Approximation Error and Generalized Orders of an Entire Function*

Devendra Kumar ${ }^{\dagger}$
Department of Mathematics, M. M. H. College
Ghaziabad-201001, U. P., India

Received December 9, 2007, Accepted December 9, 2008.

Abstract

The partial sum of Jacobi series of an entire function $$
f(z)=\sum_{k=0}^{\infty} q_{k}(z)[\gamma(z)]^{k-1}
$$ where $\gamma(z)$ is a polynomial of degree ξ and $q_{k}(z)$ is a uniquely determined polynomial of degree $\xi-1$ or less, interpolate $f(z)$ at the zeros of $\gamma(z)$. Let B be a Caratheodory domain. For $1 \leq p \leq \infty$, let $L^{p}(B)$ be the class of all functions f holomorphic in B such that $\|f\|_{B, p}=\left[\frac{1}{A} \iint_{B}|f(z)|^{p} d x d y\right]^{1 / p}<\infty$, where A is the area of B. For $f \in L^{p}(B)$, set $$
E_{m}^{p}(f)=\inf _{t \in \pi_{m}}\|f-t\|_{B, p}
$$ π_{m} consists of all polynomials of degree at most $m=\xi k$. This paper deals with generalized growth parameters in terms of above approximation error in $L_{p}-$ norm on B.

Keywords and Phrases: Jacobi series, Approximation error, Carath-eodory domain, Leminiscate, Generalized growth parameters.

[^0]
1. Introduction

For a given polynomial $\gamma(z)$ of degree ξ let

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} q_{k}(z)[\gamma(z)]^{k-1} \tag{1.1}
\end{equation*}
$$

be an entire function, where $q_{k}(z), k=1,2,3, \ldots$ is a uniquely determined polynomial of degree atmost $\xi-1$ or less. The partial sums of the series in (1.1) interpolate the function $f(z)$ at the zeros of the polynomial $\gamma(z)$. For $\gamma(z)=z$ the series (1.1) reduces to the Taylor series expansion of $f(z)$ at the origin.

Let B denote a Caratheodory domain, that is, a bounded simply connected domain such that the boundary of B coincides with the boundary of the domain lying in the complement of the closure of B and containing the point ∞. In particular, a domain bounded by a Jordan Curve is a Caratheodory domain. Let $L^{p}(B), 1 \leq p \leq \infty$, be the class of all functions f holomorphic on B and satisfying

$$
\|f\|_{B, p}=\left[\frac{1}{A} \iint_{B}|f(z)|^{p} d x d y\right]^{1 / p}<\infty
$$

where the last inequality is understood to be $\sup _{z \in B}|f(z)|<\infty$ for $p=\infty$. Then $\left\|\left\|\|_{B, p}\right.\right.$ is called the $L^{p}-$ norm on $L^{p}(B)$.

Consider the function

$$
H_{\alpha^{*}}(w)=\sum_{k=1}^{\infty}\left\|q_{k}(z)\right\|_{\Gamma_{\alpha^{*}}} w^{k}, \alpha^{*}<R,
$$

where Γ_{R} be the leminiscate $\Gamma_{R}=\{z:|\gamma(z)|=R\},\left\|\Gamma_{R}\right\|$ be the length of Γ_{R} and $M\left(\Gamma_{R}, f\right)=||f(z)||_{\Gamma_{R}}=\max _{z \in \Gamma_{R}}|f(z)|,\left\|q_{k}(z)\right\|_{\Gamma_{\alpha^{*}}}=\max _{z \in \Gamma_{\alpha^{*}}}\left\{\left|q_{k}(z)\right|\right\}$ as $k \rightarrow \infty$.

