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Abstract

The partial sum of Jacobi series of an entire function

f(z) =
∞∑
k=0

qk(z)[γ(z)]k−1,

where γ(z) is a polynomial of degree ξ and qk(z) is a uniquely de-
termined polynomial of degree ξ − 1 or less, interpolate f(z) at the
zeros of γ(z). Let B be a Caratheodory domain. For 1 ≤ p ≤ ∞,
let Lp(B) be the class of all functions f holomorphic in B such that
||f ||B,p = [ 1

A

∫ ∫
B |f(z)|pdxdy]1/p < ∞, where A is the area of B. For

f ∈ Lp(B), set
Epm(f) = inf

t∈πm
||f − t||B,p,

πm consists of all polynomials of degree at most m = ξk. This paper
deals with generalized growth parameters in terms of above approxima-
tion error in Lp − norm on B.
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1. Introduction

For a given polynomial γ(z) of degree ξ let

f(z) =
∞∑
k=0

qk(z)[γ(z)]k−1 (1.1)

be an entire function, where qk(z), k = 1, 2, 3, .... is a uniquely determined
polynomial of degree atmost ξ − 1 or less. The partial sums of the series in
(1.1) interpolate the function f(z) at the zeros of the polynomial γ(z). For
γ(z) = z the series (1.1) reduces to the Taylor series expansion of f(z) at the
origin.

Let B denote a Caratheodory domain, that is, a bounded simply connected
domain such that the boundary of B coincides with the boundary of the do-
main lying in the complement of the closure of B and containing the point
∞. In particular, a domain bounded by a Jordan Curve is a Caratheodory
domain. Let Lp(B), 1 ≤ p ≤ ∞, be the class of all functions f holomorphic on
B and satisfying

||f ||B,p = [
1

A

∫ ∫
B

|f(z)|pdxdy]1/p <∞,

where the last inequality is understood to be supz∈B |f(z)| < ∞ for p = ∞.
Then ||||B,p is called the Lp − norm on Lp(B).

Consider the function

Hα∗(w) =
∞∑
k=1

||qk(z)||Γα∗w
k, α∗ < R,

where ΓR be the leminiscate ΓR = {z : |γ(z)| = R}, ||ΓR|| be the length of ΓR
and M(ΓR, f) = ||f(z)||ΓR = maxz∈ΓR |f(z)|, ||qk(z)||Γα∗ = maxz∈Γα∗{|qk(z)|}
as k →∞.

It is known [5, Lemma 2] that if f(z) is analytic in ΓR, then there exists a
polynomial Q(z) of degree ξ− 1 independent of k and R such that for α∗ < R
and k = 1, 2, ....

||qk(z)||Γα∗ ≤
||ΓR||M(ΓR, f)

2πRk
||Q(z)||ΓR . (1.2)
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Using (1.2) we can easily seen that Hα∗(w) is entire if and only if

[||qk(z)||Γα∗ ]
1/k = 0. (1.3)

Moreover, Hα∗(w) =
∑∞

k=1 ||qk(z)||Γα∗wk holds in the whole complex plane.
For f ∈ Lp(B), we define Ep

m(f), the error in approximating the function f by
polynomial of degree at most m = ξn in Lp − norm as

Ep
m(f) = Ep

m(f,B) = inf
t∈πm
||f − t||B,p, n = 0, 1, 2, ..... (1.4)

where πm consists of all polynomials of degree at most m = ξn.
Let L∗∗ denote the class of functions h(x) satisfying conditions (H,i) and

(H,ii):
(H,i) h(x) is defined on [a,∞), is positive, strictly increasing and differen-

tiable, and tends ∞ as x→∞.
(H,ii) limx→∞

h[x(1+φ(x))]
h(x)

= 1

for every function φ(x) such that φ(x)→ 0 as x→∞.
Let 4 denote the class of functions h(x) satisfying conditions (H,i) and

(H,iii):

(H,iii)limx→∞
h(cx)
h(x)

= 1 for every 0 < c <∞.

Kapoor and Nautiyal [4] defined generalized growth parameters ρ(α, β, f)
and λ(α, β, f) of an entire function f(z) as

ρ(α, α, f)
λ(α, α, f)

= lim
R→∞

sup
inf

α(logM(ΓR, H))

β(R1/ξ)
(1.5)

where α(x) ∈ Λ and β(x) ∈ L∗∗ generalized various results, cf. [1], [2].

