q-Analogue of the Dunkl Transform on the Real Line*

Néji Bettaibi ${ }^{\dagger}$ and Rym Bettaieb ${ }^{\ddagger}$
Institut Préparatoire aux Études d’Ingénieur de Monastir, 5000 Monastir, Tunisia

Received August 13, 2007, Accepted September 21, 2007.

Abstract

In this paper, we consider a q-analogue of the Dunkl operator on \mathbb{R}, we define and study its associated Fourier transform which is a q analogue of the Dunkl transform. In addition to several properties, we establish an inversion formula and prove a Plancherel theorem for this q-Dunkl transform. Next, we study the q-Dunkl intertwining operator and its dual via the q-analogues of the Riemann-Liouville and Weyl transforms. Using this dual intertwining operator, we provide a relation between the q-Dunkl transform and the q^{2}-analogue Fourier transform introduced and studied in [17, 18].

Keywords and Phrases: q-Dunkl operator, q-Dunkl transform, q-Dunkl intertwining operator.

1. Introduction

The Dunkl operator on \mathbb{R} of index $\left(\alpha+\frac{1}{2}\right)$ associated with the reflection group \mathbb{Z}_{2} is the differential-difference operator Λ_{α} introduced by C. F. Dunkl

[^0]in [3] by
\[

$$
\begin{equation*}
\Lambda_{\alpha}(f)(x)=\frac{d f(x)}{d x}+\left(\alpha+\frac{1}{2}\right) \frac{f(x)-f(-x)}{x}, \quad \alpha \geq-\frac{1}{2} . \tag{1}
\end{equation*}
$$

\]

These operators are very important in pure mathematics and physics. They provide a useful tool in the study of special functions with root systems [4, 2] and they are closely related to certain representations of degenerate affine Heke algebras [1, 16], moreover the commutative algebra generated by these operators has been used in the study of certain exactly solvable models of quantum mechanics, namely the Calogero-Suterland-Moser models, which deal with systems of identical particles in a one dimensional space [15, 13].

In [5], C. F. Dunkl has introduced and studied a Fourier transform associated with the operator Λ_{α}, called Dunkl transform, but the basic results such as inversion formula and Placherel theorem were established later by M. F. E. de Jeu in [10, 11].
C. F. Dunkl has proved in [4] that there exists a linear isomorphism V_{α}, called the Dunkl intertwining operator, from the space of polynomials on \mathbb{R} of degree n onto itself, satisfying the transmutation relation

$$
\begin{equation*}
\Lambda_{\alpha} V_{\alpha}=V_{\alpha} \frac{d}{d x}, \quad V_{\alpha}(1)=1 \tag{2}
\end{equation*}
$$

Next, K. Trimèche has proved in [19] that the operator V_{α} can be extended to a topological isomorphism from $\mathcal{E}(\mathbb{R})$, the space of C^{∞}-functions on \mathbb{R}, onto itself satisfying the relation (2).

The goal of this paper is to provide a similar construction for a q-analogue context. The analogue transform we employ to make our construction is based on some q-Bessel functions and orthogonality results from [14], which have important applications to q-deformed mechanics. The q-analogue of the Bessel operator and the Dunkl operator are defined in terms of the q^{2}-analogue differential operator, ∂_{q}, introduced in [18].

This paper is organized as follows: In Section 2, we present some preliminaries results and notations that will be useful in the sequel. In Section 3, we establish some results associated with the q-Bessel transform and study the q-Riemann-Liouville and the q-Weyl operators. In Section 4, we introduce and study a q-analogue of the Dunkl operator (1) and we deal with its eigenfunctions by giving some of their properties and providing for them a
q-integral representations of Mehler type as well as an orthogonality relation. In section 5, we define and study the q-Dunkl intertwining operator and its dual via the q-Riemann-Liouville and the q-Weyl transforms. Finally, in Section 6, we study the Fourier transform associated with the q-Dunkl operator (q-Dunkl transform), we establish an inversion formula, prove a Plancherel theorem and we provide a relation between the q-Dunkl transform and the q^{2}-analogue Fourier transform (see [17, 18]).

2. Notations and preliminaries

For the convenience of the reader, we provide in this section a summary of the mathematical notations and definitions used in this paper. We refer the reader to the general references [8] and [12], for the definitions, notations and properties of the q-shifted factorials and the q-hypergeometric functions. Throughout this paper, we assume $q \in] 0,1\left[\right.$ and we denote $\mathbb{R}_{q}=\left\{ \pm q^{n}: n \in \mathbb{Z}\right\}$, $\mathbb{R}_{q,+}=\left\{q^{n}: n \in \mathbb{Z}\right\}$.

2.1 Basic symbols

For $x \in \mathbb{C}$, the q-shifted factorials are defined by

$$
\begin{equation*}
(x ; q)_{0}=1 ; \quad(x ; q)_{n}=\prod_{k=0}^{n-1}\left(1-x q^{k}\right), \quad n=1,2, \ldots ; \quad(x ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-x q^{k}\right) \tag{3}
\end{equation*}
$$

We also denote

$$
\begin{equation*}
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad x \in \mathbb{C} \quad \text { and } \quad[n]_{q}!=\frac{(q ; q)_{n}}{(1-q)^{n}}, \quad n \in \mathbb{N} . \tag{4}
\end{equation*}
$$

2.2 Operators and elementary special functions

The q-Gamma function is given by (see [9])

$$
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}, \quad x \neq 0,-1,-2, \ldots
$$

It satisfies the following relations

$$
\begin{equation*}
\Gamma_{q}(x+1)=[x]_{q} \Gamma_{q}(x), \quad \Gamma_{q}(1)=1 \quad \text { and } \lim _{q \longrightarrow 1^{-}} \Gamma_{q}(x)=\Gamma(x), \Re(x)>0 . \tag{5}
\end{equation*}
$$

The q-trigonometric functions q-cosine and q-sine are defined by (see [17, 18])

$$
\begin{equation*}
\cos \left(x ; q^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1)} \frac{x^{2 n}}{[2 n]_{q}!} \quad, \quad \sin \left(x ; q^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1)} \frac{x^{2 n+1}}{[2 n+1]_{q}!} . \tag{6}
\end{equation*}
$$

The q-analogue exponential function is given by (see $[17,18]$)

$$
\begin{equation*}
e\left(z ; q^{2}\right)=\cos \left(-i z ; q^{2}\right)+i \sin \left(-i z ; q^{2}\right) \tag{7}
\end{equation*}
$$

These three functions are absolutely convergent for all z in the plane and when q tends to 1 they tend to the corresponding classical ones pointwise and uniformly on compacts.
Note that we have for all $x \in \mathbb{R}_{q}$ (see [17])

$$
\left|\cos \left(x ; q^{2}\right)\right| \leq \frac{1}{(q ; q)_{\infty}}, \quad\left|\sin \left(x ; q^{2}\right)\right| \leq \frac{1}{(q ; q)_{\infty}}
$$

and

$$
\begin{equation*}
\left|e\left(i x ; q^{2}\right)\right| \leq \frac{2}{(q ; q)_{\infty}} \tag{8}
\end{equation*}
$$

The q^{2}-analogue differential operator is (see $[17,18]$)
$\partial_{q}(f)(z)=\left\{\begin{array}{cc}\frac{f\left(q^{-1} z\right)+f\left(-q^{-1} z\right)-f(q z)+f(-q z)-2 f(-z)}{2(1-q) z} & \text { if } z \neq 0 \\ \lim _{x \rightarrow 0} \partial_{q}(f)(x) \quad\left(\text { in } \mathbb{R}_{q}\right) & \text { if } z=0 .\end{array}\right.$
Remark that if f is differentiable at z, then $\lim _{q \rightarrow 1} \partial_{q}(f)(z)=f^{\prime}(z)$.
A repeated application of the q^{2}-analogue differential operator n times is denoted by:

$$
\partial_{q}^{0} f=f, \quad \partial_{q}^{n+1} f=\partial_{q}\left(\partial_{q}^{n} f\right)
$$

The following lemma lists some useful computational properties of ∂_{q}, and reflects the sensitivity of this operator to parity of its argument. The proof is straightforward.

Lemma 1.