It is known [5, Lemma 2] that if $f(z)$ is analytic in Γ_{R}, then there exists a polynomial $Q(z)$ of degree $\xi-1$ independent of k and R such that for $\alpha^{*}<R$ and $k=1,2, \ldots$.

$$
\begin{equation*}
\left\|q_{k}(z)\right\|_{\Gamma_{\alpha^{*}}} \leq \frac{\left\|\Gamma_{R}\right\| M\left(\Gamma_{R}, f\right)}{2 \pi R^{k}}\|Q(z)\|_{\Gamma_{R}} \tag{1.2}
\end{equation*}
$$

Using (1.2) we can easily seen that $H_{\alpha^{*}}(w)$ is entire if and only if

$$
\begin{equation*}
\left[\left.\left\|q_{k}(z)\right\|\right|_{\Gamma_{\alpha^{*}}}\right]^{1 / k}=0 \tag{1.3}
\end{equation*}
$$

Moreover, $H_{\alpha^{*}}(w)=\left.\sum_{k=1}^{\infty}\left\|q_{k}(z)\right\|\right|_{\Gamma_{\alpha^{*}}} w^{k}$ holds in the whole complex plane. For $f \in L^{p}(B)$, we define $E_{m}^{p}(f)$, the error in approximating the function f by polynomial of degree at most $m=\xi n$ in $L^{p}-n o r m$ as

$$
\begin{equation*}
E_{m}^{p}(f)=E_{m}^{p}(f, B)=\inf _{t \in \pi_{m}}\|f-t\|_{B, p}, n=0,1,2, \ldots \ldots \tag{1.4}
\end{equation*}
$$

where π_{m} consists of all polynomials of degree at most $m=\xi n$.
Let $L^{* *}$ denote the class of functions $h(x)$ satisfying conditions (H, i) and (H,ii):
$(\mathrm{H}, \mathrm{i}) h(x)$ is defined on $[a, \infty)$, is positive, strictly increasing and differentiable, and tends ∞ as $x \rightarrow \infty$.
(H,ii) $\lim _{x \rightarrow \infty} \frac{h[x(1+\phi(x))]}{h(x)}=1$
for every function $\phi(x)$ such that $\phi(x) \rightarrow 0$ as $x \rightarrow \infty$.
Let \triangle denote the class of functions $h(x)$ satisfying conditions (H, i) and (H,iii):
(H,iii) $\lim _{x \rightarrow \infty} \frac{h(c x)}{h(x)}=1$ for every $0<c<\infty$.
Kapoor and Nautiyal [4] defined generalized growth parameters $\rho(\alpha, \beta, f)$ and $\lambda(\alpha, \beta, f)$ of an entire function $f(z)$ as

$$
\begin{align*}
& \rho(\alpha, \alpha, f)=\lim _{R \rightarrow \infty} \sup _{\inf } \frac{\alpha\left(\log M\left(\Gamma_{R}, H\right)\right)}{\beta(\alpha, \alpha, f)} \frac{\beta\left(R^{1 / \xi}\right)}{\lambda(\alpha)}, ~ \tag{1.5}
\end{align*}
$$

where $\alpha(x) \in \Lambda$ and $\beta(x) \in L^{* *}$ generalized various results, cf. [1], [2].
The generalized orders of an entire function $f(z)$ have been characterized in terms of $\left\|q_{k}(z)\right\|_{\Gamma_{\alpha^{*}}}$. They have obtained these results under the condition :

$$
\frac{d\left[\beta^{-1}(\alpha(x))\right]}{d(\log x)}=o(1)
$$

as $x \rightarrow \infty$. Clearly his results fail to exist for the functions $\alpha(x)=\beta(x)$. To include this class of functions we have defined generalized growth parameters analogous to Kapoor and Nautiyal [3] in a new setting as follows:

Let Ω be the class of functions $h(x)$ satisfying (H,i) and (H,iv):
$(\mathrm{H}, \mathrm{iv})$ There exists a $\delta(x) \in \Lambda$ and x_{0}, K_{1} and K_{2} such that

$$
0<K_{1} \leq \frac{d(h(x))}{d(\delta(\log x))} \leq K_{2}<\infty, \forall x>x_{0}
$$

