a2 − 9)c32
+ (12− 24a− 15α + 24aα)c2c3 − (3− 12α + 6α2)c4}e4n +O(e5n).

(21)
For the method to be of fourth-order convergence, we must have

1− 2a = 0 and 1− 3α = 0,

which implies

a =
1

2
and α =

1

3
. (22)

Using (22) in equation (21), we obtain the following error equation for fourth-
order variant as

en+1 =

(
2c32 − c2c3 +

1

3
c4

)
e4n +O(e5n). (23)

The efficiency index [2] of the present method is equal to 3
√
4 ∼= 1.587 , which is

better than the ones of classical Chebyshev’s method 3
√
3 ∼= 1.442 and Newton’s

method 2
√
2 ∼= 1.414 respectively. Therefore, this method is very interesting

because it has higher order of convergence and computational efficiency than
Chebyshev’s method.

4. Families of Multipoint Iteration Methods

and their Convergence Analysis

The practical difficulty associated with the above mentioned methods given
by (10) or (19) may be the evaluation of second-order derivative. Recently,
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some new variants of Newton’s method free from second-order derivative have
been developed in [2, 3, 5, 6, 7, 8, 9] and the references cited theirin by dis-
cretization of second-order derivative or by predictor-corrector approach or
by considering different quadrature formulae for the computation of integral
arising from Newton’s theorem. These multipoint methods are of great prac-
tical importance since they overcome the limitations of one-point methods
regarding the convergence order and computational efficiency. According to
Kung-Traub conjecture [9], the order of convergence of any multipoint method
without memory consuming function evaluations per iteration, can not exceed
the bound (called optimal order). Thus, the optimal order for a method with
three functional evaluations per step would be four. Traub-Ostrowski’s method
[2, 3], Jarratt’s method [5], King’s method [6] and Maheswari’s method [7] etc.
are famous optimal fourth order methods, because they require three functions
evaluations per step. Nowadays, obtaining new optimal methods of order four
is still important, because they have very high efficiency index.

Here, we also intend to develop new fourth-order multipoint methods free
from second-order derivative. The main idea of proposed methods lies in the
discretization of second-order derivative involved in family (10) of Chebyshev’s
method.
a. First family

Expanding the function f(xn − βu), β �= 0 ∈ R but finite, about the point
x = xn with f(xn) �= 0, we have

f(xn − βu) = f(xn)− βuf ′(xn) +
β2u2

2!
f ′′(xn) +O(e3n). (24)

Let us take u = f(xn)
f ′(xn)

, and inserting this into (24), we obtain

f(xn)f
′′(xn) ≈

2{f ′(xn)}2
β2f(xn)

{f(xn − βu)− (1− β)f(xn)}. (25)

Using the approximate value of f(xn)f
′′(xn) into formula (10), we have

xn+1 = xn −
f(xn)

f ′(xn)

[
1 + β2f(xn)

{f(xn − βu)− (1− β)f(xn)}
{(β2 + 2a(1− β))f(xn)− 2af(xn − βu)}2

]
.

(26)
Special cases

For different specific values of parameters a and α, the following various
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multipoint methods can be deduced from (26), e.g.
i. For (a, β) =

(
−1

2
, 1
)
, we get the new formula

xn+1 = xn −
f(xn)

f ′(xn)

[
1 +

f(xn)f(xn − u)

{f(xn) + f(xn − u)}2
]
. (27)

ii. For (a, β) = (−1, 1), we get the new formula

xn+1 = xn −
f(xn)

f ′(xn)

[
1 +

f(xn)f(xn − u)

{f(xn) + 2f(xn − u)}2
]
. (28)

iii. For (a, β) =
(
1
2
, 1
)
, we get the new formula

xn+1 = xn −
f(xn)

f ′(xn)

[
1 +

f(xn)f(xn − u)

{f(xn)− f(xn − u)}2
]
. (29)

Note that the family (26) can produce many more new multipoint methods by
choosing different values of the parameters.
b. Second family

Replacing the second-order derivative in (10) by the following definition

f ′′(xn) ≈
f ′(xn)− f ′(xn − βu)

βu
, β �= 0 ∈ R,

we get the following new family as

xn+1 = xn −
f(xn)

f ′(xn)

[
1 +

1

2

βf ′(xn){f ′(xn)− f ′(xn − βu)}
{(β − a)f ′(xn) + af ′(xn − βu)}2

]
. (30)

Special cases
For different specific values of parameters a and β, the following various

multipoint methods can be obtained from (30), e.g.
i. For (a, β) = (1, 1), we get the new formula

xn+1 = xn −
f(xn)

f ′(xn)

[
1 +

f ′(xn){f ′(xn)− f ′(xn − u)}
2{f ′(xn − u)}2

]
. (31)

ii. For (a, β) =
(
1
2
, 2

3

)
, we get the new formula

xn+1 = xn −
f(xn)

f ′(xn)

[
1 +

12f ′(xn)
{
f ′(xn)− f ′ (xn − 2

3
u
)}

{
f ′(xn) + 3f ′ (xn − 2

3
u
)}2

]
. (32)
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Other modifications can be obtained from formula (10) by replacing the second-
order derivative by other finite difference approximations.

The order of convergence of family (26) and (30) will be studied in Theorem
4.1 in the subsequent section.

Theorem 4.1 Let f : D ⊆ R → R be a continuous and sufficiently differ-
entiable function defined in D. If f(x) has a simple root r ∈ D, then for
sufficiently close initial guess x0 to r,

(i) the family (26) has 3rd order of convergence, for

a �= 1

2
& β = 1, a =

1

2
& β �= 1, a �= 1

2
& β �= 1,

and 4th order of convergence for a =
1

2
& β = 1.

(ii) the family (30) has 3rd order of convergence, for

a �= 1

2
& β =

2

3
, a =

1

2
& β �= 2

3
, a �= 1

2
& β �= 2

3
,

and 4th order of convergence for a =
1

2
& β =

2

3
.

Proof. Since f(x) is sufficiently differentiable, expanding f(xn) and f ′(xn)
about x = r by Taylor’s expansion, we have

f(xn) = f ′(r)[en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n +O(e5n)], (33)

and
f ′(xn) = f ′(r)[1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n +O(e5n)], (34)

where ck and en are defined earlier.

f(xn−βu) = (1−β)en+{(1−β+β2)c2}e2n−{2β2c22−((1−β)3+2β)c3}e3n+O(e4n).
(35)

Using symbolic computation in the programming package Mathematica, we
get the following error equation for the family (26):

en+1 ={2(1− 2a)c22 − (1− β)c3}e3n + {(28a− 12a2 − 9)c32
+ (12− 24a− 5β + 8aβ)c2c3 − (3− 4β + β2)c4}e4n +O(e5n).

(36)

For a = 1
2
and β = 1, in equation (36), we get

en+1 = (2c32 − c2c3)e
4
n +O(e5n). (37)
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Similarly for scheme (30), we have the following error equation

en+1 =

{
2(1− 2a)c22 −

(
1− 3β

2

)
c3

}
e3n +

{
(28a− 12a2 − 9)c32

+

(
12− 24a− 15β

2
+ 12aβ

)
c2c3 − (3− 6β + 2β2)c4

}
e4n +O(e5n).

(38)

For a = 1
2
and β = 2

3
, in equation (36), we get

en+1 =

(
2c32 − c2c3 +

1

9
c4

)
e4n +O(e5n). (39)

5. Numerical Results

In this section, we shall present the numerical results obtained by employing
the methods namely Newton’s method (NM), Chebyshev’s method (CM), cu-
bically convergent variant of Chebyshev’s method (10) for a = 1 (CVCM) and
quartically convergent variant of Chebyshev’s method (19) (QVCM) respec-
tively to solve the nonlinear equations given in Table 1. The results are summa-
rized in Table 2. We also compare Newton’s method (NM), Traub-Ostrowski’s
method (TOM), Jarratt’s method (JM), Maheswari’s method (MM) with our
optimal multipoint methods (29) (MTOM) and (32) (MJM) introduced in this
contribution. The results are summarized in Table 3. Computations have been
performed using C++ in double precision arithmetic. We use ε = 10−15. The
following stopping criteria are used for computer programs:

(i) |xn+1 − xn| < ε, (ii) |f(xn+1)| < ε.
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Table 1: Test Problems

No Problems [a, b] Initial guess Root (r)

1. ex − 4x2 = 0 [0.5, 2] 0.5 0.714805901050568

2.0

2. x3 + 4x2 − 10 = 0 [1, 2] 1.0 1.3652300134140969

2.0

3. cos x− x = 0 [0, 2] 0.0 0.7390851332151600

2.0

4. x2 − ex − 3x+ 2 = 0 [0, 1] 0.0 0.000000000000000

1.0

5. xex
2 − sinx2 + 3 cosx+ 5 = 0 [−1.5, − 0.5] −1.5 1.207647800445557

−0.5

6. sin2 x− x2 + 1 = 0 [1, 3] 1.0 1.404491662979126

3.0

7. ex
2+7x−30 − 1 = 0 [2.9, 3.5] 2.9 3.000000000000000

3.5
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Table 2: Results of problems (Number of Iterations)

Problem Initial guess NM CM CVCM QVCM

1. 0.5 4 3 3 2

2.0 5 4 4 3

2. 1.0 4 3 3 2

2.0 4 3 3 2

3. 0.0 4 3 3 3

2.0 3 3 3 2

4. 0.0 3 2 2 2

1.0 3 3 2 2

5. −1.5 5 3 4 3

−0.5 9 Divergent 7 5

6. 1.0 5 4 4 3

3.0 5 4 4 3

7. 2.9 6 Divergent 5 3

3.5 11 7 9 6
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Table 3: Results of problems (D below-stands for divergent)
Number of iterations

Problem Initial guess NM TOM JM MM MTOM MJM

1. 0.5 4 2 2 3 2 3

2.0 5 3 3 3 3 3

2. 1.0 4 2 2 3 2 3

2.0 4 2 2 3 2 3

3. 0.0 4 2 3 3 3 3

2.0 3 2 2 2 2 2

4. 0.0 3 2 2 3 2 2

1.0 3 2 2 2 2 2

5. −1.5 5 2 3 3 3 3

−0.5 9 4 3 D 6 7

6. 1.0 5 3 3 4 3 3

3.0 5 3 3 3 3 3

7. 2.9 6 3 3 36 3 4

3.5 11 5 5 6 6 6
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6 . Conclusions

In this paper, we obtained a new simple and elegant root-finding family of
Chebyshev’s method. Chebyshev-Halley type methods are seen as the special
cases of our proposed family. Furthermore, we presented a new fourth-order
variant of Chebyshev’s method. Then we introduced two new multipoint
optimal methods of order four. The additional advantage of the presented
multipoint methods is similar to that of Traub-Ostrowski’s method, Jarratt’s
method etc. because they do not require the computation of second-order
derivative to reach such a high convergence order. Finally, we provide numeri-
cal tests showing that these methods are equally competitive to other methods
available in literature for finding simple roots of nonlinear equations.

Acknowledgement. Ramandeep Behl gratefully acknowledges the financial
support of CSIR, New Delhi.
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Abstract

In this short note, we introduce the notion of prime ideals in near-
ring and obtain equivalent conditions for an ideal to be a weakly prime
ideal.
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1. Introduction

Throughout this paper, N denotes a zero-symmetric near-ring not necessarily
with identity unless otherwise stated. For x ∈ N, < x > denote the ideal of N
generated by x, and P (N) denotes the intersection of all prime ideals of N. In
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[1], D. D. Anderson and E. Smith defined weakly prime ideals in commutative
rings, an ideal P of a ring R is weakly prime if 0 �= ab ∈ P implies a ∈ P or
b ∈ P. In this paper we define a notion of weakly prime ideal in near-ring (not
necessarily commutative).

A proper ideal P (i.e., an ideal different from N) of N is prime if for ideals
A and B of N, AB ⊆ P implies A ⊆ P or B ⊆ P. We define a proper ideal
P of N to be weakly prime if 0 �= AB ⊆ P, A and B are ideals of N, implies
A ⊆ P or B ⊆ P. Clearly every prime ideal is weakly prime and {0} is always
weakly prime ideal of N. The following example shows that a weakly prime
ideal need not be a prime ideal in general.

