A Note on Unique Range Sets of Meromorphic Functions with Deficient Values *

Abhijit Banerjee ${ }^{\dagger}$
Department of Mathematics, West Bengal State University, Kolkata-700126, India
Present Address:
Department of Mathematics, University of Kalyani, West Bengal 741235, India
and
Sujoy Majumder ${ }^{\ddagger}$
Department of Mathematics, Katwa College, Burdwan, 713130, India

Received April 12, 2012, Accepted November 28, 2013.
The first author is thankful to DST-PURSE programme for financial assistance.

Abstract

With the help of the notion of weighted sharing of sets we deal with the problem of Unique Range Sets for meromorphic functions and obtain a result which improve some previous results.

Keywords and Phrases: Meromorphic functions, Uniqueness, Weighted sharing, Shared set.

[^0]
1. Introduction, Definitions and Results

In this paper by meromorphic functions we will always mean meromorphic functions in the complex plane. We shall use the standard notations of value distribution theory :

$$
T(r, f), \quad m(r, f), \quad N(r, \infty ; f), \quad \bar{N}(r, \infty ; f), \ldots
$$

(see [8]). It will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence. We denote by $T(r)$ the maximum of $T(r, f)$ and $T(r, g)$. The notation $S(r)$ denotes any quantity satisfying $S(r)=o(T(r))$ as $r \longrightarrow \infty, r \notin E$.

For any constant a, we define

$$
\Theta(a ; f)=1-\limsup _{r \longrightarrow \infty} \frac{\bar{N}(r, a ; f)}{T(r, f)}
$$

If for some $a \in \mathbb{C} \cup\{\infty\}, f$ and g have the same set of a-points with same multiplicities then we say that f and g share the value a CM (counting multiplicities). If we do not take the multiplicities into account, f and g are said to share the value a IM (ignoring multiplicities).

Let S be a set of distinct elements of $\mathbb{C} \cup\{\infty\}$ and $E_{f}(S)=\bigcup_{a \in S}\{z$: $f(z)-a=0\}$, where each zero is counted according to its multiplicity. If we do not count the multiplicity the set $E_{f}(S)=\bigcup_{a \in S}\{z: f(z)-a=0\}$ is denoted by $\bar{E}_{f}(S)$. If $E_{f}(S)=\underline{E}_{g}(S)$ we say that f and g share the set S CM. On the other hand if $\bar{E}_{f}(S)=\bar{E}_{g}(S)$, we say that f and g share the set S IM.

We know that in a given domain D only a single analytic function exists that assumes specified values in the sequence of points $\left\{z_{n}\right\}$ convergent to a point $\alpha \in D$. In 1926, Prof. R. Nevanlinna proved that a non-constant meromorphic function is uniquely determined by the inverse image of 5 distinct values (including the infinity) IM. The above theory, known as Nevanlinna's five value theory can be considered as a threshold of uniqueness theory of entire and meromorphic functions. Gross [7] extended the study by considering preimages of sets counting multiplicities.

We recall that a set S is called a unique range set for meromorphic functions (URSM) if for any pair of non-constant meromorphic functions f and g, the condition $E_{f}(S)=E_{g}(S)$ implies $f \equiv g$. Similarly a set S is called a unique range set for entire functions (URSE) if for any pair of non-constant entire functions f and g, the condition $E_{f}(S)=E_{g}(S)$ implies $f \equiv g$.

We will call any set $S \subset \mathbb{C}$ a unique range set for meromorphic functions ignoring multiplicities (URSM-IM) for which $\bar{E}_{f}(S)=\bar{E}_{g}(S)$ implies $f \equiv g$ for any pair of non-constant meromorphic functions.

In the recent past the inquisition to characterize different URSE, URSM and URSM-IM under weaker hypothesis by many researchers further add essence to-wards the prosperity of uniqueness theory. A glance in the references [3]-[6], [15]-[17], [19]-[23] also authenticate the statement.

