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Abstract

There are three standard weight (distance) functions on a linear code
viz. the Hamming weight (distance), the Lee weight (distance) and the
Euclidean weight (distance). Plotkin [11] obtained an upper bound on
the minimum weight (distance) of a code with respect to the Hamming
weight (distance). A.D. Wyner and R.L. Graham [13] proved Plotkin’s
bound for Lee metric codes which was also conjectured by Lee [10]. The
first author also obtained another proof of Plotkin’s bound with the Lee
weight by a different approach [3]. In this paper, we obtain Plotkin’s
bound for codes equipped with the Euclidean weight function. The
Euclidean weight is useful in connection with the lattice constructions
where the minimum norm of vectors in the lattice is related to the
minimum Euclidean weight of the code [2]. Using Plotkin’s bound, we
obtain a bound on the number of parity check digits required to achieve
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the minimum Euclidean square distance at least d2 in a linear code. We
also make a comparative study of the bounds for the Euclidean codes
obtained in this paper with the corresponding bounds for the Hamming
and Lee weight codes.

Keywords and Phrases: Plotkin’s bound, Linear code, Euclidean weight.

1. Introduction

The minimum distance between any pair of code words in a code cannot exceed
the average distance between all pairs of different code words. Using this
observation, Plotkin [11] obtained the following upper bound for the minimum
distance of a linear code with respect to the Hamming distance. This bound
runs as follows:

Theorem 1.1.[5] The minimum distance (or minimum weight) of an (n, k)
linear code over GF (q)(q prime or power of prime ) is atmost as large as the
average weight nqk−1(q − 1)/(qk − 1).

In Section 2 of this paper we obtain Plotkin’s bound for linear codes
equipped with the Euclidean weight function. Using this bound, in Section 3
we obtain a bound on the number of parity check digits required to achieve
the minimum Euclidean square distance at least d2 in a linear code. Finally,
we make a comparative study of the bounds obtained in Section 2 and 3 of
this paper with the corresponding bounds for the Hamming and Lee weight
codes [3, 11].

In what follows, we consider the following:

Let Zq be the ring of integers modulo q. Let V n
q be the set of all n −

(tuples) over Zq. Then V n
q is a module over Zq. Let V be a submodule of

the module V n
q over Zq. For q prime, Zq becomes a field and correspondingly

V n
q and V become the vector space and subspace respectively over the field
Zq. Also, we define the Euclidean value |a|2 of an element a ∈ Zq by

|a|2 =

{
a2, if 0 ≤ a ≤ q/2;
(q − a)2, if q/2 < a ≤ q − 1,

or in other words

|a|2 = min(a2, (q − a)2),
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then, for a given vector u = (a0, a1, ..., an−1), ai ∈ Zq, the Euclidean weight
wE(u) of u is given by

wE(u) =
n−1∑
i=0

|ai|2.

Note that in determining the Euclidean weight of vector, a nonzero entry a
has a contribution |a|2 which is obtained by two different entries a and q − a
provided {q is odd } or {q is even and a 6= q/2}.

i.e.

|a|2 = |q − a|2 if


q is odd
or
q is even and a 6= q/2.

If q is even and a = q/2 or if a = 0 , then |a|2 is obtained in only one way viz.
|a|2 = a2.

Thus for the Euclidean weight, there may be one or two entries from
Zq having the same Euclidean value |a|2 and we call these entries as repet-
itive equivalent Euclidean values of a. The number of repetitive equivalent
Euclidean values of a will be denoted by ea where

ea =

{
1 if { q is even and a = q/2} or {a = 0}
2 if { q is odd and a 6= 0} or {q is even, a 6= 0 and a 6= q/2}.

The Euclidean square distance between the two vectors u = (a0, a1, ...,
an−1) and v = (b0, b1, ..., bn−1) is defined as the Euclidean weight of their
difference i.e.

d2
E(u, v) = wE(u− v).

The minimum Euclidean square distance of a code is the smallest Eu-
clidean square distance between all its distinct pair of code words. Also, the
minimum Euclidean square distance (d2

E) and the minimum Euclidean weight
of a code coincide.

Remark 1.1. The Euclidean square distance coincides with the Lee distance
and the Hamming distance over Z2 and Z3.

2. Plotkin’s Bound with the Euclidean Weight

To obtain the Plotkin’s bound with Euclidean weight, we need to find the sum
of the Euclidean weights of all the code words in a linear code over Zq(q prime).
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We obtain this sum in the next two lemmas.