Example 1.1. Let N = {0, a, b, c, d, 1, 2, 3}. Define addition and multiplica-
tion in N as follows:

+ 0 1 2 3 a b c d
0 0 1 2 3 a b c d
1 1 2 3 0 d c a b
2 2 3 0 1 b a d c
3 3 0 1 2 c d b a
a a d b c 2 0 1 3
b b c a d 0 2 3 1
c c a d b 1 3 0 2
d d b c a 3 1 2 0

. 0 1 2 3 a b c d
0 0 0 0 0 0 0 0 0
1 0 1 2 3 a b c d
2 0 2 0 2 2 2 0 0
3 0 3 2 1 b a c d
a 0 a 2 b a b c d
b 0 b 2 a b a c d
c 0 c 0 c 0 0 0 0
d 0 d 0 d 2 2 0 0

Then (N,+, .) is a near-ring (see [2], Library Nearring (8/2, 857)). Here
{0, c} is a weakly prime ideal, but not a prime, since {0, 2}2 ⊆ {0, c}.

For a less trivial example, let M be a unique maximal ideal of a near-ring
N with M2 = 0, then every proper ideal of N is easily seen to be weakly prime.
Also in Z6, {0} is a weakly prime ideal, but not prime. For basic terminology
in near-ring we refer to Pilz [3].

2. Main Results

Theorem 2.1. Let N be a near-ring and P a weakly prime ideal of N. If P
is not a prime, then P 2 = 0.

Proof: Suppose that P 2 �= 0. We show that P is prime. Let A and B be
ideals of N such that AB ⊆ P. If AB �= 0, then A ⊆ P or B ⊆ P. So assume
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that AB = 0. Since P 2 �= 0, there exist p0, q0 ∈ P such that < p0 >< q0 >�= 0.
Then (A+ < p0 >)(B+ < q0 >) �= 0. Suppose (A+ < p0 >)(B+ < q0 >) � P.
Then there exist a ∈ A; b ∈ B and p

′
0 ∈< p0 >; q

′
0 ∈< q0 > such that

(a+p
′
0)(b+q

′
0) /∈ P which implies a(b+q

′
0) /∈ P, but a(b+q

′
0) = a(b+q

′
0)−ab ∈ P

since AB = 0, a contradiction. So 0 �= (A+ < p0 >)(B+ < q0 >) ⊆ P which
implies A ⊆ P or B ⊆ P.

Corollary 2.2. Let N be a near-ring and P an ideal of N. If P 2 �= 0, then P
is prime if and only if P is weakly prime.

Corollary 2.3. Let P be a weakly prime ideal of N. Then either P ⊆ P (N)
or P (N) ⊆ P. If P ⊂ P (N), then P is not prime, while if P (N) ⊂ P, then P
is prime.

It should be noted that a proper ideal P with the property that P 2 = {0}
need not be weakly prime. Take N = Z8 and P = {0, 4}. Clearly P 2 = {0},
yet P is not weakly prime.

Lemma 2.4. Let N be a near-ring and P an ideal of N. Then the following
are equivalent:

i) For any a, b, c ∈ N with 0 �= a(< b > + < c >) ⊆ P, we have a ∈ P or
b and c in P

ii) For x ∈ N\P, we have (P :< x > + < y >) = P ∪ (0 :< x > + < y >)
for any y ∈ N.

iii) For x ∈ N\P, we have (P :< x > + < y >) = P or
(P :< x > + < y >) = (0 :< x > + < y >) for any y ∈ N.

iv) P is weakly prime

Proof: (i) ⇒ (ii) Let t ∈ (P :< x > + < y >) for any x ∈ N\P and
y ∈ N. Then t(< x > + < y >) ⊆ P. If t(< x > + < y >) = 0, then
t ∈ (0 :< x > + < y >). Otherwise 0 �= t(< x > + < y >) ⊆ P. Then t ∈ P
by hypothesis. (ii) ⇒ (iii) follows from the fact that if an ideal is the union
of two ideals, then it is equal to one of them. (iii) ⇒ (iv) Let A and B be
ideals of N such that AB ⊆ P and suppose A � P and B � P. Then there
exist a ∈ A and b ∈ B with a, b /∈ P. Now we claim that AB = 0.

Let b1 ∈ B. Then A(< b > + < b1 >) ⊆ P which implies A ⊆ (P :< b >
+ < b1 >). Then by assumption, A(< b > + < b1 >) = 0 which gives Ab1 = 0.
Thus AB = 0 and hence P is weakly prime ideal of N. (iv) ⇒ (i) is clear.
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Theorem 2.5. Let N be a near-ring and P an ideal of N. Then
i) P is weakly prime
ii) For any ideals I, J of N with P ⊂ I and P ⊂ J, we have either IJ = 0

or IJ � P.
iii) For any ideals I, J of N with I � P and J � P, we have either IJ = 0

or IJ � P.

Proof: (i) ⇒ (ii) and (iii) ⇒ (i) are clear. (ii) ⇒ (iii). Let I, J be ideals
of N with I � P and J � P. Then there exist i1 ∈ I and j1 ∈ J such that
i1, j1 /∈ P.

Suppose that < i >< j > �= 0 for some i ∈ I and some j ∈ J. Then (P+ <
i > + < i1 >)(P+ < j > + < j1 >) �= 0 and P ⊂ P+ < i > + < i1 >;P ⊂
P+ < j > + < j1 > . By hypothesis, (P+ < i > + < i1 >)(P+ < j > + <
j1 >) � P which implies < i > (P+ < j > + < j1 >)+ < i1 > (P+ < j >
+ < j1 >) � P. So there exist i

′ ∈< i >; i
′
1 ∈< i1 >; j

′
, j

′′ ∈< j >; j
′
1, j

′′
1 ∈<

j1 > and p1, p2 ∈ P such that i
′
(p1 + j

′
+ j

′
1) + i

′
1(p2 + j

′′
+ j

′′
1 ) /∈ P. Therefore

i
′
(p1+j

′
+j

′
1)−i

′
(j

′
+j

′
1)+i

′
(j

′
+j

′
1)+i

′
1(p2+j

′′
+j

′′
1 )−i

′
1(j

′′
+j

′′
1 )+i

′
1(j

′′
+j

′′
1 ) /∈ P.

But since i
′
(p1+ j

′
+ j

′
1)− i

′
(j

′
+ j

′
1) ∈ P and i

′
1(p2+ j

′′
+ j

′′
1 )− i

′
1(j

′′
+ j

′′
1 ) ∈ P,

we have P does not contain either i
′
(j

′
+ j

′
1) or i

′
1(j

′′
+ j

′′
1 ) which shows that

IJ � P.
From [3], a subset M of N is called m-system if a, b ∈ M, then there exist
a1 ∈< a > and b1 ∈< b > such that a1b1 ∈ M. A subset M of N is called
weakly m-system if M ∩ A �= φ and M ∩ B �= φ for any ideals A,B of N,
then either AB ∩M �= φ or AB = 0. Clearly every m-system is a weakly m-
system, but a weakly m-system need not be a m-system, since in Example 1.1,
M = {1, 2, 3, a, b, d} is a weakly m-system, but not a m-system since x1x2 /∈ M
for all x1, x2 ∈< 2 > . It is clear that, an ideal P of N is weakly prime if and
only if N\P is weakly m- system. A well known result that, if M is a non-void
m-system of N and I is an ideal of N with I ∩ M = φ, then there exist a
prime ideal P �= N containing I with P ∩M = φ. A similar result does hold
for weakly m-system.

Theorem 2.6. Let M ⊆ N be a non-void weakly m-system in N and I an
ideal of N with I∩M = φ. Then I is contained in a weakly prime ideal P �= N
with P ∩M = φ.

Proof: Let A = {J : J is an ideal of N with J ∩M = φ}. Clearly I ∈ A. Then
by Zorn’s Lemma, A contains a maximal element (say) P with P ∩ M = φ.
We show that P is weakly prime ideal of N. Let A and B be ideals of N with
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P ⊂ A and P ⊂ B. Then by maximality of A, A ∩M �= φ and B ∩M �= φ.
Since M is weakly m-system, we have AB = 0 or AB∩M �= φ; that is AB = 0
or AB � P since P ∩M = φ. So by Theorem 2.5, P is weakly prime ideal of
N and also containing I.

Theorem 2.7. Let N be a decomposable near-ring with identity. If P is a
weakly prime ideal of N, then either P = 0 or P is prime.

Proof: Suppose that N = N1 × N2 and let P = P1 × P2 be a weakly prime
ideal of N. We may assume that P �= 0. Now, let A be a non-zero ideal
of N1 and B be a non-zero ideal of N2 such that 0 �= (A,B) ⊆ P. Then
0 �= (A,N2)(N1, B) ⊆ P which implies (A,N2) ⊆ P or (N1, B) ⊆ P. Suppose
that (A,N2) ⊆ P. Then (0, N2) ⊆ P and so P = P1 ×N2. We show that P1 is
a prime ideal of N1. Let A1 and B1 be ideals of N1 such that A1B1 ⊆ P1. Then
(0, 0) �= (A1, N2)(B1, N2) = (A1B1, N2) ⊆ P, so (A1, N2) ⊆ P or (B1, N2) ⊆ P
and hence A1 ⊆ P1 or B1 ⊆ P1. So P is prime ideal of N. The case where
(N1, B) ⊆ P is similar.
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established in terms of the Schwarzian derivatives and the second coef-
ficients. These include obtaining a sufficient condition for functions to
be strongly α-Bazilevič of order β.

Keywords and Phrases: Univalent functions, Bazilevič functions, Gron-
wall’s inequality, Schwarzian derivative, Second coefficient.

1. Introduction

Let A be the set of all normalized analytic functions f of the form f(z) = z+∑∞
k=2 akz

k defined in the open unit disk D := {z ∈ C : |z| < 1} and denote by S
the subclass ofA consisting of univalent functions. A function f ∈ A is starlike
if it maps D onto a starlike domain with respect to the origin, and f is convex
if f(D) is a convex domain. Analytically, these are respectively equivalent
to the conditions Re(zf ′(z)/f(z)) > 0 and 1 + Re(zf ′′(z)/f ′(z)) > 0 in D.
Denote by ST and CV the classes of starlike and convex functions respectively.
More generally, for 0 ≤ α < 1, a function f ∈ A is starlike of order α if
Re(zf ′(z)/f(z)) > α, and is convex of order α if 1 + Re(zf ′′(z)/f ′(z)) > α.
We denote these classes by ST (α) and CV(α) respectively. For 0 < α ≤ 1, let
SST (α) be the subclass of A consisting of functions f satisfying the inequality∣∣∣∣arg zf ′(z)

f(z)

∣∣∣∣ ≤ απ

2
.

Functions in SST (α) are called strongly starlike functions of order α.

The Schwarzian derivative S(f, z) of a locally univalent analytic function
f is defined by

S(f, z) :=

(
f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

.

The Schwarzian derivative is invariant under Möbius transformations. Also,
the Schwarzian derivative of an analytic function f is identically zero if and
only if it is a Möbius transformation.

Nehari showed that the univalence of an analytic function in D can be
guaranteed if its Schwarzian derivative is dominated by a suitable positive
function [10, Theorem I, p. 700]. In [9], by considering two particular positive
functions, a bound on the Schwarzian derivative was obtained that would
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ensure univalence of an analytic function in A. In fact, the following theorem
was proved.

Theorem 1.1. [9, Theorem II, p. 549] If f ∈ A satisfies

|S(f, z)| ≤ π2

2
(z ∈ D),

then f ∈ S. The result is sharp for the function f given by f(z) = (exp(iπz)−
1)/iπ.

The problems of finding similar bounds on the Schwarzian derivatives that
would imply univalence, starlikeness or convexity of functions were investi-
gated by a number of authors including Gabriel [4], Friedland and Nehari [3],
and Ozaki and Nunokawa [11]. Corresponding results related to meromorphic
functions were dealt with in [4, 6, 9, 12]. For instance, Kim and Sugawa [8]
found sufficient conditions in terms of the Schwarzian derivative for locally
univalent meromorphic functions in the unit disk to possess specific geometric
properties such as starlikeness and convexity. The method of proof in [8] was
based on comparison theorems in the theory of ordinary differential equations
with real coefficients.