1) $\partial_{q} \sin \left(x ; q^{2}\right)=\cos \left(x ; q^{2}\right), \partial_{q} \cos \left(x ; q^{2}\right)=-\sin \left(x ; q^{2}\right)$ and $\partial_{q} e\left(x ; q^{2}\right)=e\left(x ; q^{2}\right)$.
2) For all function f on $\mathbb{R}_{q}, \partial_{q} f(z)=\frac{f_{e}\left(q^{-1} z\right)-f_{e}(z)}{(1-q) z}+\frac{f_{o}(z)-f_{o}(q z)}{(1-q) z}$.
3) For two functions f and g on \mathbb{R}_{q}, we have

- if f even and g odd
$\left.\partial_{q}(f g)(z)=q \partial_{q}(f)(q z) g(z)+f(q z) \partial_{q}(g)(z)=\partial_{q}(g)(z)\right) f(z)+q g(q z) \partial_{q}(f)(q z) ;$
- if f and g are even

$$
\partial_{q}(f g)(z)=\partial_{q}(f)(z) g\left(q^{-1} z\right)+f(z) \partial_{q}(g)(z) .
$$

Here, for a function f defined on \mathbb{R}_{q}, f_{e} and f_{o} are its even and odd parts respectively.
The q-Jackson integrals are defined by (see [9])

$$
\begin{gather*}
\int_{0}^{a} f(x) d_{q} x=(1-q) a \sum_{n=0}^{\infty} q^{n} f\left(a q^{n}\right), \quad \int_{a}^{b} f(x) d_{q} x=\int_{0}^{b} f(x) d_{q} x-\int_{0}^{a} f(x) d_{q} x \tag{10}\\
\int_{0}^{\infty} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{\infty} q^{n} f\left(q^{n}\right) \\
\int_{-\infty}^{\infty} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{\infty} q^{n} f\left(q^{n}\right)+(1-q) \sum_{n=-\infty}^{\infty} q^{n} f\left(-q^{n}\right) \tag{11}
\end{gather*}
$$

provided the sums converge absolutely. In particular, for $a \in \mathbb{R}_{q,+}$,

$$
\begin{equation*}
\int_{a}^{\infty} f(x) d_{q} x=(1-q) a \sum_{n=-\infty}^{-1} q^{n} f\left(a q^{n}\right) \tag{12}
\end{equation*}
$$

The following simple result, giving q-analogues of the integration by parts theorem, can be verified by direct calculation.

Lemma 2.

1) For $a>0$, if $\int_{-a}^{a}\left(\partial_{q} f\right)(x) g(x) d_{q} x$ exists, then

$$
\begin{equation*}
\int_{-a}^{a}\left(\partial_{q} f\right)(x) g(x) d_{q} x=2\left[f_{e}\left(q^{-1} a\right) g_{o}(a)+f_{o}(a) g_{e}\left(q^{-1} a\right)\right]-\int_{-a}^{a} f(x)\left(\partial_{q} g\right)(x) d_{q} x . \tag{13}
\end{equation*}
$$

2) If $\int_{-\infty}^{\infty}\left(\partial_{q} f\right)(x) g(x) d_{q} x$ exists,

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(\partial_{q} f\right)(x) g(x) d_{q} x=-\int_{-\infty}^{\infty} f(x)\left(\partial_{q} g\right)(x) d_{q} x . \tag{14}
\end{equation*}
$$

2.3 Sets and spaces

By the use of the q^{2}-analogue differential operator ∂_{q}, we note:

- $\mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$ the space of functions f defined on \mathbb{R}_{q}, satisfying
$\forall n \in \mathbb{N}, \quad a \geq 0, \quad P_{n, a}(f)=\sup \left\{\left|\partial_{q}^{k} f(x)\right| ; 0 \leq k \leq n ; x \in[-a, a] \cap \mathbb{R}_{q}\right\}<\infty$
and

$$
\lim _{x \rightarrow 0} \partial_{q}^{n} f(x) \quad\left(\text { in } \quad \mathbb{R}_{q}\right) \quad \text { exists. }
$$

We provide it with the topology defined by the semi norms $P_{n, a}$.

- $\mathcal{E}_{*, q}\left(\mathbb{R}_{q}\right)$ the subspace of $\mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$ constituted of even functions.
- $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ the space of functions f defined on \mathbb{R}_{q} satisfying

$$
\forall n, m \in \mathbb{N}, \quad P_{n, m, q}(f)=\sup _{x \in \mathbb{R}_{q}}\left|x^{m} \partial_{q}^{n} f(x)\right|<+\infty
$$

and

$$
\lim _{x \rightarrow 0} \partial_{q}^{n} f(x) \quad\left(\text { in } \quad \mathbb{R}_{q}\right) \quad \text { exists. }
$$

- $\mathcal{S}_{*, q}\left(\mathbb{R}_{q}\right)$ the subspace of $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ constituted of even functions.
- $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$ the space of functions defined on \mathbb{R}_{q} with compact supports.
- $\mathcal{D}_{*, q}\left(\mathbb{R}_{q}\right)$ the subspace of $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$ constituted of even functions.

Using the q-Jackson integrals, we note for $p>0$ and $\alpha \in \mathbb{R}$,

- $L_{q}^{p}\left(\mathbb{R}_{q}\right)=\left\{f:\|f\|_{p, q}=\left(\int_{-\infty}^{\infty}|f(x)|^{p} d_{q} x\right)^{\frac{1}{p}}<\infty\right\}$,
- $L_{q}^{p}\left(\mathbb{R}_{q,+}\right)=\left\{f:\|f\|_{p, q}=\left(\int_{0}^{\infty}|f(x)|^{p} d_{q} x\right)^{\frac{1}{p}}<\infty\right\}$,
- $L_{\alpha, q}^{p}\left(\mathbb{R}_{q}\right)=\left\{f:\|f\|_{p, \alpha, q}=\left(\int_{-\infty}^{\infty}|f(x)|^{p}|x|^{2 \alpha+1} d_{q} x\right)^{\frac{1}{p}}<\infty\right\}$,
- $L_{\alpha, q}^{p}\left(\mathbb{R}_{q,+}\right)=\left\{f:\|f\|_{p, \alpha, q}=\left(\int_{0}^{\infty}|f(x)|^{p} x^{2 \alpha+1} d_{q} x\right)^{\frac{1}{p}}<\infty\right\}$,
- $L_{q}^{\infty}\left(\mathbb{R}_{q}\right)=\left\{f:\|f\|_{\infty, q}=\sup _{x \in \mathbb{R}_{q}}|f(x)|<\infty\right\}$,
- $L_{q}^{\infty}\left(\mathbb{R}_{q,+}\right)=\left\{f:\|f\|_{\infty, q}=\sup _{x \in \mathbb{R}_{q,+}}|f(x)|<\infty\right\}$.

$2.4 \quad q^{2}$-Analogue Fourier transform

R. L. Rubin defined in [18] the q^{2}-analogue Fourier transform as

$$
\begin{equation*}
\widehat{f}\left(x ; q^{2}\right)=K \int_{-\infty}^{\infty} f(t) e\left(-i t x ; q^{2}\right) d_{q} t \tag{15}
\end{equation*}
$$

where $K=\frac{(1+q)^{\frac{1}{2}}}{2 \Gamma_{q^{2}}\left(\frac{1}{2}\right)}$.
Letting $q \uparrow 1$ subject to the condition

$$
\begin{equation*}
\frac{\log (1-q)}{\log (q)} \in 2 \mathbb{Z} \tag{16}
\end{equation*}
$$

gives, at least formally, the classical Fourier transform. In the remainder of this paper, we assume that the condition (16) holds.

It was shown in [18] that $\widehat{f}\left(. ; q^{2}\right)$ verifies the following properties:

1) If $f(u), u f(u) \in L_{q}^{1}\left(\mathbb{R}_{q}\right)$, then $\partial_{q}(\widehat{f})\left(x ; q^{2}\right)=(-i u f(u))\left(x ; q^{2}\right)$.
2) If $f, \quad \partial_{q} f \in L_{q}^{1}\left(\mathbb{R}_{q}\right)$, then $\left(\partial_{q} f\right)^{\wedge}\left(x ; q^{2}\right)=i x \widehat{f}\left(x ; q^{2}\right)$.
3) $\widehat{f}\left(. ; q^{2}\right)$ is an isomorphism from $L_{q}^{2}\left(\mathbb{R}_{q}\right)$ onto itself. For $f \in L_{q}^{2}\left(\mathbb{R}_{q}\right)$, we have $\forall x \in \mathbb{R}_{q}, \quad(\widehat{f})^{-1}\left(x ; q^{2}\right)=\widehat{f}\left(-x ; q^{2}\right)$ and $\left\|\widehat{f}\left(. ; q^{2}\right)\right\|_{2, q}=\|f\|_{2, q}$.

