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1. Introduction, Definitions and Results

In this paper by meromorphic functions we will always mean meromorphic
functions in the complex plane. We shall use the standard notations of value
distribution theory :

T (r, f), m(r, f), N(r,∞; f), N(r,∞; f), . . .

(see [8]). It will be convenient to let E denote any set of positive real numbers
of finite linear measure, not necessarily the same at each occurrence. We
denote by T (r) the maximum of T (r, f) and T (r, g). The notation S(r) denotes
any quantity satisfying S(r) = o(T (r)) as r −→∞, r 6∈ E.

For any constant a, we define

Θ(a; f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)
.

If for some a ∈ C ∪ {∞}, f and g have the same set of a-points with
same multiplicities then we say that f and g share the value a CM (counting
multiplicities). If we do not take the multiplicities into account, f and g are
said to share the value a IM (ignoring multiplicities).

Let S be a set of distinct elements of C ∪ {∞} and Ef (S) =
⋃

a∈S{z :
f(z) − a = 0}, where each zero is counted according to its multiplicity. If
we do not count the multiplicity the set Ef (S) =

⋃
a∈S{z : f(z) − a = 0} is

denoted by Ef (S). If Ef (S) = Eg(S) we say that f and g share the set S CM.
On the other hand if Ef (S) = Eg(S), we say that f and g share the set S IM.

We know that in a given domain D only a single analytic function exists
that assumes specified values in the sequence of points {zn} convergent to
a point α ∈ D. In 1926, Prof. R. Nevanlinna proved that a non-constant
meromorphic function is uniquely determined by the inverse image of 5 distinct
values (including the infinity) IM. The above theory, known as Nevanlinna’s
five value theory can be considered as a threshold of uniqueness theory of entire
and meromorphic functions. Gross [7] extended the study by considering pre-
images of sets counting multiplicities.

We recall that a set S is called a unique range set for meromorphic functions
(URSM) if for any pair of non-constant meromorphic functions f and g, the
condition Ef (S) = Eg(S) implies f ≡ g. Similarly a set S is called a unique
range set for entire functions (URSE) if for any pair of non-constant entire
functions f and g, the condition Ef (S) = Eg(S) implies f ≡ g.
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We will call any set S ⊂ C a unique range set for meromorphic functions
ignoring multiplicities (URSM-IM) for which Ef (S) = Eg(S) implies f ≡ g
for any pair of non-constant meromorphic functions.

In the recent past the inquisition to characterize different URSE, URSM
and URSM-IM under weaker hypothesis by many researchers further add
essence to-wards the prosperity of uniqueness theory. A glance in the ref-
erences [3]-[6], [15]-[17], [19]-[23] also authenticate the statement.

The introduction of the new notion of scaling between CM and IM, known
as weighted sharing of values, by I. Lahiri [11]-[12] in 2001 further expedite the
investigation process in the above direction. Below we are giving the following
definitions:

Definition 1.1. [11, 12] Let k be a nonnegative integer or infinity. For a ∈
C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f, g share the value a with weight k.

We write f , g share (a, k) to mean that f, g share the value a with weight
k. Clearly if f, g share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0)
or (a,∞) respectively.

Definition 1.2. [11] Let S be a set of distinct elements of C∪ {∞} and k be
a nonnegative integer or ∞. Let Ef (S, k) =

⋃
a∈S Ek(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

We start the discussion with a result of Y. Xu [19], in which he proved the
following theorem.

Theorem A. [19] If f and g are two non-constant meromorphic functions
and Θ(∞; f) > 3

4
, Θ(∞; g) > 3

4
, then there exists a set with seven elements

such that Ef (S,∞) = Eg(S,∞) implies f ≡ g.

Dealing with the question of Yi raised in [22], Lahiri and Banerjee exhibited
a unique range set S with smaller cardinalities than that obtained by Xu [19],
imposing some restrictions on the poles of f and g. We now state their result.