Chiang [1] investigated strong-starlikeness of order α and convexity of func-
tions f by requiring the Schwarzian derivative S(f, z) and the second coefficient
a2 of f to satisfy certain inequalities. The following results were proved:

Theorem 1.2. [1, Theorem 1, pp. 108-109] Let f ∈ A, 0 < α ≤ 1 and
|a2| = η < sin(απ/2). Suppose

sup
z∈D

|S(f, z)| = 2δ(η), (1.1)

where δ(η) satisfies the inequality

sin−1

(
1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
≤ απ

2
.

Then f ∈ SST (α). Further, | arg(f(z)/z)| ≤ απ/2.

Theorem 1.3. [1, Theorem 2, p. 109] Let f ∈ A, and |a2| = η < 1/3. Suppose
(1.1) holds where δ(η) satisfies the inequality

6η + 5(1 + η)δeδ/2 < 2.
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Then

f ∈ CV
(
2− 6η − 5(1 + η)δeδ/2

2− 2η − (1 + η)δeδ/2

)
.

In particular, if a2 = 0 and 2δ ≤ 0.6712, then f ∈ CV.

Chiang’s proofs in [1] rely on Gronwall’s inequality (see Lemma 2.1 below).
In this paper, Gronwall’s inequality is used to obtain sufficient conditions for
analytic functions to be univalent. Also, certain inequalities related to the
Schwarzian derivative and the second coefficient will be formulated that would
ensure analytic functions to possess certain specific geometric properties. The
sufficient conditions of convexity obtained in [1] will be seen to be a special
case of our result, and similar conditions for starlikeness will also be obtained.

2. Consequences of Gronwall’s Inequality

Gronwall’s inequality and certain relationships between the Schwarzian deriva-
tive of f and the solution of the linear second-order differential equation
y′′ + A(z)y = 0 with A(z) := S(f ; z)/2 will be revisited in this section. We
first state Gronwall’s inequality, which is needed in our investigation.

Lemma 2.1. [7, p. 19] Suppose A and g are non-negative continuous real
functions for t ≥ 0. Let k > 0 be a constant. Then the inequality

g(t) ≤ k +

∫ t

0

g(s)A(s)ds

implies

g(t) ≤ k exp

(∫ t

0

A(s)ds

)
(t > 0).

For the linear second-order differential equation y′′ + A(z)y = 0 where
A(z) := 1

2
S(f ; z) is an analytic function, suppose that u and v are two lin-

early independent solutions with initial conditions u(0) = v′(0) = 0 and
u′(0) = v(0) = 1. Such solutions always exist and thus the function f can
be represented by

f(z) =
u(z)

cu(z) + v(z)
, (c := −a2). (2.1)
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It is evident that

f ′(z) =
1

(cu(z) + v(z))2
. (2.2)

Estimates on bounds for various expressions related to u and v were found in
[1]. Indeed, using the integral representation of the fundamental solutions

u(z) = z +
∫ z

0
(η − z)A(η)u(η)dη,

v(z) = 1 +
∫ z

0
(η − z)A(η)v(η)dη,

(2.3)

and applying Gronwall’s inequality, Chiang obtained the following inequalities
[1] which we list for easy reference:

|u(z)| < eδ/2, (2.4)∣∣∣∣u(z)z
− 1

∣∣∣∣ < 1

2
δeδ/2, (2.5)

|cu(z) + v(z)| < (1 + η)eδ/2, (2.6)

|cu(z) + v(z)− 1| < η +
1

2
(1 + η)δeδ/2. (2.7)

For instance, by taking the path of integration η(t) = teiθ, t ∈ [0, r], z = reiθ,
Gronwall’s inequality shows that, whenever |A(z)| < δ and 0 < r < 1,

|u(z)| ≤ 1 +

∫ r

0

(r − t)|A(teiθ)| |u(teiθ)|dt

≤ exp(

∫ r

o

(r − t)|A(teiθ)|dt) ≤ exp(δ/2).

This proves inequality (2.4). Note that there was a typographical error in [1,
Inequality (8), p. 112], and that inequality (2.5) is the right form.

3. Inclusion Criteria for Subclasses of Analytic

Functions

The first result leads to sufficient conditions for univalence.

Theorem 3.1. Let 0 < α ≤ 1, 0 ≤ β < 1, f ∈ A and |a2| = η, where α, β
and η satisfy

sin−1
(
β(1 + η)2

)
+ 2 sin−1 η <

απ

2
. (3.1)
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Suppose (1.1) holds where δ(η) satisfies the inequality

sin−1
(
β(1 + η)2eδ

)
+ 2 sin−1

(
η +

1

2
(1 + η)δeδ/2

)
≤ απ

2
. (3.2)

Then | arg(f ′(z)− β)| ≤ απ/2.

Proof. Using a limiting argument as δ → 0, the condition (3.1) shows that
there is a real number δ(η) ≥ 0 satisfying inequality (3.2). The representation
of f ′ in terms of the linearly independent solutions of the differential equation
y′′ + A(z)y = 0 with A(z) := S(f ; z)/2 as given by equation (2.2) yields

f ′(z)− β =
1− β(c u(z) + v(z))2

(c u(z) + v(z))2
. (3.3)

In view of the fact that for w ∈ C,

|w − 1| ≤ r ⇔ | argw| ≤ sin−1 r,

inequality (2.6) implies

| arg[1− β(c u(z) + v(z))2]| ≤ sin−1
(
β(1 + η)2eδ

)
. (3.4)

Similarly, inequality (2.7) shows

| arg[c u(z) + v(z)]| ≤ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
. (3.5)

Hence, it follows from (3.3), (3.4) and (3.5) that

| arg(f ′(z)− β)| ≤ | arg[1− β(c u(z) + v(z))2]|+ 2| arg[c u(z) + v(z)]|

≤ sin−1(β(1 + η)2eδ) + 2 sin−1

(
η +

1

2
(1 + η)δeδ/2

)

≤ απ

2
,

where the last inequality follows from (3.2). This completes the proof.

By taking β = 0 in Theorem 3.1, the following univalence criterion is
obtained.
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Corollary 3.1. Let f ∈ A, and |a2| = η < sin(απ/4), 0 < α ≤ 1. Suppose
(1.1) holds where δ(η) satisfies the inequality

η +
1

2
(1 + η)δeδ/2 ≤ sin

(απ
4

)
.

Then | arg f ′(z)| ≤ απ/2, and in particular f ∈ S.

Example 3.1. Consider the univalent function g given by

g(z) =
z

1 + cz
, |c| ≤ 1, z ∈ D.

Since the Schwarzian derivative of an analytic function is zero if and only if
it is a Möbius transformation, it is evident that S(g, z) = 0. Therefore the
condition (1.1) is satisfied with δ = 0. It is enough to take η = |c| and to
assume that η, α and β satisfy the inequality (3.1). Now

| arg(g′(z)− β)| =
∣∣∣∣arg 1

(1 + cz)2
− β

∣∣∣∣ ≤ | arg(1− β(1 + cz)2)|+ 2| arg(1 + cz)|

≤ sin−1(β(1 + |c|)2) + 2 sin−1 |c|.

In view of the latter inequality, it is necessary to assume inequality (3.1) for g
to satisfy | arg(g′(z)− β)| ≤ απ/2.

Let 0 ≤ ρ < 1, 0 ≤ λ < 1, and α be a positive integer. A function f ∈ A is
called an α-Bazilevič function of order ρ and type λ, written f ∈ B(α, ρ, λ), if

Re

(
zf ′(z)

f(z)1−αg(z)α

)
> ρ (z ∈ D)

for some function g ∈ ST (λ). The following subclass of α-Bazilevič functions
is of interest. A function f ∈ A is called strongly α-Bazilevič of order β if∣∣∣∣∣arg

((
z

f(z)

)1−α

f ′(z)

)∣∣∣∣∣ < βπ

2
, (α > 0; 0 < β ≤ 1),

(see Gao [5]). For the class of strongly α-Bazilevič functions of order β, the
following sufficient condition is obtained.



68 Rosihan M. Ali, Mahnaz M. Nargesi, V. Ravichandran, and A. Swaminathan

Theorem 3.2. Let α > 0, 0 < β ≤ 1, f ∈ A and |a2| = η, where η, α and β
satisfy

η < sin

(
βπ

2(1 + α)

)
.

Suppose (1.1) holds where δ(η) satisfies the inequality

|1− α| sin−1

(
1

2
δeδ/2

)
+ (1 + α) sin−1

(
η +

1

2
(1 + η)δeδ/2

)
≤ βπ

2
. (3.6)

Then f is strongly α-Bazilevič of order β.

Proof. The condition η < sin(βπ/2(1+α)) ensures that there is a real number
δ(η) satisfying (3.6). Using (2.1) and (2.2) lead to∣∣∣∣∣arg

((
z

f(z)

)1−α

f ′(z)

)∣∣∣∣∣ =
∣∣∣∣∣arg

((
u(z)

z

)α−1

(cu(z) + v(z))−(α+1)

)∣∣∣∣∣
≤ |1− α|

∣∣∣∣arg
(
u(z)

z

)∣∣∣∣+ |α + 1| |arg(cu(z) + v(z))| .

It now follows from (2.5), (3.5) and (3.6) that∣∣∣∣∣arg
((

z

f(z)

)1−α

f ′(z)

)∣∣∣∣∣ ≤ |1− α| sin−1

(
1

2
δeδ/2

)
+ (1 + α) sin−1

(
η +

1

2
(1 + η)δeδ/2

)

≤ βπ

2
.

For α ≥ 0, consider the class R(α) defined by

R(α) = {f ∈ A : Re (f ′(z) + αzf ′′(z)) > 0, α ≥ 0}.
For this class, the following sufficient condition is obtained.

Theorem 3.3. Let α ≥ 0, f ∈ A and |a2| = η, where η and α satisfy

2 sin−1 η + sin−1

(
2ηα

1− η

)
<

π

2
. (3.7)

Suppose (1.1) holds where δ(η) satisfies the inequality

2 sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
4α

(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)
≤ π

2
. (3.8)

Then f ∈ R(α).
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Proof. Again it is easily seen from a limiting argument that the condition
(3.7) guarantees the existence of a real number δ(η) ≥ 0 satisfying the in-
equality (3.8). It is sufficient to show that∣∣∣∣arg

(
f ′(z)

(
1 + α

zf ′′(z)
f ′(z)

))∣∣∣∣ < π

2
.

The equation (2.2) yields

zf ′′(z)
f ′(z)

= −2z
cu′(z) + v′(z)
cu(z) + v(z)

. (3.9)

A simple calculation from (2.3) shows that

cu′(z) + v′(z) = c−
∫ z

0

A(η)[cu(η) + v(η)]dη,

and an application of (2.6) leads to

|cu′(z) + v′(z)| ≤ η + (1 + η)δeδ/2. (3.10)

Use of (2.7) results in

|cu(z) + v(z)| ≥ 1− |cu(z) + v(z)− 1| ≥ 1− η − 1

2
(1 + η)δeδ/2. (3.11)

The lower bound in (3.11) is non-negative from the assumption made in (3.8).
From (3.9), (3.10) and (3.11) , it is evident that∣∣∣∣

(
1 + α

zf ′′(z)
f ′(z)

)
− 1

∣∣∣∣ =
∣∣∣∣2zαcu′(z) + v′(z)

cu(z) + v(z)

∣∣∣∣
≤ 2α

(
η + (1 + η)δeδ/2

)
1− η − 1

2
(1 + η)δeδ/2

.

Hence, ∣∣∣∣arg
(
1 + α

zf ′′(z)
f ′(z)

)∣∣∣∣ ≤ sin−1

(
4α

(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)
. (3.12)

From (3.5) it follows that

| arg f ′(z)| = 2| arg(cu(z) + v(z))| ≤ 2 sin−1

(
η +

1

2
(1 + η)δeδ/2

)
. (3.13)
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Using (2.2) and (3.5), the inequality (3.13) together with (3.12) and (3.8)
imply that∣∣∣∣arg

(
f ′(z)

(
1 + α

zf ′′(z)
f ′(z)

))∣∣∣∣ ≤ | arg f ′(z)|+
∣∣∣∣arg

(
1 + α

zf ′′(z)
f ′(z)

)∣∣∣∣
≤ 2 sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
4α

(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)

≤ π

2
.