3. q-Bessel Fourier Transform

The normalized q-Bessel function is defined by

$$
\begin{equation*}
j_{\alpha}\left(x ; q^{2}\right)=\sum_{n=0}^{+\infty}(-1)^{n} \frac{\Gamma_{q^{2}}(\alpha+1) q^{n(n+1)}}{\Gamma_{q^{2}}(\alpha+n+1) \Gamma_{q^{2}}(n+1)}\left(\frac{x}{1+q}\right)^{2 n} . \tag{17}
\end{equation*}
$$

Note that we have

$$
\begin{equation*}
j_{\alpha}\left(x ; q^{2}\right)=\left(1-q^{2}\right)^{\alpha} \Gamma_{q^{2}}(\alpha+1)((1-q) x)^{-\alpha} J_{\alpha}\left((1-q) x ; q^{2}\right), \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{\alpha}\left(x ; q^{2}\right)=\frac{x^{\alpha}\left(q^{2 \alpha+2} ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}} \cdot 1 \varphi_{1}\left(0 ; q^{2 \alpha+2} ; q^{2}, q^{2} x^{2}\right) \tag{19}
\end{equation*}
$$

is the Jackson's third q-Bessel function.
Using the relations (17) and (6), we obtain

$$
\begin{align*}
j_{-\frac{1}{2}}\left(x ; q^{2}\right) & =\cos \left(x ; q^{2}\right), \tag{20}\\
j_{\frac{1}{2}}\left(x ; q^{2}\right) & =\frac{\sin \left(x ; q^{2}\right)}{x} \tag{21}
\end{align*}
$$

and

$$
\begin{equation*}
\partial_{q} j_{\alpha}\left(x ; q^{2}\right)=-\frac{x}{[2 \alpha+2]_{q}} j_{\alpha+1}\left(x ; q^{2}\right) . \tag{22}
\end{equation*}
$$

In [6], the authors proved the following estimation.
Lemma 3. For $\alpha \geq-\frac{1}{2}$ and $x \in \mathbb{R}_{q}$,

- $\left|j_{\alpha}\left(x ; q^{2}\right)\right| \leq \frac{\left(-q^{2} ; q^{2}\right)_{\infty}\left(-q^{2 \alpha+1} ; q^{2}\right)_{\infty}}{\left(q^{2 \alpha+1} ; q^{2}\right)_{\infty}}\left\{\begin{array}{cll}1, & \text { if } & |x| \leq \frac{1}{1-q} \\ q^{\left(\frac{\log (1-q)|x|}{\operatorname{Logq}}\right)^{2}}, & \text { if } & |x| \geq \frac{1}{1-q}\end{array}\right.$
- for all $v \in \mathbb{R}, j_{\alpha}\left(x ; q^{2}\right)=o\left(x^{-v}\right)$ as $|x| \longrightarrow+\infty \quad$ (in $\left.\mathbb{R}_{q}\right)$.

As a consequence of the previous lemma and the relation (22), we have for $\alpha \geq-\frac{1}{2}$,

$$
j_{\alpha}\left(. ; q^{2}\right) \in \mathcal{S}_{*, q}\left(\mathbb{R}_{q}\right)
$$

With the same technique used in [7], we can prove that for $\alpha>-\frac{1}{2}, j_{\alpha}\left(. ; q^{2}\right)$ has the following q-integral representation of Mehler type

$$
\begin{equation*}
j_{\alpha}\left(x ; q^{2}\right)=C\left(\alpha ; q^{2}\right) \int_{0}^{1} W_{\alpha}\left(t ; q^{2}\right) \cos \left(x t ; q^{2}\right) d_{q} t \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
C\left(\alpha ; q^{2}\right)=(1+q) \frac{\Gamma_{q^{2}}(\alpha+1)}{\Gamma_{q^{2}}\left(\frac{1}{2}\right) \Gamma_{q^{2}}\left(\alpha+\frac{1}{2}\right)} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{\alpha}\left(t ; q^{2}\right)=\frac{\left(t^{2} q^{2} ; q^{2}\right)_{\infty}}{\left(t^{2} q^{2 \alpha+1} ; q^{2}\right)_{\infty}} \tag{25}
\end{equation*}
$$

Remark. Since the functions $W_{\alpha}\left(. ; q^{2}\right)$ and $\cos \left(. ; q^{2}\right)$ are even and $\sin \left(. ; q^{2}\right)$ is odd, we can write for $\alpha>-\frac{1}{2}$,

$$
\begin{equation*}
j_{\alpha}\left(x ; q^{2}\right)=\frac{1}{2} C\left(\alpha ; q^{2}\right) \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) e\left(-i x t ; q^{2}\right) d_{q} t \tag{26}
\end{equation*}
$$

In particular, using the inequality (8), we obtain

$$
\begin{equation*}
\left|j_{\alpha}\left(x ; q^{2}\right)\right| \leq \frac{2}{(q ; q)_{\infty}}, \forall x \in \mathbb{R}_{q} \tag{27}
\end{equation*}
$$

Proposition 1. For $x, y \in \mathbb{R}_{q,+}$, we have

$$
\begin{equation*}
(x y)^{\alpha+1} \int_{0}^{+\infty} j_{\alpha}\left(x t ; q^{2}\right) j_{\alpha}\left(y t ; q^{2}\right) t^{2 \alpha+1} d_{q} t=\frac{(1+q)^{2 \alpha} \Gamma_{q^{2}}^{2}(\alpha+1)}{(1-q)} \delta_{x, y} \tag{28}
\end{equation*}
$$

Proof. The result follows from the relation (18) and the orthogonality relation of the Jackson's third q-Bessel function $J_{\alpha}\left(. ; q^{2}\right)$ proved in [14].

Using the same technique as in [7], one can prove the following result.
Proposition 2. For $\lambda \in \mathbb{C}$, the function $x \mapsto j_{\alpha}\left(\lambda x ; q^{2}\right)$ is the unique even solution of the problem

$$
\left\{\begin{array}{c}
\triangle_{\alpha, q} f(x)=-\lambda^{2} f(x), \tag{29}\\
f(0)=1,
\end{array}\right.
$$

where $\triangle_{\alpha, q} f(x)=\frac{1}{|x|^{2 \alpha+1}} \partial_{q}\left[|x|^{2 \alpha+1} \partial_{q} f(x)\right]$.
Definition 1. The q-Bessel Fourier transform is defined for $f \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q,+}\right)$, by

$$
\begin{equation*}
\mathcal{F}_{\alpha, q}(f)(\lambda)=c_{\alpha, q} \int_{0}^{\infty} f(x) j_{\alpha}\left(\lambda x ; q^{2}\right) x^{2 \alpha+1} d_{q} x \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{\alpha, q}=\frac{(1+q)^{-\alpha}}{\Gamma_{q^{2}}(\alpha+1)} \tag{31}
\end{equation*}
$$

Letting $q \uparrow 1$ subject to the condition (16), gives, at least formally, the classical Bessel-Fourier transform.
Some properties of the q-Bessel Fourier transform are given in the following result.
Proposition 3. 1) For $f \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q,+}\right)$, we have $\mathcal{F}_{\alpha, q}(f) \in L_{q}^{\infty}\left(\mathbb{R}_{q,+}\right)$ and

$$
\left\|\mathcal{F}_{\alpha, q}(f)\right\|_{\infty, q} \leq \frac{2 c_{\alpha, q}}{(q ; q)_{\infty}}\|f\|_{1, q}
$$

2)For $f, g \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q,+}\right)$, we have

$$
\begin{equation*}
\int_{0}^{\infty} f(x) \mathcal{F}_{\alpha, q}(g)(x) x^{2 \alpha+1} d_{q} x=\int_{0}^{\infty} \mathcal{F}_{\alpha, q}(f)(\lambda) g(\lambda) \lambda^{2 \alpha+1} d_{q} \lambda . \tag{32}
\end{equation*}
$$

3) If f and $\triangle_{\alpha, q} f$ are in $L_{\alpha, q}^{1}\left(\mathbb{R}_{q,+}\right)$, then

$$
\mathcal{F}_{\alpha, q}\left(\triangle_{\alpha, q} f\right)(\lambda)=-\lambda^{2} \mathcal{F}_{\alpha, q}(f)(\lambda) .
$$

4) If f and $x^{2} f$ are in $L_{\alpha, q}^{1}\left(\mathbb{R}_{q,+}\right)$, then

$$
\triangle_{\alpha, q}\left(\mathcal{F}_{\alpha, q}(f)\right)=-\mathcal{F}_{\alpha, q}\left(x^{2} f\right)
$$

Proof. 1) follows from the definition of $\mathcal{F}_{\alpha, q}$ and the relation (27).
2) Let $f, g \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q,+}\right)$.