Theorem B. [13] Let S = {z : zn + azn−1 + b = 0}, where n (≥ 9) be an
integer and a, b be two nonzero constants such that zn + azn−1 + b = 0 has
no multiple root. If Ef (S, 2) = Eg(S, 2) and Θ(∞; f) + Θ(∞; g) > 4

n−1 then
f ≡ g.
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In [3] and [5] Bartels and Fang-Guo both independently proved the exis-
tence of a URSM-IM with 17 elements.

Suppose that the polynomial P (w) is defined by

P (w) = awn − n(n− 1)w2 + 2n(n− 2)bw − (n− 1)(n− 2)b2, (1.1)

where n ≥ 3 is an integer, a and b are two nonzero complex numbers satisfying
abn−2 6= 1, 2.

In fact we consider the following rational function

R(w) =
awn

n(n− 1)(w − α1)(w − α2)
, (1.2)

where α1 and α2 are two distinct roots of

n(n− 1)w2 − 2n(n− 2)bw + (n− 1)(n− 2)b2 = 0.

We have from (1.2) that

R
′
(w) =

(n− 2)awn−1 (w − b)2

n(n− 1) (w − α1)2 (w − α2)2
. (1.3)

From (1.3) we know that w = 0 is a root with multiplicity n of the equation
R(w) = 0 and w = b is a root with multiplicity 3 of the equation R(w)−c = 0,
where c = abn−2

2
6= 1

2
, 1. Then

R(w)− c =
a(w − b)3 Qn−3(w)

n(n− 1)(w − α1)(w − α2)
, (1.4)

where Qn−3(w) is a polynomial of degree n− 3.
Moreover from (1.1) and (1.2) we have

R(w)− 1 =
P (w)

n(n− 1)(w − α1)(w − α2)
. (1.5)

Noting that c = abn−2

2
6= 1, from (1.3) and (1.5) we have

P (w) = awn − n(n− 1)w2 + 2n(n− 2)bw − (n− 1)(n− 2)b2

has only simple zeros.
In 2007 Thamir C.Alzahary [2] improved Theorem A and Theorem B and

obtained the following result:
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Theorem C. [2] Let S = {w | P (w) = 0},where P (w) is given by (1.1), where
n(≥ 6) is an integer.Then f ≡ g, if f and g are non-constant meromorphic
functions which satisfying one of the following conditions:

(i) 16−n
6

< Θf ,16−n
6

< Θg and Ef (S, 0) = Eg(S, 0).

(ii) 3(12−n)
14

< Θf ,3(12−n)
14

< Θg and Ef (S, 1) = Eg(S, 1).

(iii) 10−n
4

< Θf , 10−n
4

< Θg and Ef (S, 2) = Eg(S, 2).

Here Θf = Θ(0; f) + Θ(∞; f) + Θ(b; f) and Θg can be similarly defined.

Note that the result of Alzahary also improve the results of Bartels [3] and
Fang-Guo [5]. In the paper to explore the possibilities of further improving
Theorem C we obtain the following theorem which in turn produce significant
better results than that obtained in [3], [5], [13], [19].

Theorem 1.1. Let S = {w | P (w) = 0}, where P (w) is given by (1.1), where
n(≥ 6) is an integer. Suppose that f and g are two non-constant meromorphic
functions satisfying Ef (S,m) = Eg(S,m). If

(i) m ≥ 2 and Θf + Θg >
10−n

2

(ii) or if m = 1 and Θf + Θg + 1
4

min{Θ(0; f) + Θ(∞; f) + Θ(b; f),Θ(0; g) +
Θ(∞; g) + Θ(b; g)} > 11−n

2

(iii) or if m = 0 and Θf + Θg + 1
3

min{Θ(0; f) + Θ(b; f) + Θ(∞; f),Θ(0; g) +
Θ(b; g) + Θ(∞; g) > 16−n

3
.

then f ≡ g, where Θf = Θ(0; f) + Θ(∞; f) + Θ(b; f) and Θg can be similarly
defined.