Let $\bar{\Omega}$ be the class of functions $h(x)$ satisfying (H, i) and (H, v) :
$(\mathrm{H}, \mathrm{v}) \lim _{x \rightarrow \infty} \frac{d(h(x))}{d(\log x)} \leq K, 0<K<\infty$.
The generalized growth parameters of an entire function $f(z)$ are defined as

$$
\begin{align*}
& \rho(\alpha, \alpha, f) \tag{1.6}\\
& \lambda(\alpha, \alpha, f)
\end{align*}=\lim _{R \rightarrow \infty} \sup _{\inf } \frac{\alpha\left(\log M\left(\Gamma_{R}, f\right)\right)}{\alpha\left(\log R^{1 / \xi}\right)}
$$

where $\alpha(x)$ either belongs to Ω or $\bar{\Omega}$ and

$$
\mu(R, f)=\max _{k \geq 0}\left[\left\|q_{k}(z)\right\| \|_{\Gamma_{\alpha^{*}}} R^{k}\right]
$$

Kapoor and Nautiyal [4] have characterized generalized growth parameters for entire functions of fast growth in terms of $\left\|q_{k}(z)\right\|_{\Gamma_{\alpha^{*}}}$ in sup norm. It has been noticed that, the interrelation between the growth of an entire function in terms of $\left\|q_{k}(z)\right\|_{\Gamma_{\alpha^{*}}}$ and approximation error in $L^{p}-$ norm has been completely neglected.

In this paper we study the approximations of entire functions in L^{p} - norm on Caratheodory domains. The compact set is a very particular case of Caratheodory domain. The generalized growth parameters of an entire function have been characterized in terms of the approximation error $E_{n}^{p}(f)$ defined by (1.4), our results applies satisfactorily for slow growth.

Let B^{*} be the component of the complement of the closure of the Caratheodory domain B that contains the point ∞. Set $B_{R}=\{z:|\phi \overline{(z)}|=R\}, R>1$ where the function $w^{*}=\phi \overline{(z)}$ maps B^{*} conformally on to $\left|w^{*}\right|>1$ such that $\bar{\phi}(\infty)=\infty$ and $\bar{\phi}^{\prime}(\infty)>0$. Here B_{R} is the largest equipotential curve of the modulus of the mapping function associated with the domain $B . B_{1}$ corresponds to the boundary of B.

Given $\varepsilon>0$ there is a lemniscate $\Gamma_{\alpha^{*}}=\left\{z:|\gamma(z)|=\alpha^{*}\right\}$ so that $\Gamma_{\alpha^{*}}$ is interior to $B_{1+\varepsilon}$ and exterior to B_{1}.

2. Auxiliary Results

In this section we mention certain lemmas which will be used in the sequel.
Lemma 2.1 Let $f(z)=\sum_{k=0}^{\infty} q_{k}(z)[\gamma(z)]^{k-1}$ be an entire function having generalized growth parameters $\rho(\alpha, \alpha, f)$ and $\lambda(\alpha, \alpha, f)$. Then

$$
\begin{aligned}
& \rho(\alpha, \alpha, f)=\lim _{R \rightarrow \infty} \sup _{\inf } \frac{\alpha\left(\log \bar{M}\left(\Gamma_{R}, f\right)\right)}{\alpha\left(\log R^{1 / \xi}\right)} \\
& \lambda(\alpha, \alpha, f)
\end{aligned}
$$

where

$$
\bar{M}\left(\Gamma_{R}, f\right)=\max _{z \in B_{R}}|f(z)| .
$$

Proof. Let z_{0} be a fixed point of the set B and $R>1$. Then in view of Winiarski [7],

$$
R-2|B|-\left|z_{0}\right| \leq|z| \leq R+|B|+\left|z_{0}\right|, z \in B_{R}
$$

Using $\log K x \sim \log x$ as $x \rightarrow \infty, 0<K<\infty$, we get

$$
\log M\left(T_{\xi^{*} R}, f\right) \leq \log \bar{M}\left(\Gamma_{R}, f\right) \leq \log M\left(\Gamma_{\eta R}, f\right)
$$

for $\xi^{*}<1$ and $\eta>1$. Also, we have that $z \in \Gamma_{R}$ implies that $|z|=$ $R^{1 / \xi}(1+o(1)), R \rightarrow \infty$. Now Lemma 21 is immediate in view of (1.6).