Since for all $\lambda, x \in \mathbb{R}_{q,+}$, we have $\left|j_{\alpha}\left(\lambda x ; q^{2}\right)\right| \leq \frac{2}{(q ; q)_{\infty}}$, then

$$
\begin{aligned}
& \int_{0}^{+\infty} \int_{0}^{+\infty}\left|f(x) g(\lambda) j_{\alpha}\left(\lambda x ; q^{2}\right)\right| x^{2 \alpha+1} \lambda^{2 \alpha+1} d_{q} x d_{q} \lambda \\
\leq & \frac{2}{(q ; q)_{\infty}}\|f\|_{1, \alpha, q}\|g\|_{1, \alpha, q}<\infty
\end{aligned}
$$

So, by the Fubini's theorem, we can exchange the order of the q-integrals and obtain,

$$
\begin{aligned}
& \int_{0}^{\infty} f(x) \mathcal{F}_{\alpha, q}(g)(x) x^{2 \alpha+1} d_{q} x \\
= & \int_{0}^{+\infty} \int_{0}^{+\infty} f(x) g(\lambda) j_{\alpha}\left(\lambda x ; q^{2}\right) x^{2 \alpha+1} \lambda^{2 \alpha+1} d_{q} \lambda d_{q} x \\
= & \int_{0}^{+\infty} g(\lambda)\left(\int_{0}^{+\infty} f(x) j_{\alpha}\left(\lambda x ; q^{2}\right) x^{2 \alpha+1} d_{q} x\right) \lambda^{2 \alpha+1} d_{q} \lambda \\
= & \int_{0}^{\infty} \mathcal{F}_{\alpha, q}(f)(\lambda) g(\lambda) \lambda^{2 \alpha+1} d_{q} \lambda .
\end{aligned}
$$

3) For $f \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q,+}\right)$ such that $\triangle_{\alpha, q} f \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q,+}\right)$, let \tilde{f} be the even function defined on \mathbb{R}_{q} whose f is its restriction on $\mathbb{R}_{q,+}$. We have $\widetilde{\triangle_{\alpha, q} f}=\triangle_{\alpha, q} \tilde{f}$ and

$$
\begin{align*}
\mathcal{F}_{\alpha, q}\left(\triangle_{\alpha, q} f\right)(\lambda) & =c_{\alpha, q} \int_{0}^{\infty}\left(\triangle_{\alpha, q} f\right)(x) j_{\alpha}\left(x \lambda ; q^{2}\right) x^{2 \alpha+1} d_{q} x \tag{33}\\
& =\frac{c_{\alpha, q}}{2} \int_{-\infty}^{\infty}\left(\triangle_{\alpha, q} \tilde{f}\right)(x) j_{\alpha}\left(x \lambda ; q^{2}\right)|x|^{2 \alpha+1} d_{q} x \tag{34}
\end{align*}
$$

So, Proposition 2 and two q-integrations by parts give the result.
4) The result follows from Proposition 2.

Proposition 4. If $f \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q,+}\right)$, then

$$
\forall x \in \mathbb{R}_{q,+}, \quad f(x)=c_{\alpha, q} \int_{0}^{\infty} \mathcal{F}_{\alpha, q}(f)(\lambda) j_{\alpha}\left(\lambda x ; q^{2}\right) \lambda^{2 \alpha+1} d_{q} \lambda
$$

Proof. The result follows from the relation (27), Proposition 1 and the Fubini's theorem.

Theorem 1. 1) Plancherel formula
For all $f \in \mathcal{D}_{*, q}\left(\overline{\mathbb{R}_{q}}\right)$, we have

$$
\begin{equation*}
\left\|\mathcal{F}_{\alpha, q}(f)\right\|_{2, \alpha, q}=\|f\|_{2, \alpha, q} . \tag{35}
\end{equation*}
$$

2) Plancherel theorem

The q-Bessel transform can be uniquely extended to an isometric isomorphism on $L_{\alpha, q}^{2}\left(\mathbb{R}_{q,+}\right)$ with $\mathcal{F}_{\alpha, q}^{-1}=\mathcal{F}_{\alpha, q}$.
Proof. 1) Let $f \in \mathcal{D}_{*, q}\left(\mathbb{R}_{q}\right)$, it is easy to show that $\mathcal{F}_{\alpha, q}(f)$ is in $L_{\alpha, q}^{1}\left(\mathbb{R}_{q,+}\right)$. From Proposition 4, we have $f=\mathcal{F}_{\alpha, q}\left(\mathcal{F}_{\alpha, q}(f)\right)$, so using the relation (32), we obtain

$$
\begin{aligned}
\|f\|_{2, \alpha, q}^{2} & =\int_{0}^{\infty} f(x) \bar{f}(x) x^{2 \alpha+1} d_{q} x=\int_{0}^{\infty} \mathcal{F}_{\alpha, q}\left(\mathcal{F}_{\alpha, q} f\right)(x) \bar{f}(x) x^{2 \alpha+1} d_{q} x \\
& =\int_{0}^{\infty} \mathcal{F}_{\alpha, q}(f)(x) \overline{\mathcal{F}_{\alpha, q}(f)}(x) x^{2 \alpha+1} d_{q} x=\left\|\mathcal{F}_{\alpha, q}(f)\right\|_{2, \alpha, q}^{2}
\end{aligned}
$$

2) The result follows from 1), Proposition 4 and the density of $\mathcal{D}_{*, q}\left(\mathbb{R}_{q}\right)$ in $L_{\alpha, q}^{2}\left(\mathbb{R}_{q,+}\right)$.

Definition 2. For $\alpha>-\frac{1}{2}$, the q-Riemann-Liouville operator $R_{\alpha, q}$ is defined for $f \in \mathcal{E}_{*, q}\left(\mathbb{R}_{q}\right)$ by

$$
\begin{equation*}
R_{\alpha, q}(f)(x)=\frac{1}{2} C\left(\alpha ; q^{2}\right) \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) f(x t) d_{q} t \tag{36}
\end{equation*}
$$

The q-Weyl operator is defined for $f \in \mathcal{D}_{*, q}\left(\mathbb{R}_{q}\right)$ by

$$
\begin{equation*}
{ }^{t} R_{\alpha, q}(f)(t)=\frac{(1+q)^{-\alpha+\frac{1}{2}}}{\Gamma_{q^{2}}\left(\alpha+\frac{1}{2}\right)} \int_{q|t|}^{+\infty} W_{\alpha}\left(\frac{t}{x} ; q^{2}\right) f(x) x^{2 \alpha} d_{q} x \tag{37}
\end{equation*}
$$

In the end of this section, we shall give some useful properties of these two operators. First, by simple calculus, one can easily prove that for $f \in \mathcal{E}_{*, q}\left(\mathbb{R}_{q}\right)$ and $g \in \mathcal{D}_{*, q}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{equation*}
\frac{c_{\alpha, q}}{2} \int_{-\infty}^{\infty} R_{\alpha, q}(f)(x) g(x)|x|^{2 \alpha+1} d_{q} x=K \int_{-\infty}^{\infty} f(t)^{t} R_{\alpha, q}(g)(t) d_{q} t . \tag{38}
\end{equation*}
$$

Next, using the relation (26), we obtain

$$
\begin{equation*}
j_{\alpha}\left(. ; q^{2}\right)=R_{\alpha, q}\left(e\left(-i . ; q^{2}\right)\right) . \tag{39}
\end{equation*}
$$

Lemma 4. The operator $R_{\alpha, q}$ is continuous from $\mathcal{E}_{*, q}\left(\mathbb{R}_{q}\right)$ into itself.
Proof. Let f be in $\mathcal{E}_{*, q}\left(\mathbb{R}_{q}\right)$. The function $x \longmapsto R_{\alpha, q}(f)(x)$ is an even function on \mathbb{R}_{q}.
By q-derivation under the q-integral sign, we deduce that for all $n \in \mathbb{N}$,

$$
\partial_{q}^{n} R_{\alpha, q}(f)(x)=\frac{1}{2} C\left(\alpha ; q^{2}\right) \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) t^{n}\left(\partial_{q}^{n} f\right)(x t) d_{q} t
$$

Then,

$$
\forall a \geq 0, \forall n \in \mathbb{N}, P_{n, a}\left(R_{\alpha, q}(f)\right) \leq P_{n, a}(f)<\infty
$$

This relation together with the Lebesgue theorem proves that $R_{\alpha, q}(f)$ belongs to $\mathcal{E}_{*, q}\left(\mathbb{R}_{q}\right)$ and it shows that the operator $R_{\alpha, q}$ is continuous from $\mathcal{E}_{*, q}\left(\mathbb{R}_{q}\right)$ into itself.
Using the previous lemma and making a proof as in Theorems 3 and 4 of [7], we obtain the following result.