Lemma 2.1. If all the code vectors in a linear code V over Zq(q prime) having
M elements are arranged as rows of a matrix, then each field element appears
M

q
times in each column. Assume that no column consists of all 0’s.

Proof. Let X be the subset of the given code consisting of those code words
whose first component is zero. Then X 6= φ as (0, 0, 0, · · · , 0) ∈ V .

The set X forms a subgroups of the additive group of V . Place all such
vectors (i.e. vectors with first component as zero) as the elements of first row
of an array. Pick a code vector of V which begins with 1 and place it below the
first element as the leading element of the second row. Complete the second
row by adding the leading vector to the vectors in the first row and placing the
sum below the corresponding vector. Note that all the elements in the second
row will have their first component as 1.

Again choose a code vector which begins with 2 and place it as the first
element in the third row. Complete the third row as earlier. Continuing in
this way, we arrive at the row whose leading vector begins with q − 1.

In the above array, we note that all the vectors in the ith row have their
first component as i− 1(1 ≤ i ≤ q). We claim that all the vectors in the code
V appear once and only once in such an array. The claim follows from the fact
that the rows of such an array are nothing but cosets of the subgroup X in the
group V and any two cosets are either disjoint or identically the same. Thus
the entire collection of vectors in V has been expressed as an array consisting
of q rows.

Since #V = M, therefore, # of elements in any row =
M

q
.

Thus there are
M

q
code words which have their first component as 0, 1,

and so on. Therefore, if all such vectors are put as rows of a matrix, then

every field element appears
M

q
times in the first column. Since the choice of

the column is arbitrary, we conclude that every field element appears
M

q
times

in every column. 2

Remark 2.1. We can also take Zq as ring instead of field (i.e. q different
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from prime). In that case we require an additional constraint on the linear
code V that it must contain at least one code word having first component as

1. The final result will be the same i.e. each ring element appears
M

q
times

in each column.

Lemma 2.2. The sum of the Euclidean weights of all code words in a linear
code V over Zq(q prime ) of length n and having M elements is

=


nM(q2 − 1)

12 if q is odd

nM(q2 + 2)
12 if q is even .

Proof. To compute the sum of the Euclidean weights of all the code words,
put all the code vectors as rows of a matrix. Then, in any column of such a
matrix

0 appears
M

q
times ,

1 appears
M

q
times ,

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
(q − 1) appears

M

q
times . (By Lemma 2.1)

Now, there are two cases:

(i) When q is odd (ii) when q is even

Case (i): When q is odd
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The Euclidean weight of a column is this case is

= 2

[
12.
M

q
+ 22.

M

q
+ · · ·+

(
q − 1

2

)2

.
M

q

]
=

2M

q

[
12 + 22 + · · ·+

(
q − 1

2

)2]

=
2M

q
.

(q − 1)

2
.
(q + 1)

2
. q

6

=
M(q2 − 1)

12
.

Case (ii): When q is even

The Euclidean weight of a column is this case is

= 2
M

q

[
12 + 22 + · · ·+

(
q − 2

2

)2]
+

(
q

2

)2

.
M

q

=
M(q − 1)(q − 2)

12
+
Mq

4

=
M(q2 + 2)

12
.

Since there are n columns in all, therefore, the total Euclidean weight of n
columns is

=


nM(q2 − 1)

12 if q is odd

nM(q2 + 2)
12 if q is even .

Since total column weight = total row weight, therefore, we conclude that sum
of Euclidean weights of all code words in a linear code V having M elements
is

=


nM(q2 − 1)

12 if q is odd

nM(q2 + 2)
12 if q is even .

2

Theorem 2.1. (Plotkin’s Upper Bound) The minimum Euclidean square dis-
tance (or the minimum Euclidean weight) of a linear code V over Zq(q prime)
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of length n and having M elements is atmost as large as the average Euclidean
weight 

nM(q2 − 1)
12(M − 1)

if q is odd

nM(q2 + 2)
12(M − 1)

if q is even .

Proof. By Lemma 2.2, the sum of the Euclidean weights of all the code words
in a linear code over Zq(q prime ) having M elements is

=


nM(q2 − 1)

12 if q is odd

nM(q2 + 2)
12 if q is even .

Also, # nonzero code words in V = M − 1,

⇒ the average Euclidean weight of code words is

=


nM(q2 − 1)
12(M − 1)

if q is odd

nM(q2 + 2)
12(M − 1)

if q is even .