The generalized orders of an entire function f(z) have been characterized
in terms of ||qk(z)||Γα∗ . They have obtained these results under the condition :

d[β−1(α(x))]

d(log x)
= o(1)

as x → ∞. Clearly his results fail to exist for the functions α(x) = β(x). To
include this class of functions we have defined generalized growth parameters
analogous to Kapoor and Nautiyal [3] in a new setting as follows:
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Let Ω be the class of functions h(x) satisfying (H,i) and (H,iv):

(H,iv) There exists a δ(x) ∈ Λ and x0, K1 and K2 such that

0 < K1 ≤
d(h(x))

d(δ(log x))
≤ K2 <∞,∀x > x0.

Let Ω̄ be the class of functions h(x) satisfying (H,i) and (H,v) :

(H,v) limx→∞
d(h(x))
d(log x)

≤ K, 0 < K <∞.

The generalized growth parameters of an entire function f(z) are defined as

ρ(α, α, f)
λ(α, α, f)

= lim
R→∞

sup
inf

α(logM(ΓR, f))

α(logR1/ξ)
(1.6)

where α(x) either belongs to Ω or Ω̄ and

µ(R, f) = max
k≥0

[||qk(z)||Γα∗R
k]

Kapoor and Nautiyal [4] have characterized generalized growth parameters
for entire functions of fast growth in terms of ||qk(z)||Γα∗ in sup norm. It has
been noticed that, the interrelation between the growth of an entire function
in terms of ||qk(z)||Γα∗ and approximation error in Lp − norm has been com-
pletely neglected.

In this paper we study the approximations of entire functions in Lp−norm
on Caratheodory domains. The compact set is a very particular case of
Caratheodory domain. The generalized growth parameters of an entire func-
tion have been characterized in terms of the approximation error Ep

n(f) defined
by (1.4), our results applies satisfactorily for slow growth.

Let B∗ be the component of the complement of the closure of the Carathe-
odory domain B that contains the point ∞. Set BR = {z : | ¯φ(z)| = R}, R > 1
where the function w∗ = ¯φ(z) maps B∗ conformally on to |w∗| > 1 such that
φ̄(∞) = ∞ and φ̄′(∞) > 0. Here BR is the largest equipotential curve of the
modulus of the mapping function associated with the domain B. B1 corre-
sponds to the boundary of B.

Given ε > 0 there is a lemniscate Γα∗ = {z : |γ(z)| = α∗} so that Γα∗ is
interior to B1+ε and exterior to B1.
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2. Auxiliary Results

In this section we mention certain lemmas which will be used in the sequel.
Lemma 2.1 Let f(z) =

∑∞
k=0 qk(z)[γ(z)]k−1 be an entire function having

generalized growth parameters ρ(α, α, f) and λ(α, α, f). Then

ρ(α, α, f)
λ(α, α, f)

= lim
R→∞

sup
inf

α(log M̄(ΓR, f))

α(logR1/ξ)

where

M̄(ΓR, f) = max
z∈BR

|f(z)|.

Proof. Let z0 be a fixed point of the set B and R > 1. Then in view of
Winiarski [7],

R− 2|B| − |z0| ≤ |z| ≤ R + |B|+ |z0|, z ∈ BR.

Using logKx ∼ log x as x→∞, 0 < K <∞, we get

logM(Tξ∗R, f) ≤ log M̄(ΓR, f) ≤ logM(ΓηR, f)

for ξ∗ < 1 and η > 1. Also, we have that z ∈ ΓR implies that |z| =
R1/ξ(1 + o(1)), R→∞. Now Lemma 21 is immediate in view of (1.6).

Lemma 2.2 Let f ∈ Lp(B), 1 ≤ p ≤ ∞, be the restriction to B of an en-
tire function having generalized growth parameters ρ(α, α, f) and λ(α, α, f).
Then Hα∗(w) =

∑∞
k=1 ||qk(z)||α∗wk is an entire function. Further ρ(α, α, f) =

ρ(α, α,Hα∗) and λ(α, α, f) = λ(α, α,Hα∗) also hold.