The introduction of the new notion of scaling between CM and IM, known as weighted sharing of values, by I. Lahiri [11]-[12] in 2001 further expedite the investigation process in the above direction. Below we are giving the following definitions:

Definition 1.1. [11, 12] Let k be a nonnegative integer or infinity. For $a \in$ $\mathbb{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f, g share the value a with weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for any integer $p, 0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

Definition 1.2. [11] Let S be a set of distinct elements of $\mathbb{C} \cup\{\infty\}$ and k be a nonnegative integer or ∞. Let $E_{f}(S, k)=\bigcup_{a \in S} E_{k}(a ; f)$.

Clearly $E_{f}(S)=E_{f}(S, \infty)$ and $\bar{E}_{f}(S)=E_{f}(S, 0)$.
We start the discussion with a result of $\mathrm{Y} . \mathrm{Xu}[19]$, in which he proved the following theorem.

Theorem A. [19] If f and g are two non-constant meromorphic functions and $\Theta(\infty ; f)>\frac{3}{4}, \Theta(\infty ; g)>\frac{3}{4}$, then there exists a set with seven elements such that $E_{f}(S, \infty)=E_{g}(S, \infty)$ implies $f \equiv g$.

Dealing with the question of Yi raised in [22], Lahiri and Banerjee exhibited a unique range set S with smaller cardinalities than that obtained by Xu [19], imposing some restrictions on the poles of f and g. We now state their result.
Theorem B. [13] Let $S=\left\{z: z^{n}+a z^{n-1}+b=0\right\}$, where $n(\geq 9)$ be an integer and a, b be two nonzero constants such that $z^{n}+a z^{n-1}+b=0$ has no multiple root. If $E_{f}(S, 2)=E_{g}(S, 2)$ and $\Theta(\infty ; f)+\Theta(\infty ; g)>\frac{4}{n-1}$ then $f \equiv g$.

In [3] and [5] Bartels and Fang-Guo both independently proved the existence of a URSM-IM with 17 elements.

Suppose that the polynomial $P(w)$ is defined by

$$
\begin{equation*}
P(w)=a w^{n}-n(n-1) w^{2}+2 n(n-2) b w-(n-1)(n-2) b^{2}, \tag{1.1}
\end{equation*}
$$

where $n \geq 3$ is an integer, a and b are two nonzero complex numbers satisfying $a b^{n-2} \neq 1,2$.

In fact we consider the following rational function

$$
\begin{equation*}
R(w)=\frac{a w^{n}}{n(n-1)\left(w-\alpha_{1}\right)\left(w-\alpha_{2}\right)} \tag{1.2}
\end{equation*}
$$

where α_{1} and α_{2} are two distinct roots of

$$
n(n-1) w^{2}-2 n(n-2) b w+(n-1)(n-2) b^{2}=0
$$

We have from (1.2) that

$$
\begin{equation*}
R^{\prime}(w)=\frac{(n-2) a w^{n-1}(w-b)^{2}}{n(n-1)\left(w-\alpha_{1}\right)^{2}\left(w-\alpha_{2}\right)^{2}} . \tag{1.3}
\end{equation*}
$$

From (1.3) we know that $w=0$ is a root with multiplicity n of the equation $R(w)=0$ and $w=b$ is a root with multiplicity 3 of the equation $R(w)-c=0$, where $c=\frac{a b^{n-2}}{2} \neq \frac{1}{2}, 1$. Then

$$
\begin{equation*}
R(w)-c=\frac{a(w-b)^{3} Q_{n-3}(w)}{n(n-1)\left(w-\alpha_{1}\right)\left(w-\alpha_{2}\right)}, \tag{1.4}
\end{equation*}
$$

where $Q_{n-3}(w)$ is a polynomial of degree $n-3$.
Moreover from (1.1) and (1.2) we have

$$
\begin{equation*}
R(w)-1=\frac{P(w)}{n(n-1)\left(w-\alpha_{1}\right)\left(w-\alpha_{2}\right)} . \tag{1.5}
\end{equation*}
$$