Theorem 2. The q-Riemann-Liouville operator $R_{\alpha, q}$ is a topological isomorphism from $\mathcal{E}_{*, q}\left(\mathbb{R}_{q}\right)$ onto itself and it transmutes the operators $\Delta_{\alpha, q}$ and ∂_{q}^{2} in the following sense

$$
\begin{equation*}
\Delta_{\alpha, q} R_{\alpha, q}=R_{\alpha, q} \partial_{q}^{2} \tag{40}
\end{equation*}
$$

Theorem 3. The q-Weyl operator ${ }^{t} R_{\alpha, q}$ is an isomorphism from $\mathcal{D}_{*, q}\left(\mathbb{R}_{q}\right)$ onto itself, it transmutes the operators $\Delta_{\alpha, q}$ and ∂_{q}^{2} in the following sense

$$
\begin{equation*}
{ }^{t} R_{\alpha, q} \Delta_{\alpha, q}=\partial_{q}^{2}\left({ }^{t} R_{\alpha, q}\right) \tag{41}
\end{equation*}
$$

and for $f \in \mathcal{D}_{*, q}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{equation*}
\mathcal{F}_{\alpha, q}(f)=\left({ }^{t} R_{\alpha, q}(f)\right)^{\wedge}\left(. ; q^{2}\right) . \tag{42}
\end{equation*}
$$

Proof. The first part of the result can be proved as Proposition 3 of [7] page 158.

The relation (42) is a consequence of the relations (38) and (39).
Let us now, prove the relation (41). Let $g \in \mathcal{D}_{*, q}\left(\mathbb{R}_{q}\right)$. For all $f \in \mathcal{D}_{*, q}\left(\mathbb{R}_{q}\right)$, we have, using the q-integration by parts theorem, the relations (38) and (40),

$$
\begin{aligned}
& K \int_{-\infty}^{\infty} \partial_{q}^{2}\left({ }^{t} R_{\alpha, q} g\right)(x) f(x) d_{q} x \\
= & K \int_{-\infty}^{\infty}\left({ }^{t} R_{\alpha, q} g\right)(x) \partial_{q}^{2} f(x) d_{q} x \\
= & \frac{c_{\alpha, q}}{2} \int_{-\infty}^{\infty} g(x) R_{\alpha, q} \partial_{q}^{2} f(x)|x|^{2 \alpha+1} d_{q} x \\
= & \frac{c_{\alpha, q}}{2} \int_{-\infty}^{\infty} g(x) \Delta_{\alpha, q} R_{\alpha, q} f(x)|x|^{2 \alpha+1} d_{q} x \\
= & -\frac{c_{\alpha, q}}{2} \int_{-\infty}^{\infty} \partial_{q} g(x) \partial_{q}\left(R_{\alpha, q} f\right)(x)|x|^{2 \alpha+1} d_{q} x \\
= & \frac{c_{\alpha, q}}{2} \int_{-\infty}^{\infty} \Delta_{\alpha, q} g(x) R_{\alpha, q} f(x)|x|^{2 \alpha+1} d_{q} x \\
= & K \int_{-\infty}^{\infty}{ }^{t} R_{\alpha, q}\left(\Delta_{\alpha, q} g\right)(x) f(x) d_{q} x .
\end{aligned}
$$

4. The q-Dunkl operator and its eigenfunctions

For $\alpha \geq-\frac{1}{2}$, consider the operators:

$$
\begin{equation*}
H_{\alpha, q}: f=f_{e}+f_{o} \longmapsto f_{e}+q^{2 \alpha+1} f_{o} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{\alpha, q}(f)(x)=\partial_{q}\left[H_{\alpha, q}(f)\right](x)+[2 \alpha+1]_{q} \frac{f(x)-f(-x)}{2 x} \tag{44}
\end{equation*}
$$

It is easy to see that for a differentiable function f, the q-Dunkl operator $\Lambda_{\alpha, q}(f)$ tends, as q tends to 1 , to the classical Dunkl operator $\Lambda_{\alpha}(f)$ given by (1).

In the case $\alpha=-\frac{1}{2}, \Lambda_{\alpha, q}$ reduces to the q^{2}-analogue differential operator ∂_{q}. Some properties of the q-Dunkl operator $\Lambda_{\alpha, q}$ are given in the following proposition.

Proposition 5.

i) If f is odd then $\Lambda_{\alpha, q}(f)(x)=q^{2 \alpha+1} \partial_{q} f(x)+[2 \alpha+1]_{q} \frac{f(x)}{x}$ and if f is even then $\Lambda_{\alpha, q}(f)(x)=\partial_{q} f(x)$.
ii) If f and g are of the same parity, then

$$
\int_{-\infty}^{+\infty} \Lambda_{\alpha, q}(f)(x) g(x)|x|^{2 \alpha+1} d_{q} x=0
$$

iii) For all f and g such that $\int_{-\infty}^{+\infty} \Lambda_{\alpha, q}(f)(x) g(x)|x|^{2 \alpha+1} d_{q} x$ exists, we have

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \Lambda_{\alpha, q}(f)(x) g(x)|x|^{2 \alpha+1} d_{q} x=-\int_{-\infty}^{+\infty} \Lambda_{\alpha, q}(g)(x) f(x)|x|^{2 \alpha+1} d_{q} x \tag{45}
\end{equation*}
$$

iv) The operator $\Lambda_{\alpha, q}$ lives $\mathcal{E}_{q}\left(\mathbb{R}_{q}\right), \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ and $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$ invariant.

Proof. i) is a direct consequence of the definition of $\Lambda_{\alpha, q}$.
ii) follows from the properties of the q-integrals and the fact that $\Lambda_{\alpha, q}$ change the parity of functions.
iii) From ii) we have the result when f and g are of the same parity.

Now, suppose that f is even and g is odd. Using Lemma 2, the property i) of $\Lambda_{\alpha, q}$ and the properties of the q^{2}-analogue differential operator ∂_{q} we obtain

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \Lambda_{\alpha, q}(f)(x) g(x)|x|^{2 \alpha+1} d_{q} x \\
= & \int_{-\infty}^{+\infty} \partial_{q}(f)(x) g(x)|x|^{2 \alpha+1} d_{q} x \\
= & -\int_{-\infty}^{+\infty} f(x) \partial_{q}\left[g(x)|x|^{2 \alpha+1}\right] d_{q} x \\
= & -\int_{-\infty}^{+\infty} f(x)\left[q^{2 \alpha+1} \partial_{q} g(x)+[2 \alpha+1]_{q} \frac{g(x)}{x}\right]|x|^{2 \alpha+1} d_{q} x \\
= & -\int_{-\infty}^{+\infty} f(x) \Lambda_{\alpha, q}(g)(x)|x|^{2 \alpha+1} d_{q} x .
\end{aligned}
$$

iv) follows from the facts that for $f \in \mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$,

$$
\Lambda_{\alpha, q}(f)(x)=\partial_{q}\left[H_{\alpha, q}(f)\right](x)+\frac{[2 \alpha+1]_{q}}{2} \int_{-1}^{1} \partial_{q}(f)(x t) d_{q} t
$$

and for $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$,

$$
\begin{aligned}
\Lambda_{\alpha, q}(f)(x) & =\partial_{q}\left[H_{\alpha, q}(f)\right](x)+[2 \alpha+1]_{q} \int_{0}^{1} \partial_{q}\left(f_{o}\right)(x t) d_{q} t \\
& =\partial_{q}\left[H_{\alpha, q}(f)\right](x)-[2 \alpha+1]_{q} \int_{1}^{\infty} \partial_{q}\left(f_{o}\right)(x t) d_{q} t
\end{aligned}
$$

Let us now introduce the eigenfunctions of the q-Dunkl operator.
Theorem 4. For $\lambda \in \mathbb{C}$, the q-differential-difference equation:

$$
\left\{\begin{array}{cl}
\Lambda_{\alpha, q}(f) & =i \lambda f \tag{46}\\
f(0) & =1
\end{array}\right.
$$

has as unique solution, the function

$$
\begin{equation*}
\psi_{\lambda}^{\alpha, q}: x \longmapsto j_{\alpha}\left(\lambda x ; q^{2}\right)+\frac{i \lambda x}{[2 \alpha+2]_{q}} j_{\alpha+1}\left(\lambda x ; q^{2}\right) . \tag{47}
\end{equation*}
$$

Proof. Let $f=f_{e}+f_{o}$. The problem (46) is equivalent to the system

$$
\left\{\begin{array}{l}
\partial_{q} f_{e}(x)+q^{2 \alpha+1} \partial_{q} f_{o}(x)+[2 \alpha+1]_{q} \frac{f_{o}^{\prime}(x)}{x}=i \lambda f_{e}(x)+i \lambda f_{o}(x) \\
f_{e}(0)=1,
\end{array}\right.
$$

witch is equivalent to

$$
\left\{\begin{array}{c}
\partial_{q} f_{e}(x)=i \lambda f_{o}(x) \\
q^{2 \alpha+1} \partial_{q}^{2} f_{e}(x)+[2 \alpha+1]_{q} \frac{\partial_{q} f_{e}(x)}{x}=-\lambda^{2} f_{e}(x) \\
f_{e}(0)=1
\end{array}\right.
$$