Theorem 3.4. Let f ∈ A, |a2| = η ≤ 1/3, and β, α be real numbers satisfying

|α| sin−1 η + |β| sin−1

(
2η

1− η

)
<

π

2
. (3.14)

Suppose (1.1) holds where δ(η) satisfies the inequality

|α| sin−1

(
1

2
δeδ/2

)
+ |α| sin−1

(
η +

1

2
(1 + η)δeδ/2

)

+ |β| sin−1

(
4
(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)
≤ π

2
.

(3.15)

Then

Re

((
zf ′(z)
f(z)

)α (
1 +

zf ′′(z)
f ′(z)

)β
)

> 0. (3.16)

Proof. The inequality (3.14) assures the existence of δ satisfying (3.15). From
(2.1) and (2.2) it follows that

zf ′(z)
f(z)

=
z

u(z)

1

cu(z) + v(z)
, z ∈ D. (3.17)

By (2.5) and (3.5),∣∣∣∣arg
(
zf ′(z)
f(z)

)∣∣∣∣ ≤ sin−1

(
1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
. (3.18)
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Using (3.12) with α = 1, (3.18) and (3.15) lead to∣∣∣∣∣arg
((

zf ′(z)
f(z)

)α (
1 +

zf ′′(z)
f ′(z)

)β
)∣∣∣∣∣ ≤ |α|

∣∣∣∣arg
(
zf ′(z)
f(z)

)∣∣∣∣+ |β|
∣∣∣∣arg

(
1 +

zf ′′(z)
f ′(z)

)∣∣∣∣
≤ |α| sin−1

(
1

2
δeδ/2

)
+ |α| sin−1

(
η +

1

2
(1 + η)δeδ/2

)

+ |β| sin−1 4
(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

≤ π

2
.

This shows that (3.16) holds.

Remark 3.1. Theorem 3.4 yields the following interesting special cases.

(i) If α = 0, β = 1, a sufficient condition for convexity is obtained. This
case reduces to a result in [1, Theorem 2, p. 109].

(ii) For α = 1, β = 0, a sufficient condition for starlikeness is obtained.

(iii) For α = −1 and β = 1, then the class of functions satisfying (3.16)
reduces to the class of functions

G :=

{
f ∈ A

∣∣∣∣∣ Re
(
1 + zf ′′(z)

f ′(z)
zf ′(z)
f(z)

)
> 0

}
.

This class G was considered by Silverman [14] and Tuneski [15].

Theorem 3.5. Let β ≥ 0, f ∈ A and |a2| = η, where η satisfies

sin−1 (η) + sin−1

(
2βη

1− η

)
<

π

2
. (3.19)

Suppose (1.1) holds where δ(η) satisfies the inequality

sin−1

(
1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
4β

(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)

≤ π

2
.
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Then

Re

(
zf ′(z)
f(z)

+ β
z2f ′′(z)
f(z)

)
> 0. (3.20)

The proof is similar to the proof of Theorem 3.4, and is therefore omitted.
The inequality (3.19) is equivalent to the condition

η
(
1 +

√
(1− η)2 − 4β2η2 + 2β

√
1− η2

)
< 1.

For β = 1, the above equation simplifies to

η8 − 4η7 + 12η6 − 12η5 + 6η4 + 20η3 − 4η2 − 4η + 1 = 0;

the value of the root η is approximately 0.321336. Functions satisfying in-
equality (3.20) were investigated by Ramesha et al. [13].

Consider the class P (γ), 0 ≤ γ ≤ 1, given by

P (γ) :=

{
f ∈ A :

∣∣∣∣arg
(
(1− γ)

f(z)

z
+ γf ′(z)

)∣∣∣∣ < π

2
, z ∈ D

}
.

The same approach applying Gronwall’s inequality leads to the following result
about the class P (γ).

Theorem 3.6. Let 0 ≤ γ < 1, f ∈ A and |a2| = η, where η and γ satisfy

sin−1

(
γ

1− γ

1

η − 1

)
+ sin−1 η <

π

2
. (3.21)

Suppose (1.1) holds where δ(η) satisfies the inequality

sin−1

(
1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)

+ sin−1

(
2γ

1− γ

1

2− 2η − (1 + η)δeδ/2
1

1− 2eδ/2

)
≤ π

2
.

(3.22)

Then f ∈ P (γ).
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Proof. Condition (3.21) assures the existence of a real number δ(η) ≥ 0 sat-
isfying the inequality (3.22). A simple calculation from (2.3) and Lemma 2.1
shows that

|u(z)− 1| ≤ |z − 1|+
∣∣∣∣
∫ z

0

(ζ − z)A(ζ)u(ζ)dζ

∣∣∣∣
≤ 2eδ/2.

The above inequality gives

∣∣∣∣ z

u(z)

∣∣∣∣ ≤ 1

|u(z)| ≤
1

1− |u(z)− 1| ≤
1

1− 2eδ/2
. (3.23)

Therefore, for some 0 < β ≤ γ/(1− γ), (3.17), (3.23) and (3.11) lead to

∣∣∣∣1 + β
zf ′(z)
f(z)

− 1

∣∣∣∣ = β

∣∣∣∣ z

u(z)

∣∣∣∣ 1

|cu(z) + v(z)|

≤ β

1− 2eδ/2
1

1− η − 1
2
(1 + η)δeδ/2

=
2β

1− 2eδ/2
1

2− 2η − (1 + η)δeδ/2
.

Hence

∣∣∣∣arg
(
1 + β

zf ′(z)
f(z)

)∣∣∣∣ ≤ sin−1

(
2β

1− 2eδ/2
1

2− 2η − (1 + η)δeδ/2

)
. (3.24)

Also, (2.5) and (3.5) yield

∣∣∣∣arg f(z)

z

∣∣∣∣ =
∣∣∣∣arg u(z)

z(cu(z) + v(z))

∣∣∣∣
≤

∣∣∣∣arg u(z)

z

∣∣∣∣+ |arg(cu(z) + v(z))|

≤ sin−1

(
1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
. (3.25)
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Replacing β by γ/(1−γ) in inequality (3.24), and using (3.25) and (3.22) yield∣∣∣∣arg
(
(1− γ)

f(z)

z
+ γf ′(z)

)∣∣∣∣ ≤
∣∣∣∣arg f(z)

z

∣∣∣∣+
∣∣∣∣arg

(
1 +

γ

1− γ

zf ′(z)
f(z)

)∣∣∣∣
≤ sin−1

(
1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)

+ sin−1

(
2γ

1− γ

1

1− 2eδ/2
1

2− 2η − (1 + η)δeδ/2

)

≤ π

2
,

and hence f ∈ P (γ).
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Abstract

The mock theta functions of Andrews and the mock theta functions
of Bringmann et al are related by half-shift transformation. The gen-
erating functions for the partial mock theta functions are given. We
extend these mock theta functions to give continued fraction represen-
tations. Some interesting expansions are also given in the end.

Keywords and Phrases: Mock theta functions, Generating functions, Con-
tinued fractions.

1. Introduction

The work of H.M. Srivastava [10],[11],[12] on generating functions motivated
me to work on the generating functions. I had the new mock theta functions
generated by G.E. Andrews in his paper [2] on orthogonal polynomials and two
more mock theta functions generated by Bringmann, Hikami and Lovejoy [3].
The mock theta functions were there and my simple summation identity in [9]
was a tool, to give generating functions for the partial mock theta functions.
In partial mock theta functions we sum the defining series from 0 to N instead
of from 0 to infinity, that is, for the mock theta function ψ0(q),

∗2000 Mathematics Subject Classification. Primary 33D15.
†E-mail: bhaskarsrivastav@yahoo.com



78 Bhaskar Srivastava

ψ0(q) =
∞∑
n=0

q2n
2

(−q; q)2n
,

the partial mock theta function will be defined and denoted as

ψ0,N(q) =
N∑

n=0

q2n
2

(−q; q)2n
.

The second motivation was to apply the half-shift transformation on these
functions. The half-shift transformation was introduced by Gordon and McIn-
tosh [6] to develop eighth order mock theta functions. The application of this
method shows that these functions are related to each by half-shift transfor-
mation. This is done in section 3.

In my earlier papers I have considered these functions in detail showing
they belong to the class of Fq-functions, their integral representation etc.

In section 5, we give the generating functions for these partial mock theta
functions.

In section 6, we represent the generalized functions as continued fraction.
Some expansions for these mock theta functions are given in section 7.
The mock theta functions of Andrews [2]:

ψ0(q) =
∞∑
n=0

q2n
2

(−q; q)2n
= 1ϕ2

[
q2

−q,−q2
; q2, q2

]
, (1)

ψ1(q) =
∞∑
n=0

q2n
2+2n

(−q; q)2n+1

=
1

(1 + q)
1ϕ2

[
q2

−q2,−q3
; q2, q4

]
, (2)

ψ2(q) =
∞∑
n=0

q2n
2+2n (q; q2)n

(q2; q2)n (−q; q)2n
= 1ϕ2

[
q

−q,−q2
; q2, q4

]
, (3)

ψ3(q) =
∞∑
n=0

qn
2
(−q; q)2n

(q; q)2n
= 1ϕ2

[ −q

q
1
2 ,−q

1
2
; q, q

]
, (4)

and the mock theta functions of Bringmann, Hikami and Lovejoy [3]:

φ0(q) =
∞∑
n=0

qn (−q; q)2n+1 = (1 + q) 3ϕ2

[
q2,−q2,−q3

0, 0
; q2, q

]
, (5)
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φ1(q) =
∞∑
n=0

qn (−q; q)2n = 3ϕ2

[
q2,−q2,−q

0, 0
; q2, q

]
. (6)

2. Basic Results

The following q- notations have been used

For |qk| < 1,

(
a; qk

)
n
=

n−1∏
j=0

(
1− aqkj

)
, n ≥ 1

(
a; qk

)
0
= 1,

(
a; qk

)
∞ =

∞∏
j=0

(
1− aqkj

)
,

(a)n = (a; q)n ,

(
a1, a2, . . . , am; q

k
)
n
=
(
a1; q

k
)
n

(
a2; q

k
)
n
. . .
(
am; q

k
)
n
.

A generalized basic hypergeometric series with base q is defined as

rϕs

[
a1, a2, . . . , ar; b1, b2, . . . , bs; q, z

]

=
∞∑
n=0

(a1; q)n . . . (ar; q)n z
n

(b1; q)n . . . (bs; q)n (q; q)n

[
(−1)n q

n(n−1)
2

]1+s−r

,

where q �= 0 when r > s+ 1.

3. Half-Shift Transformation

(i) We first obtain ψ0(q) by applying left half-shift transformation on ψ1(q).
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Now

ψ1(q) =
∞∑
n=0

q2n
2+2n

(−q; q)2n+1

=
1

(−q; q)∞

∞∑
n=0

q2n
2+2n

(
−q2n+2; q

)
∞

=
∞∑
n=0

an (say), (7)

where an is defined for all real n. Making a left half-shift transformation
and summing an over the positive half-integers 1

2
, 3
2
, 5
2
, . . . , instead of the non-

negative integers. Define bn = an− 1
2
. Then

∞∑
n=0

bn =
∞∑
n=0

an− 1
2
=

q−
1
2

(−q; q)∞

∞∑
n=0

q2n
2 (−q2n+1; q

)
∞

= q−
1
2

∞∑
n=0

q2n
2

(−q; q)2n
= q−

1
2ψ0(q). (8)

Thus by (7) and (8) we obtain q−
1
2ψ0(q) by applying a left half-shift on

ψ1(q). This implies that ψ0(q) and ψ1(q) are related by a half-shift transfor-
mation.

(ii) Now we obtain ϕ0(q) by applying left half-shift transformation on ϕ1(q).