Since the minimum Euclidean weight can not exceed the average Euclidean
weight, therefore, the weight of the minimum Euclidean weight code word is
atmost as large as


nM(q2 − 1)
12(M − 1)

if q is odd

nM(q2 + 2)
12(M − 1)

if q is even .

Therefore, if d2 is the minimum Euclidean square distance of the code, then

d2 ≤


nM(q2 − 1)
12(M − 1)

if q is odd

nM(q2 + 2)
12(M − 1)

if q is even .
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2

Remark 2.2. The Plotkin’s bound still holds for non prime q provided we
choose the linear code V such that it contains at least one code vector having
first component as 1.

3. Bound on Parity Check Digits for the Linear

Euclidean Weight Codes

We first prove a lemma.

Lemma 3.1. Let Bq(n, d
2) denote the maximum number of code words possible

in a linear code over Zq(q prime) of length n and the minimum Euclidean
square distance at least d2, then

Bq(n, d
2) ≤ qBq(n− 1, d2).

Proof. Let V be a linear code with n symbols and minimum Euclidean square
distance (or the minimum Euclidean weight) at least d2 that has Bq(n, d

2)
code words. Consider X to be a subset of V consisting of those code words of
V which have the last component as zero. Then X 6= φ as 0 = (0, 0, · · · 0) ∈ V .
The set X forms a subspace of V .

Now, as in Lemma 2.1, if we form cosets of X in V , we shall get q cosets.

Obviously,

# Vectors in X =
1

q
#V

=
1

q
Bq(n, d

2). (1)

Consider the set X ′ obtained from the vectors of X by deleting the last
component of all its vectors. Since the last component of all the vectors in
X is zero, therefore, the set X ′ is a linear code of length n − 1 having the
same number of elements and the same minimum Euclidean weight as that
of X. Since the minimum Euclidean square distance of code V is at least d2,
therefore, the Euclidean square distance between any two vectors of X is also
at least d2. This implies that the Euclidean square distance between any two
vectors of X ′ is also at least d2. Since Bq(n − 1, d2) denotes the maximum
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number of code words possible in a linear code of length n − 1 having the
minimum Euclidean square distance at least d2, therefore,

# X ′ ≤ Bq(n− 1, d2).

Also,

# X = # X ′.

Therefore,

#X ≤ Bq(n− 1, d2)

⇒ 1

q
Bq(n, d

2) ≤ Bq(n− 1, d2) (using (1))

⇒ Bq(n, d
2) ≤ qBq(n− 1, d2).

2

Theorem 3.1. If n ≥ 4(3d2 − 1)

q2 − 1
, the number of parity check digits required to

achieve the minimum Euclidean square distance at least d2 in an (n, k) linear
code V over Zq(q prime) is at least

4

(
3d2 − 1
q2 − 1

)
− logq3d

2, if q ≥ 3

(2d2 − 2)− log2d
2, if q = 2.

Proof. Number of elements in an (n, k) linear code V over the field Zq =
M = qk.

There are two cases.

(i) q ≥ 3, a prime number (ii) q = 2

Case (i): When q ≥ 3, a prime number.

Since q ≥ 3, a prime number is always an odd number, therefore from Plotkin’s
bound we have

d2 ≤ n(q2 − 1)M

12(M − 1)
=
n(q2 − 1)qk

12(qk − 1)
.
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For a code of length i, we get

d2 ≤ i(q2 − 1)qk

12(qk − 1)

⇒ 12d2(qk − 1) ≤ i(q2 − 1)qk

⇒ 12(qkd2 − d2) ≤ i(q2 − 1)qk

⇒ 12qkd2 − i(q2 − 1)qk ≤ 12d2

⇒ qk

(
3d2 − i

4
(q2 − 1)

)
≤ 3d2,

and if 3d2 − i

4
(q2 − 1) > 0 , we get

qk ≤ 3d2

3d2 − i

4
(q2 − 1)

⇒ Bq(i, d
2) = qk ≤ 3d2

3d2 − i

4
(q2 − 1)

. (2)

Choose i such that

3d2 − 1

q2 − 1
=
i

4
+ f where i is an integer and 0 ≤ f < 1, (3)

then

3d2 − i

4
(q2 − 1) = 1 + f(q2 − 1). (4)

Using (4) in (2) gives

Bq(i, d
2) ≤ 3d2

1 + f(q2 − 1)
. (5)

If n ≥ i, then

Bq(n, d
2) ≤ qn−iBq(i, d

2) (using repeated application of Lemma 3.1)

≤ q
n+4(f− 3d2−1

q2−1
)
.