It is assumed that the readers are familiar with the standard definitions
and notations of the value distribution theory as those are available in [8].
Throughout this paper, we also need the following definitions:

Definition 1.3. [10] For a ∈ C ∪ {∞} we denote by N(r, a; f = 1) the
counting function of simple a-points of f . For a positive integer m we denote
by N(r, a; f ≤ m)(N(r, a; f ≥ m)) the counting function of those a-points
of f whose multiplicities are not greater(less) than m where each a-point is
counted according to its multiplicity.
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N(r, a; f ≤ m) (N(r, a; f ≥ m)) are defined similarly, where in counting
the a-points of f we ignore the multiplicities.

Also N(r, a; f < m), N(r, a; f > m), N(r, a; f < m) and N(r, a; f > m)
are defined analogously.

Definition 1.4. Let f and g be two non-constant meromorphic functions such
that f and g share (a, 0). Let z0 be an a-point of f with multiplicity p, an a-
point of g with multiplicity q. We denote by NL(r, a; f) the reduced counting

function of those a-points of f and g where p > q, by N
1)
E (r, a; f) the counting

function of those a-points of f and g where p = q = 1, by N
(2

E (r, a; f) the
reduced counting function of those a-points of f and g where p = q ≥ 2. In

the same way we can define NL(r, a; g), N
1)
E (r, a; g), N

(2

E (r, a; g). In a similar
manner we can define NL(r, a; f) and NL(r, a; g) for a ∈ C ∪ {∞}. When f

and g share (a,m), m ≥ 1 then N
1)
E (r, a; f) = N(r, a; f |= 1).

Definition 1.5. [11, 12] Let f , g share (a, 0). We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) = N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +
NL(r, a; g).

Definition 1.6. Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by N(r, a; f g 6=
b1, b2, . . . , bq) the counting function of those a-points of f , counted according
to multiplicity, which are not the bi-points of g for i = 1, 2, . . . , q.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F and G be two non-constant meromorphic functions defined in C. Henceforth
we shall denote by H the following function.

H = (
F
′′

F ′
− 2F

′

F − 1
)− (

G
′′

G′
− 2G

′

G− 1
).

Let f and g be two non-constant meromorphic function and

F = R(f), G = R(g), (2.1)
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where R(w) is given as (1.2). From (1.2) and (2.1) it is clear that

T (r, f) =
1

n
T (r, F ) + S(r, f), T (r, g) =

1

n
T (r,G) + S(r, g) (2.2)

Lemma 2.1. Let F , G be given by (2.1) and H 6≡ 0. Suppose that F , G share
(1,m), where m ≥ 0 is an integer. Then

N
1)
E (r, 1;F ) ≤ NL(r, 1;F ) +NL(r, 1;G) +N(r, 0; f) +N(r, b; f) +N(r,∞; f)

+N(r,∞; g) +N(r, 0; g) +N(r.b; g) +N0(r, 0; f
′
) +N0(r, 0; g

′
),

+S(r, f) + S(r, g)

where N0(r, 0; f
′
) denotes the reduced counting function corresponding to the

zeros of f
′

which are not the zeros of f(f− b) and F −1, N0(r, 0; g
′
) is defined

similarly.

Proof. We omit the proof since it can be carried out in the line of the proof
of Lemma 2.18 [1].

Lemma 2.2. Let f be a non-constant meromorphic function and ai, i =
1, 2, . . . , n be finite distinct complex numbers, where n ≥ 1. Then

N(r, 0; f
′
) ≤ T (r, f) +N(r,∞; f)−

n∑
i=1

m(r, ai; f) + S(r, f)

Proof. Let F =
n∑

i=1

1
f−ai . Then

n∑
i=1

m(r, ai; f) = m(r, F ) +O(1). Note that

m(r, F ) ≤ m(r, 0; f
′
) +m(r,

n∑
i=1

f
′

f − ai
)

= T (r, f
′
)−N(r, 0; f

′
) + S(r, f).

Also we observe that

T (r, f
′
) = m(r, f

′
) +N(r, f

′
)

≤ m(r, f) +m(r,
f
′

f
) +N(r, f) +N(r, f)

= T (r, f) +N(r, f) + S(r, f).

Hence the Lemma follows.
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Lemma 2.3. [18] Let f be a non-constant meromorphic function and P (f) =
a0 + a1f + a2f

2 + . . .+ anf
n, where a0, a1, a2 . . . , an are constants and an 6= 0.