Lemma 2.2 Let $f \in L^{p}(B), 1 \leq p \leq \infty$, be the restriction to B of an entire function having generalized growth parameters $\rho(\alpha, \alpha, f)$ and $\lambda(\alpha, \alpha, f)$. Then $H_{\alpha^{*}}(w)=\sum_{k=1}^{\infty}\left\|q_{k}(z)\right\|_{\alpha^{*}} w^{k}$ is an entire function. Further $\rho(\alpha, \alpha, f)=$ $\rho\left(\alpha, \alpha, H_{\alpha^{*}}\right)$ and $\lambda(\alpha, \alpha, f)=\lambda\left(\alpha, \alpha, H_{\alpha^{*}}\right)$ also hold.

Proof. First, we have seen that $H_{\alpha^{*}}$ is entire by (1.3). From [6,p.77] for $R>\alpha^{*}$, we have

$$
\left\|q_{k}(z)\right\|_{\Gamma_{R}} \leq\left\|q_{k}(z)\right\|_{\Gamma_{\alpha^{*}}} R^{\xi-1}
$$

for $z \in \Gamma_{R}$

$$
|f(z)| \leq \sum_{k=1}^{\infty}\left\|q_{k}(z)\right\|_{\Gamma_{R}}\|\gamma(z)\|_{\Gamma_{R}}^{k-1}
$$

or

$$
\begin{align*}
\bar{M}\left(\Gamma_{R}, f\right) & \leq \sum_{k=1}^{\infty}\left\|q_{k}(z)\right\|_{\Gamma_{\alpha^{*}}} R^{k+\xi-2}, z \in B_{R} \\
& =R^{\xi-2} \sum_{k=1}^{\infty}\left\|q_{k}(z)\right\|_{\Gamma_{\alpha^{*}}} R^{k} \\
& =R^{\xi-2} H_{\alpha^{*}}(R), R>1 . \tag{2.1}
\end{align*}
$$

Thus using Lemma 2.1 and the fact that either $\alpha \in \Omega$ or $\bar{\Omega}$, (2.1) gives

$$
\begin{equation*}
\rho(\alpha, \alpha, f) \leq \rho\left(\alpha, \alpha, H_{\alpha^{*}}\right) ; \lambda(\alpha, \alpha, f) \leq \lambda\left(\alpha, \alpha, H_{\alpha^{*}}\right) \tag{2.2}
\end{equation*}
$$

Using the estimate

$$
\left\|\Gamma_{R}\right\|=2 \pi R^{1 / \xi}(1+o(1)), R \rightarrow \infty
$$

we have for every $\varepsilon>0$,

$$
\begin{aligned}
H_{\alpha^{*}}\left(R / e^{\varepsilon}\right) & =\sum_{k=1}^{\infty}\left\|q_{k}(z)\right\|_{\Gamma_{\alpha^{*}}}\left(R / e^{\varepsilon}\right)^{k} \\
& \leq \sum_{k=1}^{\infty} \frac{\bar{M}\left(\Gamma_{R}, f\right)\left\|\Gamma_{R}\right\| \cdot\|Q\|_{\Gamma_{\alpha^{*}}}\left(R / e^{\varepsilon}\right)^{k}}{2 \pi R^{k}} \\
& =\bar{M}\left(\Gamma_{R}, f\right) R^{1 / \xi}(1+o(1))\|Q\|_{\Gamma_{\alpha^{*}}} \sum_{k=1}^{\infty} \frac{1}{e^{k \varepsilon}} \\
& =\bar{M}\left(\Gamma_{R}, f\right) R^{1 / \xi}(1+o(1))\|Q\|_{\Gamma_{\alpha^{*}}} \sum_{k=1}^{\infty} \frac{1}{\left(e^{\varepsilon}-1\right)}
\end{aligned}
$$

Thus, using Theorem 3 of [3], Lemma 2.1 and the fact, that either $\alpha \in \Omega$ or $\bar{\Omega}$, we obtain

$$
\begin{equation*}
\rho\left(\alpha, \alpha, H_{\alpha^{*}}\right) \leq \rho(\alpha, \alpha, f) ; \lambda\left(\alpha, \alpha, H_{\alpha^{*}}\right) \leq \lambda(\alpha, \alpha, f) \tag{2.3}
\end{equation*}
$$