Noting that $c=\frac{a b^{n-2}}{2} \neq 1$, from (1.3) and (1.5) we have

$$
P(w)=a w^{n}-n(n-1) w^{2}+2 n(n-2) b w-(n-1)(n-2) b^{2}
$$

has only simple zeros.
In 2007 Thamir C.Alzahary [2] improved Theorem A and Theorem B and obtained the following result:

Theorem C. [2] Let $S=\{w \mid P(w)=0\}$, where $P(w)$ is given by (1.1), where $n(\geq 6)$ is an integer. Then $f \equiv g$, if f and g are non-constant meromorphic functions which satisfying one of the following conditions:
(i) $\frac{16-n}{6}<\Theta_{f}, \frac{16-n}{6}<\Theta_{g}$ and $E_{f}(S, 0)=E_{g}(S, 0)$.
(ii) $\frac{3(12-n)}{14}<\Theta_{f}, \frac{3(12-n)}{14}<\Theta_{g}$ and $E_{f}(S, 1)=E_{g}(S, 1)$.
(iii) $\frac{10-n}{4}<\Theta_{f}, \frac{10-n}{4}<\Theta_{g}$ and $E_{f}(S, 2)=E_{g}(S, 2)$.

Here $\Theta_{f}=\Theta(0 ; f)+\Theta(\infty ; f)+\Theta(b ; f)$ and Θ_{g} can be similarly defined.
Note that the result of Alzahary also improve the results of Bartels [3] and Fang-Guo [5]. In the paper to explore the possibilities of further improving Theorem C we obtain the following theorem which in turn produce significant better results than that obtained in [3], [5], [13], [19].

Theorem 1.1. Let $S=\{w \mid P(w)=0\}$, where $P(w)$ is given by (1.1), where $n(\geq 6)$ is an integer. Suppose that f and g are two non-constant meromorphic functions satisfying $E_{f}(S, m)=E_{g}(S, m)$. If
(i) $m \geq 2$ and $\Theta_{f}+\Theta_{g}>\frac{10-n}{2}$
(ii) or if $m=1$ and $\Theta_{f}+\Theta_{g}+\frac{1}{4} \min \{\Theta(0 ; f)+\Theta(\infty ; f)+\Theta(b ; f), \Theta(0 ; g)+$ $\Theta(\infty ; g)+\Theta(b ; g)\}>\frac{11-n}{2}$
(iii) or if $m=0$ and $\Theta_{f}+\Theta_{g}+\frac{1}{3} \min \{\Theta(0 ; f)+\Theta(b ; f)+\Theta(\infty ; f), \Theta(0 ; g)+$ $\Theta(b ; g)+\Theta(\infty ; g)>\frac{16-n}{3}$.
then $f \equiv g$, where $\Theta_{f}=\Theta(0 ; f)+\Theta(\infty ; f)+\Theta(b ; f)$ and Θ_{g} can be similarly defined.

It is assumed that the readers are familiar with the standard definitions and notations of the value distribution theory as those are available in [8]. Throughout this paper, we also need the following definitions:

Definition 1.3. [10] For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $N(r, a ; f \mid=1)$ the counting function of simple a-points of f. For a positive integer m we denote by $N(r, a ; f \mid \leq m)(N(r, a ; f \mid \geq m))$ the counting function of those a-points of f whose multiplicities are not greater(less) than m where each a-point is counted according to its multiplicity.
$\bar{N}(r, a ; f \mid \leq m)(\bar{N}(r, a ; f \mid \geq m))$ are defined similarly, where in counting the a-points of f we ignore the multiplicities.

Also $N(r, a ; f \mid<m), N(r, a ; f \mid>m), \bar{N}(r, a ; f \mid<m)$ and $\bar{N}(r, a ; f \mid>m)$ are defined analogously.