Proof. First, we have seen that Hα∗ is entire by (1.3). From [6,p.77] for
R > α∗, we have

||qk(z)||ΓR ≤ ||qk(z)||Γα∗R
ξ−1,

for z ∈ ΓR

|f(z)| ≤
∞∑
k=1

||qk(z)||ΓR ||γ(z)||k−1
ΓR
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or

M̄(ΓR, f) ≤
∞∑
k=1

||qk(z)||Γα∗R
k+ξ−2, z ∈ BR

= Rξ−2

∞∑
k=1

||qk(z)||Γα∗R
k

= Rξ−2Hα∗(R), R > 1. (2.1)

Thus using Lemma 2.1 and the fact that either α ∈ Ω or Ω̄, (2.1) gives

ρ(α, α, f) ≤ ρ(α, α,Hα∗);λ(α, α, f) ≤ λ(α, α,Hα∗) (2.2)

Using the estimate

||ΓR|| = 2πR1/ξ(1 + o(1)), R→∞,

we have for every ε > 0,

Hα∗(R/e
ε) =

∞∑
k=1

||qk(z)||Γα∗ (R/e
ε)k

≤
∞∑
k=1

M̄(ΓR, f)||ΓR||.||Q||Γα∗ (R/eε)k

2πRk

= M̄(ΓR, f)R1/ξ(1 + o(1))||Q||Γα∗
∞∑
k=1

1

ekε

= M̄(ΓR, f)R1/ξ(1 + o(1))||Q||Γα∗
∞∑
k=1

1

(eε − 1)

Thus, using Theorem 3 of [3], Lemma 2.1 and the fact, that either α ∈ Ω or
Ω̄, we obtain

ρ(α, α,Hα∗) ≤ ρ(α, α, f);λ(α, α,Hα∗) ≤ λ(α, α, f). (2.3)

Combining (2.2) and (2.3), result follows for 0 ≤ p ≤ ∞.

Lemma 2.3 Let f ∈ Lp(B), 1 ≤ p ≤ ∞, be the restriction to B of an en-
tire function having generalized growth parameters ρ(α, α, f) and λ(α, α, f).
Then H̃(t∗) =

∑∞
k=1 E

p
m(f)t∗n is also an entire function Further we have

ρ(α, α, f) = ρ(α, α, H̃), λ(α, α, f) = λ(α, α, H̃).



Approximation Error and Generalized Orders of an Entire Function 231

Proof. From the definition of Ep
m(f), since Qm ∈ πm, we have

Ep
m(f) ≤ ||f −Qm||B,p ≤ A1/p max

z∈B
|f(z)−Qm(z)|,

where A is the area of B. From [6], we have

Ep
m(f) ≤

∞∑
k=n

||qk(z)||Γα∗α
∗k−1

∞∑
k=n

||ΓR||M̄(ΓR, f)

2πRk
||Q(z)||ΓRα∗k−1

For α∗ > 1 be fixed constant and R > α∗, we get

Ep
m(f) ≤ γM̄(ΓR, f)(

α∗

R
)n
(

1/(1− α∗

R
)

)
R1/ξ(1 + o(1)), (2.4)

for sufficiently large R, or

µ(R,α∗H̃) ≤ γM̄(ΓR, f)

(
R1+1/ξ

R− α∗

)
(1 + o(1)).

Now using the same reasoning as in Lemma 2.2, we obtain

ρ(α, α, H̃) ≤ ρ(α, α, f);λ(α, α, H̃) ≤ λ(α, α, f) (2.5)

Further, define the function

f̃(z) =
∞∑
k=0

(Pk+1(z)− Pk(z)) (2.6)

since

|Pk+1(z)− Pk(z)| ≤ ||Pk+1(z)− Pk(z|| ≤ 2||f − Pk(z)||, z ∈ B.

Using Walsh inequality, [6,p.77], we have

|Pk+1(z)− Pk(z)| ≤ 2||f − Pk(z)||2B,1R
′k, z ∈ BR′ , R

′ > 1.

On applying Holder’s inequality, we get

||Pk+1(z)− Pk(z)||/R′k ≤ 2Aq||f − Pk(z)||BR′ ,q
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where A is defined as earlier and q = 1−1/p, 1 ≤ p ≤ ∞. Since above inequality
holds for any polynomial Pk(z), so we have

||Pk+1(z)− Pk(z)||/R′k ≤ 2AqEp
k−1(f), 1 ≤ p <∞.

Now using (24), we get

|f̃(z)| ≤
∞∑
k=0

|Pk+1(z)− Pk(z)|

or

M̃(ΓR, f) ≤ |a0|+ 2Aq
∞∑
k=0

Ep
k−1(f)(RR′)k, z ∈ BR.