Combining (2.2) and (2.3), result follows for $0 \leq p \leq \infty$.
Lemma 2.3 Let $f \in L^{p}(B), 1 \leq p \leq \infty$, be the restriction to B of an entire function having generalized growth parameters $\rho(\alpha, \alpha, f)$ and $\lambda(\alpha, \alpha, f)$. Then $\tilde{H}\left(t^{*}\right)=\sum_{k=1}^{\infty} E_{m}^{p}(f) t^{* n}$ is also an entire function Further we have

$$
\rho(\alpha, \alpha, f)=\rho(\alpha, \alpha, \tilde{H}), \lambda(\alpha, \alpha, f)=\lambda(\alpha, \alpha, \tilde{H})
$$

Proof. From the definition of $E_{m}^{p}(f)$, since $Q_{m} \in \pi_{m}$, we have

$$
E_{m}^{p}(f) \leq\left\|f-Q_{m}\right\|_{B, p} \leq A^{1 / p} \max _{z \in B}\left|f(z)-Q_{m}(z)\right|
$$

where A is the area of B. From [6], we have

$$
\begin{gathered}
E_{m}^{p}(f) \leq \sum_{k=n}^{\infty}\left\|q_{k}(z)\right\|_{\Gamma_{\alpha^{*}}}{ }^{* k-1} \\
\sum_{k=n}^{\infty} \frac{\left\|\Gamma_{R}\right\| \bar{M}\left(\Gamma_{R}, f\right)}{2 \pi R^{k}}\|Q(z)\|_{\Gamma_{R}} \alpha^{* k-1}
\end{gathered}
$$

For $\alpha^{*}>1$ be fixed constant and $R>\alpha^{*}$, we get

$$
\begin{equation*}
E_{m}^{p}(f) \leq \gamma \bar{M}\left(\Gamma_{R}, f\right)\left(\frac{\alpha^{*}}{R}\right)^{n}\left(1 /\left(1-\frac{\alpha^{*}}{R}\right)\right) R^{1 / \xi}(1+o(1)) \tag{2.4}
\end{equation*}
$$

for sufficiently large R, or

$$
\mu\left(R, \alpha^{*} \tilde{H}\right) \leq \gamma \bar{M}\left(\Gamma_{R}, f\right)\left(\frac{R^{1+1 / \xi}}{R-\alpha^{*}}\right)(1+o(1)) .
$$

Now using the same reasoning as in Lemma 2.2, we obtain

$$
\begin{equation*}
\rho(\alpha, \alpha, \tilde{H}) \leq \rho(\alpha, \alpha, f) ; \lambda(\alpha, \alpha, \tilde{H}) \leq \lambda(\alpha, \alpha, f) \tag{2.5}
\end{equation*}
$$

Further, define the function

$$
\begin{equation*}
\tilde{f}(z)=\sum_{k=0}^{\infty}\left(P_{k+1}(z)-P_{k}(z)\right) \tag{2.6}
\end{equation*}
$$

since

$$
\left|P_{k+1}(z)-P_{k}(z)\right| \leq \| P_{k+1}(z)-P_{k}\left(z\|\leq 2\| f-P_{k}(z) \|, z \in B .\right.
$$

Using Walsh inequality, [6,p.77], we have

$$
\left|P_{k+1}(z)-P_{k}(z)\right| \leq 2\left\|f-P_{k}(z)\right\|_{B, 1}^{2} R^{\prime k}, z \in B_{R^{\prime}}, R^{\prime}>1
$$

On applying Holder's inequality, we get

$$
\left\|P_{k+1}(z)-P_{k}(z)\right\| / R^{\prime k} \leq 2 A^{q}\left\|f-P_{k}(z)\right\|_{B_{R^{\prime}}, q}
$$

where A is defined as earlier and $q=1-1 / p, 1 \leq p \leq \infty$. Since above inequality holds for any polynomial $P_{k}(z)$, so we have

$$
\left\|P_{k+1}(z)-P_{k}(z)\right\| / R^{k} \leq 2 A^{q} E_{k-1}^{p}(f), 1 \leq p<\infty
$$