3d2

1 + f(q2 − 1)
(using (3) and (5))

= q
n−4( 3d2−1

q2−1
)
.q4f .

3d2

1 + f(q2 − 1)

= q
n−4( 3d2−1

q2−1
)
.3d2.

q4f

1 + f(q2 − 1)
. (6)
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Now

q4f = [1 + (q − 1)]4f

≤ 1 + 4f(q − 1)

≤ 1 + (q + 1)f(q − 1) (since q ≥ 3)

= 1 + (q2 − 1)f

⇒ q4f

1 + f(q2 − 1)
≤ 1. (7)

Using (7) in (6) gives

Bq(n, d
2) ≤ q

n−4( 3d2−1

q2−1
)
.3d2

⇒ qk ≤ q
n−4( 3d2−1

q2−1
)
.3d2

⇒ k ≤ n− 4

(
3d2 − 1

q2 − 1

)
+ logq3d

2.

⇒ n− k ≥ 4

(
3d2 − 1

q2 − 1

)
− logq3d

2.

Case 2. For q = 2.

Since 2 is an even number, therefore, from Plotkin’s bound, we have

d2 ≤ nM(q2 + 2)

12(M − 1)
=
n.2k−1

2k − 1
.

For a code of length i, we get

d2 ≤ i.2k−1

2k − 1

⇒ 2k−1(2d2 − i) ≤ d2

⇒ 2k−1 ≤ d2

2d2 − i

⇒ B2(i, d
2) = 2k ≤ 2d2

2d2 − i
. (8)

Choose i such that

2d2 − 1 = i+ f where i is an integer and 0 ≤ f < 1,
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then

2d2 − i = 1 + f. (9)

Using (9) in (8) gives

B2(i, d
2) ≤ 2d2

1 + f
. (10)

Again, if n ≥ i, then

B2(n, d
2) ≤ 2n−iB2(i, d

2) (using repeated application of Lemma 3.1)

≤ 2n−(2d2−1).2f .
2d2

1 + f
(using (8) and (10))

= 2n−(2d2−1).2d2.
2f

1 + f

≤ 2n−(2d2−1).2d2.1 ( since 2f = (1 + 1)f ≤ 1 + f)

⇒ B2(n, d
2) ≤ 2n−(2d2−1).2d2

⇒ 2k ≤ 2n−2d2+2.d2

Taking log on both sides, we get

k ≤ n− 2d2 + 2 + log2d
2

⇒ k ≤ n− (2d2 − 2) + log2d
2

⇒ n− k ≥ (2d2 − 2)− log2d
2.

Combining the two cases, we get the result. 2

Remark 3.1. For q = 2, 3, the Euclidean square distance bound obtained
in Theorem 3.1 coincides with the corresponding bound for the Hamming
distance codes [11, Theorem 4.1] and the Lee distance codes [3, Theorem 3]
using the fact that the Euclidean square distance reduces to the Hamming and
Lee distance for binary and ternary cases.

For q = 3, the bound in Theorem 3.1 becomes

n− k ≥
(

3d2 − 1

2

)
− 1− log3d

2.
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or, equivalently

n− k ≥
(

3dL − 1

2

)
− 1− log3dL. ([3], Theorem 3)

or, equivalently

n− k ≥
(

3dH − 1

2

)
− 1− log3dH . ([11], Theorem 4.1)

where dL and dH are the minimum Lee and Hamming distances respectively.

4. Comparative Study

In this section, we compare Plotkin’s bound for an (n, k) linear code over
Zq(q prime) equipped with the Hamming distance, Lee distance and Euclidean
square distance respectively. The comparison has been presented in the form
of a table. Similar type of comparative study has been made for the bound
obtained in Theorem 3.1 of this paper.

4.1. Comparison of Plotkin’s bound

Plotkin’s bound for the Hamming distance codes is stated in Theorem 1.1
of this paper and the same has been obtained for Euclidean square distance
codes in Theorem 2.1 of this paper. We further state Plotkin’s bound for the
Lee distance codes [3].

Theorem 4.1.[3, Theorem 2] The minimum Lee distance (or the minimum
Lee weight) d of a linear code over Zq(q prime ) of length n having M elements
is atmost as large as the average Lee weight

nM(q2 − 1)
4q(M − 1)

if q is odd

nMq
4(M − 1)

if q is even .