Definition 1.4. Let f and g be two non-constant meromorphic functions such that f and g share $(a, 0)$. Let z_{0} be an a-point of f with multiplicity p, an a point of g with multiplicity q. We denote by $\bar{N}_{L}(r, a ; f)$ the reduced counting function of those a-points of f and g where $p>q$, by $N_{E}^{1)}(r, a ; f)$ the counting function of those a-points of f and g where $p=q=1$, by $\bar{N}_{E}^{(2}(r, a ; f)$ the reduced counting function of those a-points of f and g where $p=q \geq 2$. In the same way we can define $\bar{N}_{L}(r, a ; g), N_{E}^{1)}(r, a ; g), \bar{N}_{E}^{(2}(r, a ; g)$. In a similar manner we can define $\bar{N}_{L}(r, a ; f)$ and $\bar{N}_{L}(r, a ; g)$ for $a \in \mathbb{C} \cup\{\infty\}$. When f and g share $(a, m), m \geq 1$ then $N_{E}^{1)}(r, a ; f)=N(r, a ; f \mid=1)$.

Definition 1.5. [11, 12] Let f, g share $(a, 0)$. We denote by $\bar{N}_{*}(r, a ; f, g)$ the reduced counting function of those a-points of f whose multiplicities differ from the multiplicities of the corresponding a-points of g.

Clearly $\bar{N}_{*}(r, a ; f, g)=\bar{N}_{*}(r, a ; g, f)$ and $\bar{N}_{*}(r, a ; f, g)=\bar{N}_{L}(r, a ; f)+$ $\bar{N}_{L}(r, a ; g)$.

Definition 1.6. Let $a, b_{1}, b_{2}, \ldots, b_{q} \in \mathbb{C} \cup\{\infty\}$. We denote by $N(r, a ; f \mid g \neq$ $b_{1}, b_{2}, \ldots, b_{q}$) the counting function of those a-points of f, counted according to multiplicity, which are not the b_{i}-points of g for $i=1,2, \ldots, q$.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F and G be two non-constant meromorphic functions defined in \mathbb{C}. Henceforth we shall denote by H the following function.

$$
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)
$$

Let f and g be two non-constant meromorphic function and

$$
\begin{equation*}
F=R(f), \quad G=R(g), \tag{2.1}
\end{equation*}
$$

where $R(w)$ is given as (1.2). From (1.2) and (2.1) it is clear that

$$
\begin{equation*}
T(r, f)=\frac{1}{n} T(r, F)+S(r, f), \quad T(r, g)=\frac{1}{n} T(r, G)+S(r, g) \tag{2.2}
\end{equation*}
$$

Lemma 2.1. Let F, G be given by (2.1) and $H \not \equiv 0$. Suppose that F, G share $(1, m)$, where $m \geq 0$ is an integer. Then

$$
\begin{aligned}
N_{E}^{1)}(r, 1 ; F) \leq & \bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)+\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)+\bar{N}(r, \infty ; f) \\
& +\bar{N}(r, \infty ; g)+\bar{N}(r, 0 ; g)+\bar{N}(r . b ; g)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

where $\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)$ denotes the reduced counting function corresponding to the zeros of f^{\prime} which are not the zeros of $f(f-b)$ and $F-1, \bar{N}_{0}\left(r, 0 ; g^{\prime}\right)$ is defined similarly.

Proof. We omit the proof since it can be carried out in the line of the proof of Lemma 2.18 [1].