Now, using Proposition 2 and the relation (22), we obtain
$\left\{\begin{array}{c}f_{e}(x)=j_{\alpha}\left(\lambda x ; q^{2}\right) \\ f_{o}(x)=\frac{1}{i \lambda} \partial_{q}\left(j_{\alpha}\left(\lambda x ; q^{2}\right)\right)=\frac{i \lambda x}{[2 \alpha+2]_{q}} j_{\alpha+1}\left(\lambda x ; q^{2}\right) .\end{array}\right.$
Finally, for $\lambda \in \mathbb{C}$,
$\psi_{\lambda}^{\alpha, q}(x)=f(x)=j_{\alpha}\left(\lambda x ; q^{2}\right)+\frac{i \lambda x}{[2 \alpha+2]_{q}} j_{\alpha+1}\left(\lambda x ; q^{2}\right)$.
The function $\psi_{\lambda}^{\alpha, q}(x)$, called q-Dunkl kernel has an unique extention to $\mathbb{C} \times$ \mathbb{C} and verifies the following properties.
Proposition 6. 1) $\Lambda_{\alpha, q} \psi_{\lambda}^{\alpha, q}=i \lambda \psi_{\lambda}^{\alpha, q}$.
2) $\psi_{\lambda}^{\alpha, q}(x)=\psi_{x}^{\alpha, q}(\lambda), \psi_{a \lambda}^{\alpha, q}(x)=\psi_{\lambda}^{\alpha, q}(a x) \quad$ and $\quad \overline{\psi_{\lambda}^{\alpha, q}(x)}=\psi_{-\lambda}^{\alpha, q}(x)$, for $\lambda, x \in \mathbb{R}$ and $a \in \mathbb{C}$.
3) If $\alpha=-\frac{1}{2}$, then $\psi_{\lambda}^{\alpha, q}(x)=e\left(i \lambda x ; q^{2}\right)$.

For $\alpha>-\frac{1}{2}, \psi_{\lambda}^{\alpha, q}$ has the following q-integral representation of Mehler type

$$
\begin{equation*}
\psi_{\lambda}^{\alpha, q}(x)=\frac{1}{2} C\left(\alpha ; q^{2}\right) \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right)(1+t) e\left(i \lambda x t ; q^{2}\right) d_{q} t \tag{48}
\end{equation*}
$$

where $C\left(\alpha ; q^{2}\right)$ and $W_{\alpha}\left(t ; q^{2}\right)$ are given respectively by (24) and (25).
4) For all $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\left|\partial_{q}^{n} \psi_{\lambda}^{\alpha, q}(x)\right| \leq \frac{4|\lambda|^{n}}{(q ; q)_{\infty}}, \quad \forall \lambda, x \in \mathbb{R}_{q} . \tag{49}
\end{equation*}
$$

In particular for all $\lambda \in \mathbb{R}_{q}, \psi_{\lambda}^{\alpha, q}$ is bounded on \mathbb{R}_{q} and we have

$$
\begin{equation*}
\left|\psi_{\lambda}^{\alpha, q}(x)\right| \leq \frac{4}{(q ; q)_{\infty}}, \quad \forall x \in \mathbb{R}_{q} . \tag{50}
\end{equation*}
$$

5) For all $\lambda \in \mathbb{R}_{q}, \psi_{\lambda}^{\alpha, q} \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$.

Proof. 1) and 2) are immediate consequences of the definition of $\psi_{\lambda}^{\alpha, q}$.
$3)$ If $\alpha=-\frac{1}{2}$ then the relations (20), (21) and (7) give the result.
If $\alpha>-\frac{1}{2}$, using the definition of $\psi_{\lambda}^{\alpha, q}$, the parity of the function $j_{\alpha}\left(. ; q^{2}\right)$ and the relations (26) and (22), we obtain

$$
\begin{aligned}
& \psi_{\lambda}^{\alpha, q}(x) \\
= & j_{\alpha}\left(\lambda x ; q^{2}\right)+\frac{1}{i \lambda} \partial_{q}\left(j_{\alpha}\left(\lambda x ; q^{2}\right)\right) \\
= & \frac{C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) e\left(i \lambda x t ; q^{2}\right) d_{q} t \\
& +\frac{1}{i} \frac{C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) i t e\left(i \lambda x t ; q^{2}\right) d_{q} t,
\end{aligned}
$$

which achieves the proof.
4) By induction on n we prove that
$\partial_{q}^{n} \psi_{\lambda}^{\alpha, q}(x)=\frac{C\left(\alpha ; q^{2}\right)}{2}(i \lambda)^{n} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right)(1+t) t^{n} e\left(i \lambda x t ; q^{2}\right) d_{q} t$.
So, the fact that $\left|e\left(i x ; q^{2}\right)\right| \leq \frac{2}{(q ; q)_{\infty}}$ gives the result.
5) The result follows from Lemma 3, the relation (22) and the properties of ∂_{q}.

The function $\psi_{\lambda}^{\alpha, q}$ verifies the following orthogonality relation.

Proposition 7. For all $x, y \in \mathbb{R}_{q}$, we have

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \psi_{\lambda}^{\alpha, q}(x) \overline{\psi_{\lambda}^{\alpha, q}(y)}|\lambda|^{2 \alpha+1} d q \lambda=\frac{4(1+q)^{2 \alpha} \Gamma_{q^{2}}^{2}(\alpha+1) \delta_{x, y}}{(1-q)|x y|^{\alpha+1}} . \tag{51}
\end{equation*}
$$

Proof. Let $x, y \in \mathbb{R}_{q}$, the use of the relation (28) and the properties of the
q-Jackson's integral lead to

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \psi_{\lambda}^{\alpha, q}(x) \overline{\psi_{\lambda}^{\alpha, q}(y)}|\lambda|^{2 \alpha+1} d q \lambda \\
= & \int_{-\infty}^{+\infty} j_{\alpha}\left(\lambda x ; q^{2}\right) j_{\alpha}\left(\lambda y ; q^{2}\right)|\lambda|^{2 \alpha+1} d q \lambda \\
& +\frac{x y}{[2 \alpha+2]_{q}^{2}} \int_{-\infty}^{+\infty} j_{\alpha+1}\left(\lambda x ; q^{2}\right) j_{\alpha+1}\left(\lambda y ; q^{2}\right)|\lambda|^{2 \alpha+3} d q \lambda \\
= & \frac{2(1+q)^{2 \alpha} \Gamma_{q^{2}}^{2}(\alpha+1) \delta_{|x|,|y|}}{(1-q)|x y|^{\alpha+1}}+\frac{2 x y(1+q)^{2 \alpha+2} \Gamma_{q^{2}}^{2}(\alpha+2) \delta_{|x|,|y|}}{[2 \alpha+2]_{q}^{2}(1-q)|x y|^{\alpha+2}} \\
= & \frac{2(1+q)^{2 \alpha} \Gamma_{q^{2}}^{2}(\alpha+1) \delta_{|x|,|y|}}{(1-q)|x y|^{\alpha+1}}(1+\operatorname{sgn}(x y))=\frac{4(1+q)^{2 \alpha} \Gamma_{q^{2}}^{2}(\alpha+1) \delta_{x, y}}{(1-q)|x y|^{\alpha+1}} .
\end{aligned}
$$

5. q-Dunkl intertwining operator

Definition 3. We define the q-Dunkl intertwining operator $V_{\alpha, q}$ on $\mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$ by

$$
\begin{equation*}
\forall x \in \mathbb{R}_{q}, V_{\alpha, q}(f)(x)=\frac{C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right)(1+t) f(x t) d_{q} t \tag{52}
\end{equation*}
$$

where $C\left(\alpha ; q^{2}\right)$ and $W_{\alpha}\left(t ; q^{2}\right)$ are given by (24) and (25) respectively.
Theorem 5. We have
i) $V_{\alpha, q}\left(e\left(-i \lambda x ; q^{2}\right)\right)=\psi_{-\lambda}^{\alpha, q}(x), \lambda, x \in \mathbb{R}_{q}$.
ii) $V_{\alpha, q}$ verifies the following transmutation relation

$$
\begin{equation*}
\Lambda_{\alpha, q} V_{\alpha, q}(f)=V_{\alpha, q}\left(\partial_{q} f\right), \quad V_{\alpha, q}(f)(0)=f(0) \tag{53}
\end{equation*}
$$