Using the fact that z ∈ ΓR implies that |z| = R1/ξξ(1 + o(1)), R → ∞. Thus
we have

≤ |a0|+ 2Aq(RR′)1/ξµ(R,R′, H̃). (2.7)

The right hand side of the series (2.6) converges for every R and therefore, the
series on the right of (2.4) converges uniformly on every compact subset of C
and so f̃(z) is entire and f̃(z) = f(z). Since limm→∞[Ep

m(f)]1/m = 0 by (2.4)
it follows that H̃(t∗) is entire. In view of Lemma 2.1, from (2.7) and α ∈ Ω or
Ω̄, we have

ρ(α, α, f) ≤ ρ(α, α, H̃);λ(α, α, f) ≤ λ(α, α, H̃) (2.8)

On combining (2.5) and (2.8) we get the required result.

3. Main Results

We shall use the following notations in proving the main theorems:

P ∗φ = max{1, v} if α(x) ∈ Ω,
= φ+ v if α(x) ∈ Ω̄.
We shall write P ∗(v) for P ∗1 (v).

Theorem 3.1. Let f ∈ Lp(B), 1 ≤ p ≤ ∞, be the restriction to B of an
entire function having generalized growth parameters ρ(α, α, f) and λ(α, α, f).
Then
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(i) ρ(α, α, f) = P ∗(L)

(ii) ρ(α, α, f) = P ∗(L∗),

where

L = lim
m→∞

sup
α(m)

α
(

1
m

logEp
m(f)−1

) ,m = ξn,

and

L∗ = lim
m→∞

sup
α(m)

α
(
log(Ep

m−1(f)/Ep
m(f))

) .
(iii) λ(α, α, f) = P ∗(l̄), where

l̄ = lim
m→∞

inf
α(m)

α
(

1
m

logEp
m(f)−1

) ,
(iv) If we take α(x) = α(α) on (−∞, a), then λ(α, α, f) ≥ P ∗(l∗), where

l∗ = lim
m→∞

inf
α(m)

α
(
log(Ep

m−1(f)/Ep
m(f))

) .
Theorem 3.2. Let f ∈ Lp(B), 1 ≤ p ≤ ∞, be the restriction to B of an
entire function having generalized growth parameters ρ(α, α, f), λ(α, α, f) and
if (Ep

m(f))/(Ep
m+1(f)) is nondecreasing, then

ρ(α, α, f) = P ∗(L) = P ∗(L∗)

and
λ(α, α, f) = P ∗(l̄) = P ∗(l∗).

Theorem 3.3. Let f ∈ Lp(B), 1 ≤ p ≤ ∞, be the restriction to B of an entire
function having generalized lower order λ(α, α, f). Then

(i) If α(x) ∈ Ω, we have

λ(α, α, f) = max
{mk}

[P ∗χ(l′)],mk = ξnk, (3.1)

and if we further take α(x) = α(a) on (−∞, a), then

λ(α, α, f) = max
{mk}

[Pχ(l′
∗
)], (3.2)
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where

χ ≡ χ({mk}) = lim
k→∞

inf
α(mk−1)

α(mk)

and

l′ ≡ l′{(mk)} = lim
k→∞

inf
α(mk−1)

α
(

1
mk

logEp
mk(f)−1

) ,
l′
∗ ≡ l′

∗
({mk}) = lim

k→∞
inf

α(mk−1)

α(log(Ep
mk−1(f)/Ep

mk(f)))
.

The maximum in (3.1) and (3.2) is taken over all increasing sequence {mk}
of positive integers. Further, {mk} if is the sequence of principal indices of the
entire function H̃(t∗) =

∑∞
m=0 E

p
m(f)t∗m and α(mk) ∼ α(mk+1) as k → ∞,

then (3.1) and (3.2) also hold for α(x) ∈ Ω̄.

Proof of Theorems 3.1, 3.2 and 3.3.The proof of above theorems fol-
lows in the same manner as Kapoor and Nautiyal [3, Theorems 4-6, Lemma
1] and Lemma 2.3.

Remark. The characterization of above growth parameters in terms of ||qk(z)||ΓR
can be obtain in a similar manner using the Lemma 2.2 by replacing ||qk(z)||ΓR
in place of Ep

m(f) in Theorems 3.1, 3.2 and 3.3.
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