Lemma 2.2. Let f be a non-constant meromorphic function and $a_{i}, i=$ $1,2, \ldots, n$ be finite distinct complex numbers, where $n \geq 1$. Then

$$
N\left(r, 0 ; f^{\prime}\right) \leq T(r, f)+\bar{N}(r, \infty ; f)-\sum_{i=1}^{n} m\left(r, a_{i} ; f\right)+S(r, f)
$$

Proof. Let $F=\sum_{i=1}^{n} \frac{1}{f-a_{i}}$. Then $\sum_{i=1}^{n} m\left(r, a_{i} ; f\right)=m(r, F)+O(1)$. Note that

$$
\begin{aligned}
m(r, F) & \leq m\left(r, 0 ; f^{\prime}\right)+m\left(r, \sum_{i=1}^{n} \frac{f^{\prime}}{f-a_{i}}\right) \\
& =T\left(r, f^{\prime}\right)-N\left(r, 0 ; f^{\prime}\right)+S(r, f)
\end{aligned}
$$

Also we observe that

$$
\begin{aligned}
T\left(r, f^{\prime}\right) & =m\left(r, f^{\prime}\right)+N\left(r, f^{\prime}\right) \\
& \leq m(r, f)+m\left(r, \frac{f^{\prime}}{f}\right)+N(r, f)+\bar{N}(r, f) \\
& =T(r, f)+\bar{N}(r, f)+S(r, f)
\end{aligned}
$$

Hence the Lemma follows.

Lemma 2.3. [18] Let f be a non-constant meromorphic function and $P(f)=$ $a_{0}+a_{1} f+a_{2} f^{2}+\ldots+a_{n} f^{n}$, where $a_{0}, a_{1}, a_{2} \ldots, a_{n}$ are constants and $a_{n} \neq 0$. Then $T(r, P(f))=n T(r, f)+O(1)$.

Lemma 2.4. ([2], Lemma 1) Let F, G be given by (2.1). Also let S be given as in Theorem 1.1, where $n \geq 3$ is an integer. If $E_{f}(S, 0)=E_{g}(S, 0)$ then $S(r, f)=S(r, g)$.

3. Proofs of the theorem

Proof of Theorem 1.1. Let F, G be given by (2.1). Since $E_{f}(S, m)=$ $E_{g}(S, m)$, it follows that F, G share $(1, m)$.
Case 1. Suppose that $H \not \equiv 0$.
Subcase 1.1. $m \geq 1$. While $m \geq 2$, using Lemma 2.2 with $n=2, a_{1}=0$ and $a_{2}=b$ we note that

$$
\begin{align*}
& \bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\bar{N}(r, 1 ; G \mid \geq 2)+\bar{N}_{*}(r, 1 ; F, G) \tag{3.1}\\
\leq & \bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\bar{N}(r, 1 ; G \mid \geq 2)+\bar{N}(r, 1 ; G \mid \geq 3) \\
\leq & \bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\sum_{j=1}^{n}\left\{\bar{N}\left(r, \omega_{j} ; g \mid=2\right)+2 \bar{N}\left(r, \omega_{j} ; g \mid \geq 3\right)\right\} \\
\leq & N\left(r, 0 ; g^{\prime} \mid g \neq 0, b\right) \\
\leq & N\left(r, 0 ; g^{\prime}\right)-N(r, 0 ; g)+\bar{N}(r, 0 ; g)-N(r, b ; g)+\bar{N}(r, b ; g) \\
\leq & \bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; g)+\bar{N}(r, b ; g)+T(r, g)-N(r, 0 ; g) \\
& -N(r, b ; g)-m(r, 0 ; g)-m(r, b ; g)+S(r, g) \\
= & \bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; g)+\bar{N}(r, b ; g)-T(r, g)+S(r, g),
\end{align*}
$$

where $\omega_{i} i=1,2, \ldots, n$ are the distinct roots of the equation $P(w)=0$. Hence using (3.1), Lemmas 2.1 and 2.3 we get from second fundamental theorem for
$\varepsilon>0$ that