Proof. i) follows from the relation (48).
ii) Let $f=f_{o}+f_{e} \in \mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$, we have on the one hand

$$
\begin{aligned}
& V_{\alpha, q}\left(\partial_{q} f\right)(x) \\
= & \frac{C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) \partial_{q} f_{o}(x t) d_{q} t \\
& +\frac{C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) t \partial_{q} f_{e}(x t) d_{q} t .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \Lambda_{\alpha, q} V_{\alpha, q}(f)(x) \\
= & \frac{C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) t \partial_{q} f_{e}(x t) d_{q} t \\
& +\frac{q^{2 \alpha+1} C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) t^{2} \partial_{q} f_{o}(x t) d_{q} t \\
& +\frac{[2 \alpha+1]_{q} C\left(\alpha ; q^{2}\right)}{2 x} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) t f_{o}(x t) d_{q} t .
\end{aligned}
$$

Now, using a q-integration by parts and the facts that

$$
\partial_{q}\left[\left(1-q^{2} t^{2}\right) W_{\alpha}\left(q t ; q^{2}\right)\right]=-[2 \alpha+1]_{q} t W_{\alpha}\left(t ; q^{2}\right)
$$

and

$$
\left(1-q^{2} t^{2}\right) W_{\alpha}\left(q t ; q^{2}\right)=\left(1-t^{2} q^{2 \alpha+1}\right) W_{\alpha}\left(t ; q^{2}\right)
$$

we get

$$
\begin{aligned}
& {[2 \alpha+1]_{q} \frac{C\left(\alpha ; q^{2}\right)}{2 x} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) t f_{o}(x t) d_{q} t } \\
= & \frac{C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1}\left(1-q^{2} t^{2}\right) W_{\alpha}\left(q t ; q^{2}\right) \partial_{q} f_{o}(x t) d_{q} t \\
= & \frac{C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1}\left(1-t^{2} q^{2 \alpha+1}\right) W_{\alpha}\left(t ; q^{2}\right) \partial_{q} f_{o}(x t) d_{q} t,
\end{aligned}
$$

which completes the proof.

Theorem 6. For all $f \in \mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{equation*}
\forall x \in \mathbb{R}_{q}, V_{\alpha, q}(f)(x)=R_{\alpha, q}\left(f_{e}\right)(x)+\partial_{q} R_{\alpha, q} I_{q}\left(f_{o}\right)(x), \tag{54}
\end{equation*}
$$

where $R_{\alpha, q}$ is given by (36) and I_{q} is the operator given by

$$
\forall x \in \mathbb{R}_{q}, I_{q}\left(f_{o}\right)(x)=\int_{0}^{|q x|} f_{o}(t) d_{q} t
$$

Proof.From the definitions of the q-Dunkl intertwining and the q-RiemannLiouville operators, we have

$$
\begin{aligned}
V_{\alpha, q}(f)(x) & =\frac{C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right)(1+t)\left(f_{o}(x t)+f_{e}(x t)\right) d_{q} t \\
& =\frac{C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) f_{e}(x t) d_{q} t+\frac{C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) t f_{o}(x t) d_{q} t . \\
& =R_{\alpha, q}\left(f_{e}\right)(x)+\frac{C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) t f_{o}(x t) d_{q} t .
\end{aligned}
$$

On the other hand, by q-derivation under the q-integral sign and the fact that $\partial_{q}\left(I_{q} f_{o}\right)=f_{o}$, we obtain

$$
\begin{aligned}
\partial_{q}\left[R_{\alpha, q} I_{q}\left(f_{o}\right)\right](x) & =\frac{C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) t \partial_{q}\left(I_{q} f_{o}\right)(x t) d_{q} t \\
& =\frac{C\left(\alpha ; q^{2}\right)}{2} \int_{-1}^{1} W_{\alpha}\left(t ; q^{2}\right) t f_{o}(x t) d_{q} t .
\end{aligned}
$$

This gives the result.

Theorem 7. The transform $V_{\alpha, q}$ is an isomorphism from $\mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$ onto itself, its inverse transform is given by

$$
\begin{equation*}
\forall x \in \mathbb{R}_{q}, V_{\alpha, q}^{-1}(f)(x)=R_{\alpha, q}^{-1}\left(f_{e}\right)(x)+\partial_{q}\left(R_{\alpha, q}^{-1} I_{q}\left(f_{o}\right)\right)(x) \tag{55}
\end{equation*}
$$

where $R_{\alpha, q}^{-1}$ is the inverse transform of $R_{\alpha, q}$.
Proof. Let H be the operator defined on $\mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$ by

$$
H(f)=R_{\alpha, q}^{-1}\left(f_{e}\right)+\partial_{q}\left(R_{\alpha, q}^{-1} I_{q}\left(f_{o}\right)\right)
$$

We have $V_{\alpha, q}(f)=R_{\alpha, q}\left(f_{e}\right)+\partial_{q}\left(R_{\alpha, q} I_{q}\left(f_{o}\right)\right), R_{\alpha, q}\left(f_{e}\right)$ is even and $\partial_{q}\left(R_{\alpha, q} I_{q}\left(f_{o}\right)\right)$ is odd, then

$$
\begin{aligned}
H V_{\alpha, q}(f) & =R_{\alpha, q}^{-1} R_{\alpha, q} f_{e}+\partial_{q} R_{\alpha, q}^{-1} I_{q}\left(\partial_{q} R_{\alpha, q} I_{q}\left(f_{o}\right)\right) \\
& =f_{e}+\partial_{q} R_{\alpha, q}^{-1} I_{q}\left(\partial_{q} R_{\alpha, q} I_{q}\left(f_{o}\right)\right)
\end{aligned}
$$

Using the fact that for $\varphi \in \mathcal{E}_{*, q}\left(\mathbb{R}_{q}\right), I_{q}\left(\partial_{q} \varphi\right)(x)=\varphi(x)-\lim _{t \rightarrow 0} \varphi(t)$, we obtain

$$
I_{q}\left(\partial_{q} R_{\alpha, q} I_{q}\left(f_{o}\right)\right)=R_{\alpha, q} I_{q}\left(f_{o}\right)
$$

So,

$$
R_{\alpha, q}^{-1} I_{q}\left(\partial_{q} R_{\alpha, q} I_{q}\left(f_{o}\right)\right)=I_{q}\left(f_{o}\right)
$$

and

$$
\partial_{q} R_{\alpha, q}^{-1} I_{q}\left(\partial_{q} R_{\alpha, q} I_{q}\left(f_{o}\right)\right)=\partial_{q} I_{q}\left(f_{0}\right)=f_{0} .
$$

Thus,

$$
H V_{\alpha, q}(f)=f_{e}+f_{o}=f
$$

With the same technique, we prove that $V_{\alpha, q} H(f)=f$.

Definition 4. For $f \in \mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$ and $\alpha>-\frac{1}{2}$, we define the q-transpose of $V_{\alpha, q}$ by

$$
\begin{equation*}
\left({ }^{t} V_{\alpha, q}\right)(f)(t)=M_{\alpha, q} \int_{|x| \geq q|t|} W_{\alpha}\left(\frac{t}{x} ; q^{2}\right)\left(1+\frac{t}{x}\right) f(x) \frac{|x|^{2 \alpha+1}}{x} d_{q} x \tag{56}
\end{equation*}
$$

where $W_{\alpha}\left(. ; q^{2}\right)$ is given by (25) and

$$
\begin{equation*}
M_{\alpha, q}=\frac{(1+q)^{-\alpha+\frac{1}{2}}}{2 \Gamma_{q^{2}}\left(\alpha+\frac{1}{2}\right)} \tag{57}
\end{equation*}
$$

Note that by simple computation, we obtain for $f \in \mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$ and $g \in \mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$

$$
\begin{equation*}
\frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} V_{\alpha, q}(f)(x) g(x)|x|^{2 \alpha+1} d_{q} x=K \int_{-\infty}^{+\infty} f(t)\left({ }^{t} V_{\alpha, q}\right)(g)(t) d_{q} t \tag{58}
\end{equation*}
$$

Proposition 8. For $f \in \mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{equation*}
\partial_{q}\left({ }^{t} V_{\alpha, q}\right)(f)=\left({ }^{t} V_{\alpha, q}\right)\left(\Lambda_{\alpha, q}\right)(f) . \tag{59}
\end{equation*}
$$

Proof. Using a q-integration by parts and the relations (58), (53) and (45),
we get for all $f \in \mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$ and $g \in \mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$,

$$
\begin{aligned}
& K \int_{-\infty}^{+\infty} g(x) \partial_{q}\left({ }^{t} V_{\alpha, q}\right) f(x) d_{q} x \\
= & -K \int_{-\infty}^{+\infty} \partial_{q} g(x)\left({ }^{t} V_{\alpha, q}\right) f(x) d_{q} x \\
= & -\frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} V_{\alpha, q}\left(\partial_{q} g\right)(x) f(x)|x|^{2 \alpha+1} d_{q} x \\
= & -\frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} \Lambda_{\alpha, q}\left(V_{\alpha, q} g\right)(x) f(x)|x|^{2 \alpha+1} d_{q} x \\
= & \frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} V_{\alpha, q}(g)(x) \Lambda_{\alpha, q} f(x)|x|^{2 \alpha+1} d_{q} x \\
= & K \int_{-\infty}^{+\infty} g(x)\left({ }^{t} V_{\alpha, q}\right)\left(\Lambda_{\alpha, q} f\right)(x) d_{q} x .
\end{aligned}
$$

As g is arbitrary in $\mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$, we obtain the result.