By definition

ϕ1(q) =
∞∑
n=0

qn (−q; q)2n = (−q; q)∞

∞∑
n=0

qn

(−q2n+1; q)∞

=
∞∑
n=0

an (say), (9)

where an is defined for all real n. Making a left half-shift transformation
and summing an over the positive half-integers 1

2
, 3
2
, 5
2
, . . . , instead of the non-

negative integers. Define bn = an− 1
2
. Then

∞∑
n=0

bn = (−q; q)∞

∞∑
n=0

qn−
1
2

(−q2n; q)∞
= q−

1
2

∞∑
n=0

qn (−q; q)2n−1
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= q−
1
2

∞∑
n=1

qn+1 (−q; q)2n+1

= q−
1
2

[
1

2
+

∞∑
n=0

qn+1 (−q; q)2n+1

]

=
1

2
√
q
+ q

1
2ϕ0(q). (10)

Thus by applying a left half-shift transformation on q
1
2ϕ0(q) we obtain

ϕ1(q)− 1
2
√
q
.

4. Definition of Generalized Mock Theta Func-

tions

We define the generalized mock theta functions as:

ψ0(z, α, q) =
1

(z)∞

∞∑
n=0

(z)n q
2n2−n+nα

(−q; q)2n
, (11)

ψ1(z, α, q) =
1

(z)∞

∞∑
n=0

(z)n q
2n2+n+nα

(−q; q)2n+1

, (12)

ψ2(z, α, q) =
1

(z)∞

∞∑
n=0

(z)n q
2n2+n+nα (q; q2)n

(q2; q2)n (−q; q)2n
, (13)

ψ3(z, α, q) =
1

(z)∞

∞∑
n=0

(z)n q
n2−n+nα (−q; q)2n

(q2; q2)n (q; q
2)n

, (14)

ϕ0(z, α, q) =
1

(z)∞

∞∑
n=0

(z)n q
n+nα (−q; q)2n+1 , (15)

and

ϕ1(z, α, q) =
1

(z)∞

∞∑
n=0

(z)n q
n+nα (−q; q)2n . (16)
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For z= 0 and α = 1, the generalized functions defined in (11)-(14) reduce
to mock theta functions ψ0(q), ψ1(q), ψ2(q) and ψ3(q) respectively. For z = 0,
α = 0 the generalized functions defined in (15)-(16) reduce to the mock theta
functions ϕ0(q) and ϕ1(q), respectively.

5. Generating Functions for Partial General-

ized Functions and Partial Mock Theta Func-

tions

I shall be using the following summation identity, which I deduced in [10] to
give the generating functions for the generalized functions.

p∑
r=0

αrβr = βp+1

p∑
r=0

αr +

p∑
m=0

(βm − βm+1)
m∑
r=0

αr. (17)

Taking βn = zn, |z| < 1 in (17), we have

p∑
r=0

αrz
r = zp+1

p∑
r=0

αr + (1− z)

p∑
m=0

zm
m∑
r=0

αr. (18)

Letting p → ∞ in (18)

∞∑
m=0

zm
m∑
r=0

αr =
1

(1− z)

∞∑
r=0

αrz
r

=

[ ∞∑
r=0

αrz
r

] ∞∑
n=0

zn. (19)

Now we define αr such that
m∑
r=0

αr is a partial generalized function.

(i) Take αr =
q2r

2−r+rα

(−q;q)2r
in (19), to have

∞∑
m=0

zmψ0,m(0, α, q) =

[ ∞∑
r=0

q2r
2−r+rα

(−q; q)2r
zr

] ∞∑
n=0

zn
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= 1φ2

[
q2

−q,−q2
; q2, zqα+1

] ∞∑
n=0

zn. (20)

Here ψ0,m(0, α, q) is the partial generalized function. Thus we have the

generating function for ψ0,m(0, α, q).
Taking α = 1 in (20), we have

∞∑
m=0

zmψ0,m(q) = 1φ2

[
q2

−q,−q2
; q2, zq2

] ∞∑
n=0

zn.

We list the generating functions for other generalized and partial mock
theta functions, omitting calculations, only giving the values of αr in the
parenthesis.

(ii)

(1 + q)
∞∑

m=0

zmψ1,m(0, α, q) = 1φ2

[
q2

−q2,−q3
; q2, zq3+α

] ∞∑
n=0

zn. (21)

(αr =
q2r

2+r+rα

(−q; q)2r+1

in (19))

(iii)

(1 + q)
∞∑

m=0

zmψ1,m(q) = 1φ2

[
q2

−q2,−q3
; q2, zq4

] ∞∑
n=0

zn. (22)

(α = 1 in (21))

(iv)
∞∑

m=0

zmψ2,m(0, α, q) = 1φ2

[
q

−q,−q2
; q2, zq3+α

] ∞∑
n=0

zn. (23)

(αr =
q2r

2+r+rα (q; q2)r
(q2; q2)r (−q; q)2r

in (19))

(v)
∞∑

m=0

zmψ2,m(q) = 1φ2

[
q

−q,−q2
; q2, zq4

] ∞∑
n=0

zn. (24)



84 Bhaskar Srivastava

(α = 1 in (23))

(vi)
∞∑

m=0

zmψ3,m(0, α, q) = 1φ2

[ −q

q
1
2 ,−q

1
2
; q, zqα

] ∞∑
n=0

zn. (25)

(αr =
qr

2−r+rα (−q; q)r

(q; q)r

(
q

1
2 ; q

)
r

(
−q

1
2 ; q

)
r

in (19))

(vii)
∞∑

m=0

zmψ3,m(q) = 1φ2

[ −q

q
1
2 ,−q

1
2
; q, zq

] ∞∑
n=0

zn. (26)

(α = 1 in (25))

(viii)

∞∑
m=0

zmϕ0,m(0, α, q) = (1+ q) 3φ2

[
−q2,−q3, q2

0, 0
; q2, zqα+1

] ∞∑
n=0

zn. (27)

(αr = qr+rα (−q; q)2r+1 in (19))

(ix)
∞∑

m=0

zmϕ0,m(q) = (1 + q) 3φ2

[
−q2,−q3, q2

0, 0
; q2, zq

] ∞∑
n=0

zn. (28)

(α = 0 in (27))

(x)
∞∑

m=0

zmϕ1,m(0, α, q) = 3φ2

[
q2,−q2,−q

0, 0
; q2, zqα+1

] ∞∑
n=0

zn. (29)

(αr = qr+rα (−q; q)2r in (19))

(xi)
∞∑

m=0

zmϕ1,m(q) = 3φ2

[
q2,−q2,−q

0, 0
; q2, zq

] ∞∑
n=0

zn. (30)

(α = 0 in (29))
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6. Continued Fraction Representation

We shall give the continued fraction representation for generalized functions.

(i) Representation of ψ0(z, α, q) as continued fraction

By definition

ψ0(0, α, q) =
∞∑
n=0

q2n
2−n+nα

(−q; q)2n
(31)

Letting q → q2, λ = 0, b = q2, c = 1/q, a = 1 in [1, (5.26), p. 97], we have

∞∑
n=0

q2n
2−n

(−q;q)2n

2
∞∑
n=0

q2n2+n

(−q;q2)n(−q2;q2)n+1

= 1 +
(1− 1/q2)q2

(1 + 1)+

q

1+

(1− 1/q4)q4

2+

q3

1 + . . .
(32)

Taking α = 0 in (31), we have from (32)

ψ0(0, 0, q)

2
∞∑
n=0

q2n2+n

(−q;q2)n(−q2;q2)n+1

= 1 +
(1− 1/q2)q2

(1 + 1)+

q

1+

(1− 1/q4)q4

2+

q3

1 + . . .
(33)

(ii) Representation of ψ1(z, α, q) as continued fraction

By definition

ψ1(0, α, q) =
∞∑
n=0

q2n
2+n+nα

(−q; q)2n+1

=
1

(1 + q)

∞∑
n=0

q2n
2+n+nα

(−q2; q)2n
(34)

Letting q → q2, λ = 0, b = q2, c = q, a = 1 in [1, (5.26), p. 97], we have

∞∑
n=0

q2n
2+n

(−q2;q)2n

2
∞∑
n=0

q2n2+3n

(−q3;q2)n(−q2;q2)n+1

= 1 +
(1− 1/q2)q2

(1 + 1)+

q3

1+

(1− 1/q4)q4

2+

q5

1 + . . .
(35)
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Taking α = 0 in (34), we have from (35)

ψ1(0, 0, q)

2
∞∑
n=0

q2n
2+3n

(−q;q2)n+1(−q2;q2)n+1

= 1 +
(1− 1/q2)q2

(1 + 1)+

q3

1+

(1− 1/q4)q4

2+

q5

1 + . . .
(36)

(iii) Representation of ψ2(z, α, q) as continued fraction

By definition

ψ2(0, α, q) =
∞∑
n=0

q2n
2+n+nα (q; q2)n

(q2; q2)n (−q; q)2n
(37)

Letting q → q2, λ = 0, b = q, c = 1/q, a = 1 in [1, (5.26), p. 97], we have

∞∑
n=0

q2n
2
(q;q2)

n

(q2;q2)n(−q;q2)n(−q2;q2)n

(1 + q)
∞∑
n=0

q2n
2+2n(q;q2)n

(q2;q2)n(−q;q2)n(−q2;q2)n+1

= 1 +
(1− 1/q)q2

(1 + q)+

q

1+

(1− 1/q3)q4

1 + q + . . .
(38)

Taking α = −1 in (37), we have from (38)

ψ2(0,−1, q)

(1 + q)
∞∑
n=0

q2n2+2n(q;q2)n
(q2;q2)n(−q;q2)n(−q2;q2)n+1

= 1 +
(1− 1/q)q2

(1 + q)+

q

1+

(1− 1/q3)q4

1 + q + . . .
(39)

(iv) Representation of ψ3(z, α, q) as continued fraction

By definition

ψ3(0, α, q) =
∞∑
n=0

qn
2−n+nα (−q; q)2n

(q; q)2n
=

∞∑
n=0

qn
2−n+nα (−q; q)n

(q; q)n

(
q

1
2 ; q

)
n

(
−q

1
2 ; q

)
n

(40)

Letting λ = 0, b = −q, c = 1/q
1
2 , a = −1/q

1
2 in [1, (5.26), p. 97], we have
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∞∑
n=0

qn
2−n(−q;q)n

(q;q)n

(
q
1
2 ;q

)
n

(
−q

1
2 ;q

)
n(

1 + 1/q
1
2

) ∞∑
n=0

qn
2
(−q;q)n

(q;q)n

(
q
1
2 ;q

)
n+1

(
−q

1
2 ;q

)
n

= 1+
(1 + 1/q)(−q

1
2 )(

1 + q
1
2

)
+

q
1
2

1+

(1 + 1/q2)(−q
3
2 )(

1 + q
1
2

)
. . .

(41)
Taking α = 0 in (40), we have from (41)

ψ3(0, 0, q)(
1 + 1/q

1
2

) ∞∑
n=0

qn
2
(−q;q)n

(q;q)n

(
q
1
2 ;q

)
n+1

(
−q

1
2 ;q

)
n

= 1+
(1 + 1/q)(−q

1
2 )(

1 + q
1
2

)
+

q
1
2

1+

(1 + 1/q2)(−q
3
2 )(

1 + q
1
2

)
. . .

(42)

7. Expansions of the Mock Theta Functions

We have general expansion formula [5, p 70],[8, p 56]

∞∑
k=0

(
1− aq2k

)
(a, b, c, a/bc)k q

k

(1− a) (q, aq/b, aq/c, bcq)k

∞∑
m=0

αm+k =
∞∑

m=0

(aq, bq, cq, aq/bc)m
(q, aq/b, aq/c, bcq)m

αm. (43)

Letting q → q2 and b, c → ∞ in (43), we have

∞∑
k=0

(−1)k
(
1− aq4k

)
(a; q2)k q

k2−k

(1− a) (q2; q2)k

∞∑
m=0

αm+k =
∞∑

m=0

(−1)m (aq2; q2)m qm
2+m

(q2; q2)m
αm.