Now, we make a comparison of Plotkin’s bound for an (n, k) linear code
over Zq(q prime) with respect to the Hamming distance, Lee distance and
Euclidean square distance.
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Table 4.1

Value of q Hamming distance Lee distance Euclidean square distance

q = 2,
n2k−1

2k − 1

n2k−1

2k − 1

n2k−1

2k − 1

q = 3,
2n3k−1

3k − 1

2n3k−1

3k − 1

2n3k−1

3k − 1

q = 5,
4n5k−1

5k − 1

6n5k−1

5k − 1

10n5k−1

5k − 1

q = 7,
6n7k−1

7k − 1

12n7k−1

7k − 1

28n7k−1

7k − 1

q = 11,
10n11k−1

11k − 1

30n11k−1

11k − 1

110n11k−1

11k − 1

q = 13
12n13k−1

13k − 1

42n13k−1

13k − 1

182n13k−1

13k − 1

q = 17
16n17k−1

17k − 1

72n17k−1

17k − 1

408n17k−1

17k − 1

From the above table, we observe that the maximum value of minimum weight
in an (n, k) linear code over Zq(q prime) with respect to the Hamming, Lee
and Euclidean weight functions coincides for q = 2, 3 and for q ≥ 5(q prime),
the ratio of maximum value of minimum weight attainable in an (n, k) linear
code over Zq is given by

Hamming weight : Lee weight = 1 :
q + 1

4

Hamming weight : Euclidean weight = 1 :
q(q + 1)

12

Lee weight : Euclidean weight = 1 :
q

3
.



Plotkin’s Bound in Codes Equipped 221

Thus maximum value of weight of minimum weight code word in the Lee met-

ric codes over Zq(q ≥ 5, a prime) is
q + 1

4
times maximum value of minimum

weight code word in the Hamming metric codes over Zq(q ≥ 5, a prime). Sim-

ilarly, maximum value of the minimum Euclidean weight is
q(q + 1)

12
times

maximum minimum Hamming weight and
q

3
times maximum minimum Lee

weight over Zq(q ≥ 5, a prime).

4.2. Comparison of the Euclidean weight bound obtained
in Theorem 3.1 with the corresponding Hamming
and Lee weight bounds

The bound under comparison for the Euclidean code is obtained in The-
orem 3.1 of this paper. The corresponding bounds for the Hamming and Lee
weight codes are stated below:

Theorem 4.2 ([11], Theorem 4.1). If n ≥ (qd− 1)

(q − 1)
, the number of check

symbols required to achieve minimum distance(weight) in an n-symbol linear

block code is at least

[
(qd− 1)

(q − 1)

]
− 1− logqd.

Theorem 4.3 ([3], Theorem 3). If n ≥ 4(qd− 1)

(q2 − 1)
, the number of parity check

digits required to achieve the minimum Lee distance at least d in an (n, k)
linear code V over Zq(qprime) is at least

=


4(q − 1)
q2 − 1

− 1− logqd if q ≥ 3

(2d− 2)− log2d if q = 2.
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Table 4.2

Value of q Hamming distance Lee distance Euclidean square distance

q = 2 2dH − 2− log2dH 2dL − 2− log2dL 2d2
E − 2− log2d

2
E

q = 3 1.5dH − 1.5− log3dH 1.5dL − 1.5− log3dL 1.5d2
E − 1.5− log3d

2
E

q = 5 1.25dH − 1.25− log5dH 0.83dL − 1.17− log5dL 0.5d2
E − 0.17− log53d

2
E

q = 7 1.67dH − 1.67− log7dH 0.58dL − 1.08− log7dL 0.25d2
E − 0.08− log73d

2
E

q = 11 1.1dH − 1.1− log11dH 0.37dL − 1.03− log11dL 0.1d2
E − 0.03− log113d

2
E

q = 13 1.08dH − 1.08− log13dH 0.31dL − 1.02− log13dL 0.07d2
E − 0.02− log133d

2
E

q = 17 1.06dH − 1.06− log17dH 0.24dL − 1.01− log17dL 0.04d2
H − 0.01− log173d

2
E

Note. The fractions in the above table have been rounded off up to two
decimals places.
We observe from table 4.2 that the three bounds coincide for q = 2, 3 using
the fact that d2

E = dL = dH over Z2 and Z3. 2
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