$$
\begin{align*}
& (n+1) T(r, f) \tag{3.2}\\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)+\bar{N}(r, \infty ; f)+N(r, 1 ; F \mid=1)+\bar{N}(r, 1 ; F \mid \geq 2) \\
& -N_{0}\left(r, 0 ; f^{\prime}\right)+S(r, f) \\
\leq & 2\{\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)+\bar{N}(r, \infty ; f)\}+\bar{N}(r, 0 ; g)+\bar{N}(r, b ; g) \\
& +\bar{N}(r, \infty ; g)+\bar{N}(r, 1 ; G \mid \geq 2)+\bar{N}_{*}(r, 1 ; F, G)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right) \\
& +S(r, f)+S(r, g) \\
\leq & 2\{\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)+\bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; g) \\
& +\bar{N}(r, b ; g)\}-T(r, g)+S(r, f)+S(r, g) \\
\leq & \left(6-2 \Theta(0, f)-2 \Theta(b, f)-2 \Theta(\infty, f)+\frac{1}{2} \varepsilon\right) T(r, f) \\
& +\left(5-2 \Theta(0, g)-2 \Theta(b, g)-2 \Theta(\infty, g)+\frac{1}{2} \varepsilon\right) T(r, g)+S(r, f)+S(r, g) \\
\leq & \left(11-2 \Theta_{f}-2 \Theta_{g}+\varepsilon\right) T(r)+S(r) .
\end{align*}
$$

In a similar way we can obtain

$$
\begin{align*}
& (n+1) T(r, g) \tag{3.3}\\
\leq & \left(11-2 \Theta_{f}-2 \Theta_{g}+\varepsilon\right) T(r)+S(r)
\end{align*}
$$

Combining (3.2) and (3.3) we see that

$$
\begin{equation*}
\left(n-10+2 \Theta_{f}+2 \Theta_{g}-\varepsilon\right) T(r) \leq S(r) \tag{3.4}
\end{equation*}
$$

Since $\varepsilon>0$, (3.4) leads to a contradiction.
While $m=1$, using Lemma 2.2, (3.1) changes to

$$
\begin{align*}
& \bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\bar{N}(r, 1 ; G \mid \geq 2)+\bar{N}_{*}(r, 1 ; F, G) \tag{3.5}\\
\leq & \bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\bar{N}(r, 1 ; G \mid \geq 2)+\bar{N}_{L}(r, 1 ; G)+\bar{N}_{L}(r, 1 ; F) \\
\leq & N\left(r, 0 ; g^{\prime} \mid g \neq 0, b\right)+\frac{1}{2} N\left(r, 0 ; f^{\prime} \mid f \neq 0, b\right) \\
\leq & \bar{N}(r, 0 ; g)+\bar{N}(r, b ; g)+\bar{N}(r, \infty ; g)-T(r, g)+\frac{1}{2}\{\bar{N}(r, 0 ; f) \\
& +\bar{N}(r, b ; f)+\bar{N}(r, \infty ; f)\}-\frac{1}{2} T(r, f)+S(r, f)+S(r, g)
\end{align*}
$$

So using (3.5), Lemmas 2.1 and 2.3 and proceeding as in (3.2) we get from second fundamental theorem for $\varepsilon>0$ that

$$
\begin{align*}
& (n+1) T(r, f) \tag{3.6}\\
\leq & 2\{\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)+\bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, b ; g) \\
& +\bar{N}(r, \infty ; g)\}-T(r, g)-\frac{1}{2} T(r, f) \\
& +\frac{1}{2}\{\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)+\bar{N}(r, \infty ; f)\}+S(r, f)+S(r, g) \\
\leq & \left(12-2 \Theta_{f}-2 \Theta_{g}-\frac{1}{2} \Theta(0 ; f)-\frac{1}{2} \Theta(\infty ; f)-\frac{1}{2} \Theta(b ; f)+\varepsilon\right) T(r)+S(r) .
\end{align*}
$$

Similarly we can obtain

$$
\begin{align*}
& (n+1) T(r, g) \tag{3.7}\\
\leq & \left(12-2 \Theta_{f}-2 \Theta_{g}-\frac{1}{2} \Theta(0 ; g)-\frac{1}{2} \Theta(\infty ; g)-\frac{1}{2} \Theta(b ; g)+\varepsilon\right) T(r)+S(r) \text {. }
\end{align*}
$$