(44)
Putting a = 0 in (44)

∞∑
k=0

(−1)k qk
2−k

(q2; q2)k

∞∑
m=0

αm+k =
∞∑

m=0

(−1)m qm
2+m

(q2; q2)m
αm. (45)

Putting a = 1 in (44)

∞∑
k=0

(−1)k
(
1 + q2k

)
qk

2−k

∞∑
m=0

αm+k =
∞∑

m=0

(−1)m qm
2+mαm. (46)
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Writing the inner sum of the left side of (43) as the difference of two series,
we have

(aq, bq, cq, aq/bc)∞
(q, aq/b, aq/c, bcq)∞

∞∑
m=0

αm −
∞∑
k=0

(
1− aq2k+2

)
(a, b, c, a/bc)k+1 q

k+1

(1− a) (q, aq/b, aq/c, bcq)k+1

k∑
m=0

αm

=
∞∑

m=0

(aq, bq, cq, aq/bc)m
(q, aq/b, aq/c, bcq)m

αm. (47)

Putting a = 0 in (47), we have

(bq, cq)∞
(q, bcq)∞

∞∑
m=0

αm −
∞∑
k=0

(b, c)k+1 q
k+1

(q, bcq)k+1

k∑
m=0

αm

=
∞∑

m=0

(bq, cq)m
(q, bcq)m

αm. (48)

Taking b = c = 0 in (48), we have

1

(q)∞

∞∑
m=0

αm −
∞∑
k=0

qk+1

(q)k+1

k∑
m=0

αm =
∞∑

m=0

1

(q)m
αm. (49)

(a) Expansions for ψ0(q)

(i) Taking αm =
(−1)mqm

2−m(q2;q2)
m

(−q;q)2m
in (45), we have

ψ0(q) =
∞∑
k=0

(−1)k q2k
2−2k

(q2; q2)k

∞∑
m=0

(−1)m+k qm
2−m+2mk (q2; q2)m+k

(−q; q)2m+2k

=
∞∑
k=0

q2k
2−2k

(−q; q)2k

∞∑
m=0

(−1)m qm
2−m+2mk

(
q2k+2; q2

)
m

(−q2k+1; q)2m

=
∞∑
k=0

q2k
2−2k

(−q; q)2k
2φ2

[
q2, q2k+2,

−q2k+1,−q2k+2 ; q2, q2k
]
. (50)
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(ii)

ψ0(q) =
∞∑
k=0

(
1 + q2k

)
q2k

2−2k

(−q; q)2k

∞∑
m=0

(−1)m qm
2−m+2mk

(−q2k+1; q)2m

=
∞∑
k=0

(
1 + q2k

)
q2k

2−2k

(−q; q)2k
2φ2

[
q2, 0

−q2k+1,−q2k+2 ; q2, q2k
]
. (51)

(
αm =

(−1)m qm
2−m

(−q; q)2m
in (46)

)

(iii)

(−q,−q2; q2)∞
(q, q2; q2)∞

ψ0(q)− 2 (1 + 1/q)
∞∑
k=0

(−q,−q2; q2)k q
k+1

(q, q2; q2)k+1

ψ0,k(q)

=
∞∑

m=0

q2m
2

(q; q2)m (q2; q2)m
= 0φ1

[
−,
q,

; q2, q2
]
. (52)

(
q → q2, b = −1, c = −1/q, αm =

q2m
2

(−q; q)2m
in (48)

)

(iv)

ψ0(q)−
(
q2; q2

)
∞

∞∑
k=0

q2k+2

(q2; q2)k+1

ψ0,k(q) =
(
q2; q2

)
∞

∞∑
m=0

q2m
2

(−q; q)2m (q2; q2)m

=
(
q2; q2

)
∞ 1φ2

[
0,

−q,−q2
; q2, q2

]
. (53)

(
q → q2, αm =

q2m
2

(−q; q)2m
in (49)

)

(b) Expansions for ψ1(q)
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(i)

ψ1(q) =
∞∑
k=0

q2k
2

(−q; q)2k+1

× 2φ2

[
q2, q2k+2

−q2k+2,−q2k+3 ; q2, q2k+2

]
. (54)

(
αm =

(−1)m qm
2+m (q2; q2)m

(−q2; q)2m
in (45)

)

(ii)

ψ1(q) =
∞∑
k=0

(
1 + q2k

)
q2k

2

(−q; q)2k+1
2φ2

[
q2, 0

−q2k+2,−q2k+3 ; q2, q2k+2

]
. (55)

(
αm =

(−1)m qm
2+m

(−q; q)2m+1

in (46)

)

(iii)

(−q,−q2; q2)∞
(q2, q3; q2)∞

ψ1(q)− 2 (1 + q)2
∞∑
k=0

(−q2,−q3; q2)k q
2k+2

(q2, q3; q2)k+1

ψ1,k(q)

= 0φ1

[
−,
q3,

; q2, q4
]
. (56)

(
q → q2, b = −1, c = −q, αm =

q2m
2+2m

(−q; q)2m+1

in (48)

)
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(iv)

ψ1(q)−
(
q2; q2

)
∞

∞∑
k=0

q2k+2

(q2; q2)k+1

ψ1,k(q) =

(
q2; q2

)
∞

(1 + q)
1φ2

[
0,

−q2,−q3
; q2, q4

]
.

(57)

(
q → q2, αm =

q2m
2+2m

(−q; q)2m+1

in (49)

)

(c) Expansions for ψ2(q)

(i)

ψ2(q) =

∞∑
k=0

q2k
2 (

q; q2
)
k

(q2; q2)k (−q; q)2k
2φ2

[
q2, q2k+1

−q2k+1,−q2k+2 ; q2, q2k+2

]
. (58)

(
αm =

(−1)m qm
2+m

(
q; q2

)
m

(−q; q)2m
in (45)

)

(ii)

ψ2(q) =
∞∑
k=0

(q; q2)k
(
1 + q2k

)
q2k

2

(q2; q2)k (−q; q)2k
3φ3

[
q2, q2k+1, 0

q2k+2,−q2k+1,−q2k+2 ; q2, q2k+2

]
.

(59)

(
αm =

(−1)m qm
2+m (q; q2)m

(q2; q2)m (−q; q)2m
in (46)

)

(iii)

(−q,−q2; q2)∞
(q, q2; q2)∞

ψ2(q)−
2 (1 + q)

q

∞∑
k=0

(−q,−q2; q2)k q
2k+2

(q, q2; q2)k+1

ψ2,k(q)

= 1φ2

[
0,

q, q2
; q2, q4

]
. (60)

(
q → q2, b = −1/q, c = −1, αm =

q2m
2+2m (q; q2)m

(q2; q2)m (−q; q)2m
in (48)

)
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(iv)

ψ2(q)−
(
q2; q2

)
∞

∞∑
k=0

q2k+2

(q2; q2)k+1

ψ2,k(q)

=
(
q2; q2

)
∞ 2φ3

[
q, 0,

q2,−q,−q2
; q2, q4

]
. (61)

(
q → q2, αm =

q2m
2+2m (q; q2)m

(q2; q2)m (−q; q)2m
in (49)

)

(d) Expansions for ψ3(q)

(i)

ψ3(q) =
∞∑
k=0

qk
2
(−q; q)k

(q; q)k

(
q

1
2 ; q

)
k

(
−q

1
2 ; q

)
k

× 2φ2

[
q,−qk+1

qk+
1
2 ,−qk+

1
2
; q, qk

]
. (62)

⎛
⎝q → q2, αm =

(−1)m q
m2−m

2 (−q; q)m(
q

1
2 ; q

)
m

(
−q

1
2 ; q

)
m

in (45)

⎞
⎠

(ii)

ψ3(q) =
∞∑
k=0

(−q; q)k
(
1 + qk

)
qk

2−k

(q; q)k

(
q

1
2 ; q

)
k

(
−q

1
2 ; q

)
k

3φ3

[
q,−qk+1, 0

qk+1, qk+
1
2 ,−qk+

1
2
; q, qk

]
.

(63)

⎛
⎝q → q2, αm =

(−1)m q
m2−m

2 (−q; q)m

(q; q)m

(
q

1
2 ; q

)
m

(
−q

1
2 ; q

)
m

in (46)

⎞
⎠
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(iii) (
q

1
2 ,−q

1
2 ; q

)
∞

(q,−1; q)∞
ψ3(q)−

∞∑
k=0

(
q−

1
2 ,−q−

1
2 ; q

)
k+1

qk+1

(q,−1; q)k+1

ψ3,k(q)

= 1φ2

[
−q,
−1, q

; q, q

]
. (64)

⎛
⎝b = 1/q

1
2 , c = −1/q

1
2 , αm =

qm
2
(−q; q)m

(q; q)m

(
q

1
2 ; q

)
m

(
−q

1
2 ; q

)
m

in (48)

⎞
⎠

(iv)

ψ3(q)− (q; q)∞

∞∑
k=0

qk+1

(q; q)k+1

ψ3,k(q) = (q; q)∞ 3φ3

[ −q, 0, 0

q, q
1
2 ,−q

1
2
; q, q

]
.

(65)

⎛
⎝αm =

qm
2
(−q; q)m

(q; q)m

(
q

1
2 ; q

)
m

(
−q

1
2 ; q

)
m

in (49)

⎞
⎠

(e) Expansions for ϕ0(q)

(i)

(−q2, q3; q2)∞
(q2,−q3; q2)∞

ϕ0(q)− 2 (1− q)
∞∑
k=0

(−q2, q3; q2)k q
2k+2

(q2,−q3; q2)k+1

ϕ0,k(q)

= (1 + q) 3φ2

[
−q2,−q2, q3,

0, 0,
; q2, q

]
. (66)

(
q → q2, b = −1, c = q, αm = qm (−q; q)2m+1 in (48)

)
(ii)

ϕ0(q)−
(
q2; q2

)
∞

∞∑
k=0

q2k+2

(q2; q2)k+1

ϕ0,k(q)

= (1 + q)
(
q2; q2

)
∞ 2φ1

[
−q2,−q3,

0
; q2, q

]
(67)
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(
q → q2, αm = qm (−q; q)2m+1 in (49)

)
(f) Expansions for ϕ1(q)

(i)

(−q2, q3; q2)∞
(q2,−q3; q2)∞

ϕ1(q)−
∞∑
k=0

(−1, q; q2)k+1 q
2k+2

(q2,−q3; q2)k+1

ϕ1,k(q)

= 4φ3

[
−q,−q2,−q2, q3,

−q3, 0, 0,
; q2, q

]
. (68)

(
q → q2, b = −1, c = q, αm = qm (−q; q)2m in (48)

)
(ii)

ϕ1(q)−
(
q2; q2

)
∞

∞∑
k=0

q2k+2

(q2; q2)k+1

ϕ1,k(q) =
(
q2; q2

)
∞ 2φ1

[
−q,−q2,

0
; q2, q

]
(69)

(
q → q2, αm = qm (−q; q)2m in (49)

)
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1. Introduction

Let H(U) be the class of analytic functions in the unit disk U = {z ∈ C : |z| <
1} and let H[a, n] be the subclass of H(U) consisting of functions of the form:

f(z) = a+ anz
n + an+1z

n+1... (a ∈ C) . (1.1)

Also, let A be the subclass of H(U) consisting of functions of the form:

f(z) = z + a2z
2 + ..., (1.2)

and Let S∗ denote the starlike subclass of A.If f , g ∈ H (U), we say that f is
subordinate to g or f is superordinate to g, written f(z) ≺ g(z) if there exists
a Schwarz function ω, which (by definition) is analytic in U with ω(0) = 0
and |ω(z)| < 1 for all z ∈ U, such that f(z) = g(ω(z)), z ∈ U. Furthermore, if
the function g is univalent in U, then we have the following equivalence, (cf.,
e.g.,[3], [13] and [14]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

Let φ : C2 × U → C and h (z) be univalent in U. If p (z) is analytic in U
and satisfies the first order differential subordination:

φ
(
p (z) , zp

′
(z) ; z

)
≺ h (z) , (1.3)

then p (z) is a solution of the differential subordination (1.3). The univalent
function q (z) is called a dominant of the solutions of the differential subordi-
nation (1.3) if p (z) ≺ q (z) for all p (z) satisfying (1.3). A univalent dominant
q̃ that satisfies q̃ ≺ q for all dominants of (1.3) is called the best dominant. If
p (z) and φ

(
p (z) , zp

′
(z) ; z

)
are univalent in U and if p(z) satisfies first order

differential superordination:

h (z) ≺ φ
(
p (z) , zp

′
(z) ; z

)
, (1.4)

then p (z) is a solution of the differential superordination (1.4). An analytic
function q (z) is called a subordinant of the solutions of the differential su-
perordination (1.4) if q (z) ≺ p (z) for all p (z) satisfying (1.4). A univalent
subordinant q̃ that satisfies q ≺ q̃ for all subordinants of (1.4) is called the
best subordinant.
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For complex parameters a1, ..., aq; b1, ..., bs (bj /∈ Z−
0 = {0,−1,−2, ...}; j =

1, ..., s ), we define the generalized hypergeometric function

qFs (a1, ..., ai, ..., aq; b1, ..., bs; z) by ( see [18] )the following infinite series:

qFs (a1, ..., ai, ..., aq; b1, ..., bs; z) =
∞∑
n=0

(a1)n .... (aq)n
(b1)n ... (bs)n

zn

n!
(1.5)

(q ≤ s+ 1; q, s ∈ N0 = N ∪ {0} ; z ∈ U) ,

where (x)n is the Pochhammer symbol ( or the shift factorial ) defined, in
terms of the Gamma function Γ, by

(x)n =
Γ(x+ n)

Γ(x)
=

{
1

x (x+ 1) ... (x+ n− 1)

(n = 0),

(n ∈ N).