Then T (r, P (f)) = nT (r, f) +O(1).

Lemma 2.4. ([2], Lemma 1) Let F , G be given by (2.1). Also let S be given
as in Theorem 1.1, where n ≥ 3 is an integer. If Ef (S, 0) = Eg(S, 0) then
S(r, f) = S(r, g).

3. Proofs of the theorem

Proof of Theorem 1.1. Let F , G be given by (2.1). Since Ef (S,m) =
Eg(S,m), it follows that F , G share (1,m).
Case 1. Suppose that H 6≡ 0.

Subcase 1.1. m ≥ 1. While m ≥ 2, using Lemma 2.2 with n = 2, a1 = 0 and
a2 = b we note that

N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +N∗(r, 1;F,G) (3.1)

≤ N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +N(r, 1;G |≥ 3)

≤ N0(r, 0; g
′
) +

n∑
j=1

{N(r, ωj; g |= 2) + 2N(r, ωj; g |≥ 3)}

≤ N(r, 0; g
′ | g 6= 0, b)

≤ N(r, 0; g
′
)−N(r, 0; g) +N(r, 0; g)−N(r, b; g) +N(r, b; g)

≤ N(r, 0; g) +N(r,∞; g) +N(r, b; g) + T (r, g)−N(r, 0; g)

−N(r, b; g)−m(r, 0; g)−m(r, b; g) + S(r, g)

= N(r, 0; g) +N(r,∞; g) +N(r, b; g)− T (r, g) + S(r, g),

where ωi i = 1, 2, . . . , n are the distinct roots of the equation P (w) = 0. Hence
using (3.1), Lemmas 2.1 and 2.3 we get from second fundamental theorem for
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ε > 0 that

(n+ 1) T (r, f) (3.2)

≤ N(r, 0; f) +N(r, b; f) +N(r,∞; f) +N(r, 1;F |= 1) +N(r, 1;F |≥ 2)

−N0(r, 0; f
′
) + S(r, f)

≤ 2
{
N(r, 0; f) +N(r, b; f) +N(r,∞; f)

}
+N(r, 0; g) +N(r, b; g)

+N(r,∞; g) +N(r, 1;G |≥ 2) +N∗(r, 1;F,G) +N0(r, 0; g
′
)

+S(r, f) + S(r, g)

≤ 2
{
N(r, 0; f) +N(r, b; f) +N(r,∞; f) +N(r, 0; g) +N(r,∞; g)

+N(r, b; g)
}
− T (r, g) + S(r, f) + S(r, g)

≤
(

6− 2Θ(0, f)− 2Θ(b, f)− 2Θ(∞, f) +
1

2
ε

)
T (r, f)

+

(
5− 2Θ(0, g)− 2Θ(b, g)− 2Θ(∞, g) +

1

2
ε

)
T (r, g) + S(r, f) + S(r, g)

≤ (11− 2Θf − 2Θg + ε)T (r) + S(r).

In a similar way we can obtain

(n+ 1) T (r, g) (3.3)

≤ (11− 2Θf − 2Θg + ε)T (r) + S(r).

Combining (3.2) and (3.3) we see that

(n− 10 + 2Θf + 2Θg − ε) T (r) ≤ S(r). (3.4)

Since ε > 0, (3.4) leads to a contradiction.
While m = 1, using Lemma 2.2, (3.1) changes to

N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +N∗(r, 1;F,G) (3.5)

≤ N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +NL(r, 1;G) +NL(r, 1;F )

≤ N(r, 0; g
′ | g 6= 0, b) +

1

2
N(r, 0; f

′ | f 6= 0, b)

≤ N(r, 0; g) +N(r, b; g) +N(r,∞; g)− T (r, g) +
1

2

{
N(r, 0; f)

+N(r, b; f) +N(r,∞; f)
}
− 1

2
T (r, f) + S(r, f) + S(r, g).
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So using (3.5), Lemmas 2.1 and 2.3 and proceeding as in (3.2) we get from
second fundamental theorem for ε > 0 that

(n+ 1) T (r, f) (3.6)

≤ 2
{
N(r, 0; f) +N(r, b; f) +N(r,∞; f) +N(r, 0; g) +N(r, b; g)

+N(r,∞; g)
}
− T (r, g)− 1

2
T (r, f)

+
1

2
{N(r, 0; f) +N(r, b; f) +N(r,∞; f)}+ S(r, f) + S(r, g)

≤
(

12− 2Θf − 2Θg −
1

2
Θ(0; f)− 1

2
Θ(∞; f)− 1

2
Θ(b; f) + ε

)
T (r) + S(r).