Now using (24), we get

$$
|\tilde{f}(z)| \leq \sum_{k=0}^{\infty}\left|P_{k+1}(z)-P_{k}(z)\right|
$$

or

$$
\tilde{M}\left(\Gamma_{R}, f\right) \leq\left|a_{0}\right|+2 A^{q} \sum_{k=0}^{\infty} E_{k-1}^{p}(f)\left(R R^{\prime}\right)^{k}, z \in B_{R}
$$

Using the fact that $z \in \Gamma_{R}$ implies that $|z|=R^{1 / \xi} \xi(1+o(1)), R \rightarrow \infty$. Thus we have

$$
\begin{equation*}
\leq\left|a_{0}\right|+2 A^{q}\left(R R^{\prime}\right)^{1 / \xi} \mu\left(R, R^{\prime}, \tilde{H}\right) \tag{2.7}
\end{equation*}
$$

The right hand side of the series (2.6) converges for every R and therefore, the series on the right of (2.4) converges uniformly on every compact subset of C and so $\tilde{f}(z)$ is entire and $\tilde{f}(z)=f(z)$. Since $\lim _{m \rightarrow \infty}\left[E_{m}^{p}(f)\right]^{1 / m}=0$ by (2.4) it follows that $\tilde{H}\left(t^{*}\right)$ is entire. In view of Lemma 2.1, from (2.7) and $\alpha \in \Omega$ or $\bar{\Omega}$, we have

$$
\begin{equation*}
\rho(\alpha, \alpha, f) \leq \rho(\alpha, \alpha, \tilde{H}) ; \lambda(\alpha, \alpha, f) \leq \lambda(\alpha, \alpha, \tilde{H}) \tag{2.8}
\end{equation*}
$$

On combining (2.5) and (2.8) we get the required result.

3. Main Results

We shall use the following notations in proving the main theorems:
$P_{\phi}^{*}=\max \{1, v\}$ if $\alpha(x) \in \Omega$,
$=\phi+v$ if $\alpha(x) \in \bar{\Omega}$.
We shall write $P^{*}(v)$ for $P_{1}^{*}(v)$.
Theorem 3.1. Let $f \in L^{p}(B), 1 \leq p \leq \infty$, be the restriction to B of an entire function having generalized growth parameters $\rho(\alpha, \alpha, f)$ and $\lambda(\alpha, \alpha, f)$. Then
(i) $\rho(\alpha, \alpha, f)=P^{*}(L)$
(ii) $\rho(\alpha, \alpha, f)=P^{*}\left(L^{*}\right)$,
where

$$
L=\lim _{m \rightarrow \infty} \sup \frac{\alpha(m)}{\alpha\left(\frac{1}{m} \log E_{m}^{p}(f)^{-1}\right)}, m=\xi n,
$$

and

$$
L^{*}=\lim _{m \rightarrow \infty} \sup \frac{\alpha(m)}{\alpha\left(\log \left(E_{m-1}^{p}(f) / E_{m}^{p}(f)\right)\right)}
$$

(iii) $\lambda(\alpha, \alpha, f)=P^{*}(\bar{l})$, where

$$
\bar{l}=\lim _{m \rightarrow \infty} \inf \frac{\alpha(m)}{\alpha\left(\frac{1}{m} \log E_{m}^{p}(f)^{-1}\right)},
$$

(iv) If we take $\alpha(x)=\alpha(\alpha)$ on $(-\infty, a)$, then $\lambda(\alpha, \alpha, f) \geq P^{*}\left(l^{*}\right)$, where

$$
l^{*}=\lim _{m \rightarrow \infty} \inf \frac{\alpha(m)}{\alpha\left(\log \left(E_{m-1}^{p}(f) / E_{m}^{p}(f)\right)\right)}
$$