Dziok and Srivastava [7] ( see also [8]) considered a linear operator

H(a1, ..., aq; b1, ..., bs) : A → A

defined by the following Hadamard product:

H(a1, ..., aq; b1, ..., bs)f (z) = h (a1, ..., ai, ..., aq; b1, ..., bs; z) ∗ f (z) , (1.6)

where

h (a1, ..., ai, ..., aq; b1, ..., bs; z) = z qFs (a1, ..., ai, ..., aq; b1, ..., bs; z) (1.7)

(q ≤ s+ 1; q, s ∈ N0; z ∈ U) .

if f (z) ∈ A is given by (1.2) ,then we have

H(a1, ..., aq; b1, ..., bs)f(z) = z +
∞∑
n=2

(a1)n−1 .... (aq)n−1

(b1)n−1 ... (bs)n−1 (1)n−1

a nz
n, (1.8)

If, for convenience, we write

Hq,s [a1; b1] = H(a1, ..., aq; b1, ..., bs),

then one can easily verify from the definition (1.6) or (1.8) that

z (Hq,s [a1; b1] f(z))
′
= a1Hq,s [a1 + 1; b1] f(z)− (a1 − 1)Hq,s [a1; b1] f(z), (1.9)
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and

z (Hq,s [a1; b1 + 1] f(z))
′
= b1Hq,s [a1; b1] f(z)− (b1 − 1)Hq,s [a1; b1 + 1] f(z).

(1.10)

It should be remarked that the linear operator Hq,s [a1; b1] is a generaliza-
tion of many other linear operators considered earlier. In particular, for f ∈ A,
we have

(i) H2,1(a, b; c)f(z) =
(
Ia,bc f

)
(z)

(
a, b ∈ C; c /∈ Z−

0

)
, where the linear opera-

tor Ia,bc was investigated by Hohlov [9];

(ii) H2,1(δ + 1, 1; 1)f(z) = Dδf(z)(δ > −1), where Dδ is the Ruscheweyh
derivative of f(z) (see [16]);

(iii) H2,1(μ + 1, 1;μ + 2)f(z) = Fμ(f)(z) = μ+1
z μ

∫ z

0
tmu−1f(t)dt (μ > −1),

where Fμ is the Libera integral operator (see [11] and [1]);

(iv) H2,1(a, 1; c)f(z) = L(a, c)f(z)(a ∈ R; c ∈ R\Z−
0 ), where L(a, c) is the

Carlson-Shaffer operator ( see [4]);

(vi) H2,1(λ+1, c; a)f(z) = Iλ(a, c)f(z)(a, c ∈ R\Z−
0 ;λ > −1), where Iλ(a, c)f (z)

is the Cho–Kwon–Srivastava operator ( see [5]);

(vii) H2,1(μ, 1;λ + 1)f(z) = Iλ,μf(z)(λ > −1;μ > 0), where Iλ,μf(z) is
the Choi–Saigo–Srivastava operator [6] which is closely related to the
Carlson–Shaffer [4] operator L(μ, λ+ 1)f(z).

(vii) H2,1(1, 1;n+1)f(z) = Inf(z)(n ∈ N0), where Inf(z) is Noor operator of
n− th order (see [15]) .

Definition 1. The function f ∈ A belongs to the class S∗
q.s (a1; b1) if and

only if Hq,s [a1; b1] f(z) ∈ S∗ for z ∈ U.

Definition 2. The function f ∈ A belongs to the class Cq.s (a1; b1) if and
only if there exists g ∈ S∗

q.s (a1; b1) such that

�
{
z (Hq,s [a1; b1] f(z))

′

Hq,s [a1; b1] g(z)

}
> 0 (z ∈ U) .
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In this paper, we obtain sufficient conditions for normalized analytic func-
tions f, g satisfy

q1 (z) ≺
z (Hq,s [a1; b1] f(z))

′

Hq,s [a1; b1] g(z)
≺ q2 (z) ,

where q1 (z) and q2 (z) are given univalent functions in U .

2. Definitions and Preliminaries

In order to prove our subordinations and superordinations, we need the fol-
lowing definition and lemmas.

Definition 3. [14]. Denote by Q, the set of all functions f that are analytic
and injective on U\E(f), where

E(f) =

{
ζ ∈ ∂U : lim

z→ζ
f (z) = ∞

}
,

and are such that f
′
(ζ) �= 0 for ζ ∈ ∂U\E (f).

Lemma 1 [14]. Let q (z) be univalent in the unit disk U and θ and ϕ be
analytic in a domain D containing q(U) with ϕ (w) �= 0 when w ∈ q(U). Set

ψ (z) = zq
′
(z)ϕ (q (z)) and h (z) = θ (q (z)) + ψ (z) . (2.1)

Suppose that

(i) ψ (z) is starlike univalent in U ,

(ii) �
{

zh
′
(z)

ψ(z)

}
> 0 for z ∈ U .

If p (z) is analytic with p(0) = q(0), p(U) ⊂ D and

θ (p (z)) + zp
′
(z)ϕ (p (z)) ≺ θ (q (z)) + zq

′
(z)ϕ (q (z)) , (2.2)

then p(z) ≺ q(z) and q (z) is the best dominant.

Taking θ (w) = αw and ϕ (w) = γ in Lemma 1, Shanmugam et al. [17]
obtained the following lemma.
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Lemma 2 [17]. Let q (z) be univalent in U with q(0) = 1. Let α ∈ C;
γ ∈ C∗ = C\ {0}, further assume that

�
{
1 +

zq
′′
(z)

q′ (z)

}
> max

{
0,−�

(
α

γ

)}
. (2.3)

If p (z) is analytic in U , and

αp (z) + γzp
′
(z) ≺ αq (z) + γzq

′
(z) ,

then p (z) ≺ q (z) and q (z) is the best dominant.

Lemma 3 [2]. Let q (z) be convex univalent in U and ϑ and φ be analytic in
a domain D containing q(U). Suppose that

(i) �
{

ϑ
′
(q(z))

φ(q(z))

}
> 0 for z ∈ U ,

(ii) Ψ (z) = zq
′
(z)φ (q (z)) is starlike univalent in U.

If p(z) ∈ H[q(0), 1] ∩Q, with p(U) ⊆ D, and ϑ (p (z)) + zp
′
(z)φ (p (z)) is

univalent in U and

ϑ (q (z)) + zq
′
(z)φ (q (z)) ≺ ϑ (p (z)) + zp

′
(z)φ (p (z)) , (2.4)

then q(z) ≺ p(z) and q (z) is the best subordinant.

Taking ϑ (w) = αw and φ (w) = γ in Lemma 3, Shanmugam et al. [17]
obtained the following lemma.

Lemma 4 [17]. Let q (z) be convex univalent in U, q(0) = 1. Let α ∈ C;

γ ∈ C∗ and �
(

α
γ

)
> 0. If p(z) ∈ H[q(0), 1]∩Q, αp (z) + γzp

′
(z) is univalent

in U and
αq (z) + γzq

′
(z) ≺ αp (z) + γzp

′
(z) ,

then q (z) ≺ p (z) and q (z) is the best subordinant.

3. Sandwich Results

Theorem 1. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further
assume that

�
{
1 +

zq
′′
(z)

q′ (z)

}
> max

{
0,−�

(
1

γ

)}
. (3.1)
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If f, g ∈ A, Hq,s [a1; b1] g(z) �= 0 , satisfy the following subordination condition:

z(Hq,s[a1;b1]f(z))
′

Hq,s[a1;b1]g(z)

{
1 + γ

[
1 + z(Hq,s[a1;b1]f(z))

′′

(Hq,s[a1;b1]f(z))
′ − z(Hq,s[a1;b1]g(z))

′

Hq,s[a1;b1]g(z)

]}
≺ q (z) + γzq

′
(z) ,

(3.2)

then
z (Hq,s [a1; b1] f(z))

′

Hq,s [a1; b1] g(z)
≺ q (z) (3.3)

and q (z) is the best dominant.

Proof. Define a function p (z) by

p (z) =
z (Hq,s [a1; b1] f(z))

′

Hq,s [a1; b1] g(z)
(z ∈ U) . (3.4)

Then the function p (z) is analytic in U and p(0) = 1. Therefore, differenti-
ating (3.4) logarithmically with respect to z and using the the subordination
condition (3.2), we get

p (z) + γzp
′
(z) ≺ q (z) + γzq

′
(z) .

Therefore, the assertion (3.3) of Theorem 1 now follows by an application of
Lemma 2.

Putting q(z) = 1+Az
1+Bz

(−1 ≤ B < A ≤ 1) in Theorem 1, we have the follow-
ing corollary.

Corollary 1. Let γ ∈ C∗ and

�
{
1− Bz

1 + Bz

}
> max

{
0,−�

(
1

γ

)}
.

If f, g ∈ A, Hq,s [a1; b1] g(z) �= 0, satisfy the following subordination condition:

z(Hq,s[a1;b1]f(z))
′

Hq,s[a1;b1]g(z)

{
1 + γ

[
1 +

z (Hq,s [a1; b1] f(z))
′′

(Hq,s [a1; b1] f(z))
′ − z (Hq,s [a1; b1] g(z))

′

Hq,s [a1; b1] g(z)

]}

≺ 1 + Az

1 + Bz
+ γ

(A− B) z

(1 + Bz)2
,
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then
z (Hq,s [a1; b1] f(z))

′

Hq,s [a1; b1] g(z)
≺ 1 + Az

1 + Bz

and the function 1+Az
1+Bz

is the best dominant.

Taking A = 1, B = −1 and g ∈ S∗
q.s (a1; b1) in Corollary 1, we obtain

Corollary 2. Let γ ∈ C∗ with � (γ̄) > 0. If g ∈ A such that g ∈ S∗
q.s (a1; b1),

and f, g ∈ A satisfy the following subordination condition:

z(Hq,s[a1;b1]f(z))
′

Hq,s[a1;b1]g(z)

{
1 + γ

[
1 +

z (Hq,s [a1; b1] f(z))
′′

(Hq,s [a1; b1] f(z))
′ − z (Hq,s [a1; b1] g(z))

′

Hq,s [a1; b1] g(z)

]}

≺ 1 + z

1− z
+ γ

z

(1− z)2
,

then f(z) ∈ Cq,s (a1; b1) and this result best possible.

For q = 2, s = 1, a1 = a and b1 = c
(
a ∈ R; c ∈ R\Z−

0

)
in Theorem 1, we

have the following subordination for Carlson-Shaffer operator.