Combining (3.6) and (3.7) we see that

$$
\begin{align*}
& \left(n-11+2 \Theta_{f}+2 \Theta_{g}+\frac{1}{2} \min \{\Theta(0 ; f)+\Theta(\infty ; f)+\Theta(b ; f)\right. \tag{3.8}\\
& \Theta(0 ; g)+\Theta(\infty ; g)+\Theta(b ; g)\}-\varepsilon) T(r) \leq S(r)
\end{align*}
$$

Since $\varepsilon>0$, (3.8) leads to a contradiction.
Subcase 1.2. $m=0$. Using Lemma 2.2 we note that

$$
\begin{align*}
& \bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\bar{N}_{E}^{(2}(r, 1 ; F)+2 \bar{N}_{L}(r, 1 ; G)+2 \bar{N}_{L}(r, 1 ; F) \tag{3.9}\\
\leq & \bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\bar{N}_{E}^{(2}(r, 1 ; G)+\bar{N}_{L}(r, 1 ; G)+\bar{N}_{L}(r, 1 ; G)+2 \bar{N}_{L}(r, 1 ; F) \\
\leq & \bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\bar{N}(r, 1 ; G \mid \geq 2)+\bar{N}_{L}(r, 1 ; G)+2 \bar{N}_{L}(r, 1 ; F) \\
\leq & N\left(r, 0 ; g^{\prime} \mid g \neq 0, b\right)+\bar{N}(r, 1 ; G \mid \geq 2)+2 \bar{N}(r, 1 ; F \mid \geq 2) \\
\leq & 2\left\{N\left(r, 0 ; g^{\prime} \mid g \neq 0, b\right)+N\left(r, 0 ; f^{\prime} \mid f \neq 0, b\right)\right\} \\
\leq & 2\{\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; g)+\bar{N}(r, b ; g)+\bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f) \\
& +\bar{N}(r, b ; f)\}-2 T(r, f)-2 T(r, g)+S(r, f)+S(r, g) .
\end{align*}
$$

Hence using (3.9), Lemmas 2.1 and 2.3 we get from second fundamental
theorem for $\varepsilon>0$ that

$$
\begin{align*}
& (n+1) T(r, f) \tag{3.10}\\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)+\bar{N}(r, \infty ; f)+N_{E}^{1)}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; F) \\
& +\bar{N}_{L}(r, 1 ; G)+\bar{N}_{E}^{(2}(r, 1 ; F)-N_{0}\left(r, 0 ; f^{\prime}\right)+S(r, f) \\
\leq & 2\{\bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+\bar{N}(r, b ; f)\}+\bar{N}(r, 0 ; g)+\bar{N}(r, b ; g) \\
& +\bar{N}(r, \infty ; g)+\bar{N}_{E}^{(2}(r, 1 ; F)+2 \bar{N}_{L}(r, 1 ; G)+2 \bar{N}_{L}(r, 1 ; F) \\
& +\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+S(r, f)+S(r, g) \\
\leq & 4\{\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)+\bar{N}(r, \infty ; f)\}+3\{\bar{N}(r, 0 ; g) \\
& +\bar{N}(r, b ; g)+\bar{N}(r, \infty ; g)\}-2 T(r, f)-2 T(r, g)+S(r, f)+S(r, g) \\
\leq & \left(17-3 \Theta_{f}-3 \Theta_{g}-\Theta(0 ; f)-\Theta(\infty ; f)-\Theta(b ; f)+\varepsilon\right) T(r)+S(r) .
\end{align*}
$$

In a similar manner we can obtain

$$
\begin{align*}
& (n+1) T(r, g) \tag{3.11}\\
\leq & \left(17-3 \Theta_{f}-3 \Theta_{g}-\Theta(0 ; g)-\Theta(\infty ; g)-\Theta(b ; g)+\varepsilon\right) T(r)+S(r)
\end{align*}
$$

Combining (3.10) and (3.11) we see that

$$
\begin{align*}
& \left(n-16+3 \Theta_{f}+3 \Theta_{g}+\min \{\Theta(0 ; f)+\Theta(b ; f)+\Theta(\infty ; f),\right. \tag{3.12}\\
& \Theta(0 ; g)+\Theta(b ; g)+\Theta(\infty ; g)\}-\varepsilon) T(r) \leq S(r) .
\end{align*}
$$

Since $\varepsilon>0$, (3.12) leads to a contradiction.
Case 2. Suppose that $H \equiv 0$. Now proceeding in the same way as done in the [2] we can prove $f \equiv g$.