Theorem 3.2. Let $f \in L^{p}(B), 1 \leq p \leq \infty$, be the restriction to B of an entire function having generalized growth parameters $\rho(\alpha, \alpha, f), \lambda(\alpha, \alpha, f)$ and if $\left(E_{m}^{p}(f)\right) /\left(E_{m+1}^{p}(f)\right)$ is nondecreasing, then

$$
\rho(\alpha, \alpha, f)=P^{*}(L)=P^{*}\left(L^{*}\right)
$$

and

$$
\lambda(\alpha, \alpha, f)=P^{*}(\bar{l})=P^{*}\left(l^{*}\right)
$$

Theorem 3.3. Let $f \in L^{p}(B), 1 \leq p \leq \infty$, be the restriction to B of an entire function having generalized lower order $\lambda(\alpha, \alpha, f)$. Then
(i) If $\alpha(x) \in \Omega$, we have

$$
\begin{equation*}
\lambda(\alpha, \alpha, f)=\max _{\left\{m_{k}\right\}}\left[P_{\chi}^{*}\left(l^{\prime}\right)\right], m_{k}=\xi n_{k}, \tag{3.1}
\end{equation*}
$$

and if we further take $\alpha(x)=\alpha(a)$ on $(-\infty, a)$, then

$$
\begin{equation*}
\lambda(\alpha, \alpha, f)=\max _{\left\{m_{k}\right\}}\left[P_{\chi}\left(l^{\prime *}\right)\right], \tag{3.2}
\end{equation*}
$$

where

$$
\chi \equiv \chi\left(\left\{m_{k}\right\}\right)=\lim _{k \rightarrow \infty} \inf \frac{\alpha\left(m_{k-1}\right)}{\alpha\left(m_{k}\right)}
$$

and

$$
\begin{gathered}
l^{\prime} \equiv l^{\prime}\left\{\left(m_{k}\right)\right\}=\lim _{k \rightarrow \infty} \inf \frac{\alpha\left(m_{k-1}\right)}{\alpha\left(\frac{1}{m_{k}} \log E_{m_{k}}^{p}(f)^{-1}\right)}, \\
l^{\prime *} \equiv l^{\prime *}\left(\left\{m_{k}\right\}\right)=\lim _{k \rightarrow \infty} \inf \frac{\alpha\left(m_{k-1}\right)}{\alpha\left(\log \left(E_{m_{k-1}}^{p}(f) / E_{m_{k}}^{p}(f)\right)\right)} .
\end{gathered}
$$

The maximum in (3.1) and (3.2) is taken over all increasing sequence $\left\{m_{k}\right\}$ of positive integers. Further, $\left\{m_{k}\right\}$ if is the sequence of principal indices of the entire function $\tilde{H}\left(t^{*}\right)=\sum_{m=0}^{\infty} E_{m}^{p}(f) t^{* m}$ and $\alpha\left(m_{k}\right) \sim \alpha\left(m_{k+1}\right)$ as $k \rightarrow \infty$, then (3.1) and (3.2) also hold for $\alpha(x) \in \bar{\Omega}$.

Proof of Theorems 3.1, 3.2 and 3.3.The proof of above theorems follows in the same manner as Kapoor and Nautiyal [3, Theorems 4-6, Lemma 1] and Lemma 2.3.

Remark. The characterization of above growth parameters in terms of $\left\|q_{k}(z)\right\| \Gamma_{\Gamma_{R}}$ can be obtain in a similar manner using the Lemma 2.2 by replacing $\left\|q_{k}(z)\right\|_{\Gamma_{R}}$ in place of $E_{m}^{p}(f)$ in Theorems 3.1, 3.2 and 3.3.

References

[1] S. K. Bajpai and S. M. Shah, Approximation and interpolation of entire functions and generalized orders, Ann. Polon. Math., 37(1980), 157-166.
[2] O. P. Juneja and G. P. Kapoor, Polynomial coefficients of entire series, Yokohama Math. J. 22(1974), 125-133.
[3] G. P. Kapoor and A. Nautiyal, Polynomial approximation of an entire function of slow growth, J. Approx. Theory, 32(1981), 64-75.
[4] G. P. Kapoor and A. Nautiyal, Polynomial coefficients and generalized orders of an entire function, Math. Japonica 30, No.1(1985), 1-13.
[5] J. R. Rice, The degree of convergence for entire function, Duke Math. J. 38(1971), 429-440.
[6] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc., Providence, R.I. (1935).
[7] T. N. Winiarski, Approximation and interpolation of entire functions, Ann. Polon. Math. 23(1970), 259-273.

[^0]: *2000 Mathematics Subject Classification. 41D10; 30E10.
 †E-mail: d_kumar001@rediffmail.com