Similarly we can obtain

(n+ 1) T (r, g) (3.7)

≤
(

12− 2Θf − 2Θg −
1

2
Θ(0; g)− 1

2
Θ(∞; g)− 1

2
Θ(b; g) + ε

)
T (r) + S(r).

Combining (3.6) and (3.7) we see that

(n− 11 + 2Θf + 2Θg +
1

2
min{Θ(0; f) + Θ(∞; f) + Θ(b; f), (3.8)

Θ(0; g) + Θ(∞; g) + Θ(b; g)} − ε) T (r) ≤ S(r).

Since ε > 0, (3.8) leads to a contradiction.
Subcase 1.2. m = 0. Using Lemma 2.2 we note that

N0(r, 0; g
′
) +N

(2

E (r, 1;F ) + 2NL(r, 1;G) + 2NL(r, 1;F ) (3.9)

≤ N0(r, 0; g
′
) +N

(2

E (r, 1;G) +NL(r, 1;G) +NL(r, 1;G) + 2NL(r, 1;F )

≤ N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +NL(r, 1;G) + 2NL(r, 1;F )

≤ N(r, 0; g
′ | g 6= 0, b) +N(r, 1;G |≥ 2) + 2N(r, 1;F |≥ 2)

≤ 2{N(r, 0; g
′ | g 6= 0, b) +N(r, 0; f

′ | f 6= 0, b)}
≤ 2{N(r, 0; g) +N(r,∞; g) +N(r, b; g) +N(r, 0; f) +N(r,∞; f)

+N(r, b; f)} − 2T (r, f)− 2T (r, g) + S(r, f) + S(r, g).

Hence using (3.9), Lemmas 2.1 and 2.3 we get from second fundamental
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theorem for ε > 0 that

(n+ 1) T (r, f) (3.10)

≤ N(r, 0; f) +N(r, b; f) +N(r,∞; f) +N
1)
E (r, 1;F ) +NL(r, 1;F )

+NL(r, 1;G) +N
(2

E (r, 1;F )−N0(r, 0; f
′
) + S(r, f)

≤ 2
{
N(r, 0; f) +N(r,∞; f) +N(r, b; f)

}
+N(r, 0; g) +N(r, b; g)

+N(r,∞; g) +N
(2

E (r, 1;F ) + 2NL(r, 1;G) + 2NL(r, 1;F )

+N0(r, 0; g
′
) + S(r, f) + S(r, g)

≤ 4
{
N(r, 0; f) +N(r, b; f) +N(r,∞; f)

}
+ 3{N(r, 0; g)

+N(r, b; g) +N(r,∞; g)} − 2T (r, f)− 2T (r, g) + S(r, f) + S(r, g)

≤ (17− 3Θf − 3Θg −Θ(0; f)−Θ(∞; f)−Θ(b; f) + ε)T (r) + S(r).

In a similar manner we can obtain

(n+ 1) T (r, g) (3.11)

≤ (17− 3Θf − 3Θg −Θ(0; g)−Θ(∞; g)−Θ(b; g) + ε)T (r) + S(r).

Combining (3.10) and (3.11) we see that

(n− 16 + 3Θf + 3Θg + min{Θ(0; f) + Θ(b; f) + Θ(∞; f), (3.12)

Θ(0; g) + Θ(b; g) + Θ(∞; g)} − ε)T (r) ≤ S(r).

Since ε > 0, (3.12) leads to a contradiction.
Case 2. Suppose that H ≡ 0. Now proceeding in the same way as done in
the [2] we can prove f ≡ g.
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