References

[1] A. Banerjee, On Uniqueness Of Meromorphic Functions That Share Two Sets, Georgian Math. J., 15 no. 1 (2008) 21-38.
[2] T. C. Alzahary, Meromorphic Functions With Weighted Sharing of One Set, Kyungpook Math.J., 472007 57-68.
[3] S. Bartels, Meromorphic functions sharing a set with 17 elements ignoring multiplicities, Complex Var. Theory Appl., 39 (1998), 85-92.
[4] M. Fang and X.H.Hua, Meromorphic functions that share one finite set CM, J. Nanjing Univ. Math. Biquart., 1 (1998), 15-22.
[5] M. Fang and H.Guo, On unique range sets for meromorphic or entire functions, Acta Math. Sinica (New Ser.), 14 no. 4 (1998), 569-576.
[6] G. Frank and M. Reinders, A unique range set for meromorphic functions with 11 elements, Complex Var. Theory Appl., 37 (1998), 185-193.
[7] F. Gross, Factorization of meromorphic functions and some open problems, Proc. Conf. Univ. Kentucky, Leixngton, Ky (1976); Lecture Notes in Math., 599 (1977), 51-69, Springer(Berlin).
[8] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).
[9] Q. Han and H. X. Yi, Some further results on meromorphic functions that share two sets, Ann. Polon. Math., 93(1) (2008), 17-31.
[10] I. Lahiri, Value distribution of certain differential polynomials, Int. J. Math. Math. Sci., 28 (2) (2001), 83-91.
[11] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161 (2001), 193-206.
[12] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., 46 (2001), 24.
[13] I. Lahiri and A. Banerjee, Uniqueness of meromorphic functions with deficient poles, Kyungpook Math. J., 44 (2004), 575-584.
[14] I. Lahiri and S. Dewan, Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J., 26 (2003), 95-100.
[15] P. Li and C. C. Yang, Some further results on the unique range sets of meromorphic functions, Kodai Math. J., 18 (1995), 437-450.
[16] P. Li and C. C. Yang, On the unique range sets for meromorphic functions, Proc. Amer. Math. Soc., 124 (1996), 177-185.
[17] E. Mues and M. Reinders, Meromorphic functions sharing one value and unique range sets, Kodai Muth. J., 18 (1995), 515-522.
[18] C. C. Yang, On deficiencies of differential polynomials II, Math. Z., 125 (1972), 107-112.
[19] Y. Xu, Meromorphic functions sharing one finite set, Comp. Math. Appl., 45 (2003), 1489-1495.
[20] H. X. Yi, On a question of Gross, Sci. China (Ser.A) 38 (1995), 8-16.
[21] H. X. Yi, A question of Gross and the uniqueness of entire functions, Nagoya Math. J., 138 (1995), 169-177.
[22] H. X. Yi, Unicity theorems for meromorphic or entire functions III, Bull. Austral. Math. Soc., 53 (1996), 71-82.
[23] H. X. Yi, Meromorphic functions that share one or two values II, Kodai Math. J., 22 (1999), 264-272.

[^0]: *2000 Mathematics Subject Classification. Primary 30D35.
 ${ }^{\dagger}$ Corresponding author. E-mail: abanerjee_kal@yahoo.co.in, abanerjeekal@gmail.com
 ${ }^{\ddagger}$ E-mail: sujoy.katwa@gmail.com