Corollary 3. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further
assume that (3.1) holds. If f, g ∈ A, L (a, c) g(z) �= 0 , satisfy the following
subordination condition:

z (L (a, c) f(z))
′

L (a, c) g(z)

{
1 + γ

[
1 +

z (L (a, c) f(z))
′′

(L (a, c) f(z))
′ − z (L (a, c) g(z))

′

L (a, c) g(z)

]}

≺ q (z) + γzq
′
(z) ,

then
z (L (a, c) f(z))

′

L (a, c) g(z)
≺ q (z)

and q (z) is the best dominant.

For q = 2, s = 1, a1 = λ + 1, a2 = c and b1 = a
(
a, c ∈ R\Z−

0 ;λ > −1
)
in

Theorem 1, we obtain the following subordination for Cho-Kwon-Srivastava
operator.



Some Sandwich Type Theorems for Analytic Functions 105

Corollary 4. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further
assume that (3.1) holds. If f, g ∈ A, Iλ (a, c) g(z) �= 0 , satisfy the following
subordination condition:

z
(
Iλ (a, c) f(z)

)′
Iλ (a, c) g(z)

⎧⎨
⎩1 + γ

⎡
⎣1 + z

(
Iλ (a, c) f(z)

)′′
(Iλ (a, c) f(z))

′ − z
(
Iλ (a, c) g(z)

)′
Iλ (a, c) g(z)

⎤
⎦
⎫⎬
⎭

≺ q (z) + γzq
′
(z) ,

then

z
(
Iλ (a, c) f(z)

)′
Iλ (a, c) g(z)

≺ q (z)

and q (z) is the best dominant.

For q = 2, s = 1, a1 = μ ,a2 = 1 and b1 = λ+1 (λ > −1;μ > 0) in Theorem
1, we have the following subordination for Choi-Saigo-Srivastava operator.

Corollary 5. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further
assume that (3.1) holds. If f, g ∈ A, Iλ,μg(z) �= 0 , satisfy the following
subordination condition:

z (Iλ,μf(z))
′

Iλ,μg(z)

{
1 + γ

[
1 +

z (Iλ,μf(z))
′′

(Iλ,μf(z))
′ − z (Iλ,μg(z))

′

Iλ,μg(z)

]}
≺ q (z) + γzq

′
(z) ,

then

z (Iλ,μf(z))
′

Iλ,μg(z)
≺ q (z)

and q (z) is the best dominant.

Remark 1. Taking q = 2, s = 1, a1 = a2 = 1 and b1 = n + 1 (n ∈ N0)
in Theorem 1, we obtain the subordination result of Ibrahim and Darus [
10,Theorem 2] for the Noor operator.

Now, by appealing to Lemma 4 it can be easily prove the following theorem.

Theorem 2. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C
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with � (γ̄) > 0. If f, g ∈ A such that z(Hq,s[a1;b1]f(z))
′

Hq,s[a1;b1]g(z)
∈ H [1, 1] ∩Q,

z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

⎧⎨
⎩1 + γ

⎡
⎣1 + z (Hq,s [a1; b1] f(z))

′′

(Hq,s [a1; b1] f(z))
′ − z (Hq,s [a1; b1] g(z))

′

Hq,s [a1; b1] g(z)

⎤
⎦
⎫⎬
⎭

is univalent in U , and the following superordination condition
q (z) + γzq

′
(z)

≺ z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

⎧⎨
⎩1 + γ

⎡
⎣1 + z (Hq,s [a1; b1] f(z))

′′

(Hq,s [a1; b1] f(z))
′ − z (Hq,s [a1; b1] g(z))

′

Hq,s [a1; b1] g(z)

⎤
⎦
⎫⎬
⎭

holds, then

q (z) ≺ z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

and q (z) is the best subordinant.

Taking q(z) = 1+Az
1+Bz

(−1 ≤ B < A ≤ 1) in Theorem 2, we have the following
corollary.

Corollary 6. Let γ ∈ C with � (γ̄) > 0. If f, g ∈ A such that

z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)
∈ H [1, 1] ∩Q,

z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

⎧⎨
⎩1 + γ

⎡
⎣1 + z (Hq,s [a1; b1] f(z))

′′

(Hq,s [a1; b1] f(z))
′ − z (Hq,s [a1; b1] g(z))

′

Hq,s [a1; b1] g(z)

⎤
⎦
⎫⎬
⎭

is univalent in U , and the following superordination condition
1+Az
1+Bz

+ γ (A−B)z

(1+Bz)2

≺ z(Hq,s[a1;b1]f(z))
′

Hq,s[a1;b1]g(z)

{
1 + γ

[
1 + z(Hq,s[a1;b1]f(z))

′′

(Hq,s[a1;b1]f(z))
′ − z(Hq,s[a1;b1]g(z))

′

Hq,s[a1;b1]g(z)

]}
holds,

then
1 + Az

1 + Bz
≺ z (Hq,s [a1; b1] f(z))

′

Hq,s [a1; b1] g(z)

and q (z) is the best subordinant.

For q = 2, s = 1, a1 = a and b1 = c
(
a ∈ R; c ∈ R\Z−

0

)
in Theorem 1, we

have the following superordination result for Carlson-Shaffer operator.
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Corollary 7. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C

with � (γ̄) > 0. If f, g ∈ A such that z(L(a,c)f(z))
′

L(a,c)g(z)
∈ H [1, 1] ∩Q,

z (L (a, c) f(z))
′

L (a, c) g(z)

{
1 + γ

[
1 +

z (L (a, c) f(z))
′′

(L (a, c) f(z))
′ − z (L (a, c) g(z))

′

L (a, c) g(z)

]}

is univalent in U , and the following superordination condition

q (z) + γzq
′
(z)

≺ z (L (a, c) f(z))
′

L (a, c) g(z)

{
1 + γ

[
1 +

z (L (a, c) f(z))
′′

(L (a, c) f(z))
′ − z (L (a, c) g(z))

′

L (a, c) g(z)

]}

holds,
then

q (z) ≺ z (L (a, c) f(z))
′

L (a, c) g(z)

and q (z) is the best subordinant.

For q = 2, s = 1, a1 = λ + 1, a2 = c and b1 = a
(
a, c ∈ R\Z−

0 ;λ > −1
)

in Theorem 2, we obtain the following superordination result for Cho-Kwon-
Srivastava operator.

Corollary 8. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C

with � (γ̄) > 0. If f, g ∈ A such that
z(Iλ(a,c)f(z))

′

Iλ(a,c)g(z)
∈ H [1, 1] ∩Q,

z
(
Iλ (a, c) f(z)

)′
Iλ (a, c) g(z)

⎧⎨
⎩1 + γ

⎡
⎣1 + z

(
Iλ (a, c) f(z)

)′′
(Iλ (a, c) f(z))

′ − z
(
Iλ (a, c) g(z)

)′
Iλ (a, c) g(z)

⎤
⎦
⎫⎬
⎭

is univalent in U , and the following superordination condition

q (z) + γzq
′
(z)

≺ z
(
Iλ (a, c) f(z)

)′
Iλ (a, c) g(z)

⎧⎨
⎩1 + γ

⎡
⎣1 + z

(
Iλ (a, c) f (z)

)′′
(Iλ (a, c) f(z))

′ − z
(
Iλ (a, c) g(z)

)′
Iλ (a, c) g(z)

⎤
⎦
⎫⎬
⎭
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holds, then

q (z) ≺ z
(
Iλ (a, c) f(z)

)′
Iλ (a, c) g(z)

and q (z) is the best subordinant.

For q = 2, s = 1, a1 = μ ,a2 = 1 and b1 = λ + 1 (λ > −1;μ > 0) in Theo-
rem 2, we have the following superordination result for Choi-Saigo-Srivastava
operator.

Corollary 9. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C

with � (γ̄) > 0. If f, g ∈ A such that
z(Iλ,μf(z))

′

Iλ,μg(z)
∈ H [1, 1] ∩Q,

z (Iλ,μf(z))
′

Iλ,μg(z)

{
1 + γ

[
1 +

z (Iλ,μf(z))
′′

(Iλ,μf(z))
′ − z (Iλ,μg(z))

′

Iλ,μg(z)

]}

is univalent in U , and the following superordination condition

q (z) + γzq
′
(z) ≺ z (Iλ,μf(z))

′

Iλ,μg(z)

{
1 + γ

[
1 +

z (Iλ,μf (z))
′′

(Iλ,μf(z))
′ − z (Iλ,μg(z))

′

Iλ,μg(z)

]}

holds, then

q (z) ≺ z (Iλ,μf(z))
′

Iλ,μg(z)

and q (z) is the best subordinant.

Remark 2. Taking q = 2, s = 1, a1 = a2 = 1 and b1 = n + 1 (n ∈ N0)
in Theorem 2, we obtain the superordination result of Ibrahim and Darus [
10,Theorem 4] for the Noor operator.

Combining Theorem 1 and Theorem 2, we get the following sandwich the-
orem.

Theorem 3. Let qi (z) be convex univalent in U with qi (0) = 1 (i = 1, 2),

γ ∈ C with � (γ̄) > 0. If f, g ∈ A such that z(Hq,s[a1;b1]f(z))
′

Hq,s[a1;b1]g(z)
∈ H [1, 1] ∩Q,

z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

⎧⎨
⎩1 + γ

⎡
⎣1 + z (Hq,s [a1; b1] f(z))

′′

(Hq,s [a1; b1] f(z))
′ − z (Hq,s [a1; b1] g(z))

′

Hq,s [a1; b1] g(z)

⎤
⎦
⎫⎬
⎭
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is univalent in U , and

q1 (z) + γzq
′
1 (z)

≺ z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

⎧⎨
⎩1 + γ

⎡
⎣1 + z (Hq,s [a1; b1] f(z))

′′

(Hq,s [a1; b1] f(z))
′ − z (Hq,s [a1; b1] g(z))

′

Hq,s [a1; b1] g(z)

⎤
⎦
⎫⎬
⎭

≺ q2 (z) + γzq
′
2 (z)

holds, then

q1 (z) ≺
z (Hq,s [a1; b1] f(z))

′

Hq,s [a1; b1] g(z)
≺ q2 (z)

and q1 (z) and q2 (z) are, respectively, the best subordinant and the best domi-
nant.

Taking qi(z) =
1+Aiz
1+Biz

(i = 1, 2;−1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1) in Theorem
3, we have the following corollary.

Corollary 10. Let γ ∈ C with � (γ̄) > 0. If f, g ∈ A such that
z(Hq,s[a1;b1]f(z))

′

Hq,s[a1;b1]g(z)
∈ H [1, 1] ∩Q,

z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

⎧⎨
⎩1 + γ

⎡
⎣1 + z (Hq,s [a1; b1] f(z))

′′

(Hq,s [a1; b1] f(z))
′ − z (Hq,s [a1; b1] g(z))

′

Hq,s [a1; b1] g(z)

⎤
⎦
⎫⎬
⎭

is univalent in U , and

1 +A1z

1 +B1z
+ γ

(A1 −B1) z

(1 +B1z)
2

≺ z (Hq,s [a1; b1] f(z))
′

Hq,s [a1; b1] g(z)

⎧⎨
⎩1 + γ

⎡
⎣1 + z (Hq,s [a1; b1] f(z))

′′

(Hq,s [a1; b1] f(z))
′ − z (Hq,s [a1; b1] g(z))

′

Hq,s [a1; b1] g(z)

⎤
⎦
⎫⎬
⎭

≺ 1 +A2z

1 +B2z
+ γ

(A2 −B2) z

(1 +B2z)
2

holds, then

1 + A1z

1 + B1z
≺ z (Hq,s [a1; b1] f(z))

′

Hq,s [a1; b1] g(z)
≺ 1 + A2z

1 + B2z

and 1+A1z
1+B1z

and 1+A2z
1+B2z

are, respectively, the best subordinant and the best domi-
nant.
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Remark 3. Combining (i) Corollary 3 and Corollary 7; (ii) Corollary 4 and
Corollary 8; (iii) Corollary 5 and Corollary 9, we obtain similar sandwich
theorems for the corresponding linear operators.

Remark 4. Taking q = 2, s = 1, a1 = a2 = 1 and b1 = n + 1 (n ∈ N0) in
Theorem 3, we obtain the sandwich result of Ibrahim and Darus [ 10,Theorem
6] for the Noor operator.

Acknowledgement: The authors are grateful to the referees for their valu-
able suggestions.
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