Theorem 8. For $f \in \mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{equation*}
\forall x \in \mathbb{R}_{q},\left({ }^{t} V_{\alpha, q}\right)(f)(x)=\left({ }^{t} R_{\alpha, q}\right)\left(f_{e}\right)(x)+\partial_{q}\left[{ }^{t} R_{\alpha, q} J_{q}\left(f_{o}\right)\right](x), \tag{60}
\end{equation*}
$$

where ${ }^{t} R_{\alpha, q}$ is given by (37) and J_{q} is the operator defined by

$$
J_{q}\left(f_{o}\right)(x)=\int_{-\infty}^{q x} f_{o}(t) d_{q} t
$$

Proof. Let $f, g \in \mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$, using Theorem 6, the relation (38) and a q integration by parts, we obtain

$$
\begin{aligned}
& \frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} V_{\alpha, q}(g)(x) f(x)|x|^{2 \alpha+1} d_{q} x \\
= & \frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty}\left[R_{\alpha, q}\left(g_{e}\right)(x)+\partial_{q} R_{\alpha, q} I_{q}\left(g_{o}\right)(x)\right] f(x)|x|^{2 \alpha+1} d_{q} x \\
= & \frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} R_{\alpha, q}\left(g_{e}\right)(x) \cdot f_{e}(x) \cdot|x|^{2 \alpha+1} d_{q} x \\
& +\frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} \partial_{q} R_{\alpha, q} I_{q}\left(g_{o}\right)(x) \cdot f_{o}(x) \cdot|x|^{2 \alpha+1} d_{q} x \\
= & K \int_{-\infty}^{+\infty}\left({ }^{t} R_{\alpha, q}\right)\left(f_{e}\right)(x) \cdot g_{e}(x) d_{q} x \\
& -\frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} R_{\alpha, q} I_{q}\left(g_{o}\right)(x) \cdot \partial_{q}\left[f_{o}(x) \cdot|x|^{2 \alpha+1}\right] d_{q} x .
\end{aligned}
$$

It is easily seen that the map J_{q} is bijective from $\mathcal{D}_{q}^{*}\left(\mathbb{R}_{q}\right)$ onto $\mathcal{D}_{*, q}\left(\mathbb{R}_{q}\right)$ and $J_{q}^{-1}=\partial_{q}$, where $\mathcal{D}_{q}^{*}\left(\mathbb{R}_{q}\right)$ is the subspace of $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$ constituted of odd functions. Hence, by writing $f_{o}=\partial_{q} J_{q} f_{o}$ and by making use of (40) and (38) we get

$$
\begin{aligned}
& \frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} R_{\alpha, q} I_{q}\left(g_{o}\right)(x) \cdot \partial_{q}\left[f_{o}(x) \cdot|x|^{2 \alpha+1}\right] d_{q} x \\
= & \frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} R_{\alpha, q} I_{q}\left(g_{o}\right)(x) \cdot \frac{1}{|x|^{2 \alpha+1}} \partial_{q}\left[|x|^{2 \alpha+1} \partial_{q} J_{q} f_{o}(x)\right]|x|^{2 \alpha+1} d_{q} x \\
= & \frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} R_{\alpha, q} I_{q}\left(g_{o}\right)(x) \cdot \Delta_{\alpha, q} J_{q} f_{o}(x) \cdot|x|^{2 \alpha+1} d_{q} x \\
= & K \int_{-\infty}^{+\infty} I_{q}\left(g_{o}\right)(x) \cdot{ }^{t} R_{\alpha, q} \Delta_{\alpha, q} J_{q} f_{o}(x) d_{q} x \\
= & K \int_{-\infty}^{+\infty} I_{q}\left(g_{o}\right)(x) \cdot \partial_{q}^{2}\left({ }^{t} R_{\alpha, q}\right) J_{q} f_{o}(x) d_{q} x \\
= & -K \int_{-\infty}^{+\infty} \partial_{q} I_{q}\left(g_{o}\right)(x) \cdot \partial_{q}\left({ }^{t} R_{\alpha, q}\right) J_{q} f_{o}(x) d_{q} x .
\end{aligned}
$$

Since $\partial_{q} I_{q}\left(g_{o}\right)(x)=g_{o}(x)$, then

$$
\begin{aligned}
& \frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} V_{\alpha, q}(g)(x) f(x)|x|^{2 \alpha+1} d_{q} x \\
= & K \int_{-\infty}^{+\infty} g(x)\left[\left({ }^{t} R_{\alpha, q}\right) f_{e}(x)+\partial_{q}\left({ }^{t} R_{\alpha, q}\right) J_{q} f_{o}(x)\right] d_{q} x .
\end{aligned}
$$

As g is arbitrary in $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$, this relation when combined with (58) gives the result.

Theorem 9. The transform $\left({ }^{t} V_{\alpha, q}\right)$ is an isomorphism from $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$ onto itself, its inverse transform is given by

$$
\begin{equation*}
\forall x \in \mathbb{R}_{q},\left({ }^{t} V_{\alpha, q}\right)^{-1}(f)(x)=\left({ }^{t} R_{\alpha, q}\right)^{-1}\left(f_{e}\right)(x)+\partial_{q}\left[\left({ }^{t} R_{\alpha, q}\right)^{-1} J_{q}\left(f_{o}\right)\right](x), \tag{61}
\end{equation*}
$$

where $\left({ }^{t} R_{\alpha, q}\right)^{-1}$ is the inverse transform of $\quad{ }^{t} R_{\alpha, q}$.
Proof. Taking account of the relation $J_{q} \partial_{q} f(x)=f(x)$ for all $f \in \mathcal{D}_{*, q}\left(\mathbb{R}_{q}\right)$ and proceeding as in Theorem 7 we obtain the result.

6. q-Dunkl transform

Definition 5. Define the q-Dunkl transform for $f \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q}\right)$ by

$$
\begin{equation*}
F_{D}^{\alpha, q}(f)(\lambda)=\frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} f(x) \psi_{-\lambda}^{\alpha, q}(x) .|x|^{2 \alpha+1} d_{q} x \tag{62}
\end{equation*}
$$

where $c_{\alpha, q}$ is given by (31).

Remarks.

1) It is easy to see that in the even case $F_{D}^{\alpha, q}$ reduces to the q-Bessel Fourier transform given by (30) and in the case $\alpha=-\frac{1}{2}$, it reduces to the q^{2}-analogue Fourier transform given by (15).
2) Letting $q \uparrow 1$ subject to the condition (16), gives, at least formally, the classical Bessel-Dunkl transform.
Some properties of the q-Dunkl transform are given in the following proposition.

Proposition 9. i) If $f \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q}\right)$ then $F_{D}^{\alpha, q}(f) \in L_{q}^{\infty}\left(\mathbb{R}_{q}\right)$,

$$
\begin{equation*}
\left\|F_{D}^{\alpha, q}(f)\right\|_{\infty, q} \leq \frac{2 c_{\alpha, q}}{(q ; q)_{\infty}}\|f\|_{1, \alpha, q} \tag{63}
\end{equation*}
$$

and

$$
\lim _{\lambda \rightarrow \infty} F_{D}^{\alpha, q}(f)(\lambda)=0
$$

ii) For $f \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q}\right)$,

$$
\begin{equation*}
F_{D}^{\alpha, q}\left(\Lambda_{\alpha, q} f\right)(\lambda)=i \lambda F_{D}^{\alpha, q}(f)(\lambda) \tag{64}
\end{equation*}
$$

iii) For $f, g \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q}\right)$,

$$
\begin{equation*}
\int_{-\infty}^{+\infty} F_{D}^{\alpha, q}(f)(\lambda) g(\lambda)|\lambda|^{2 \alpha+1} d_{q} \lambda=\int_{-\infty}^{+\infty} f(x) F_{D}^{\alpha, q}(g)(x)|x|^{2 \alpha+1} d_{q} x \tag{65}
\end{equation*}
$$

Proof. i) Follows from the definition of $F_{D}^{\alpha, q}(f)$, the Lebesgue theorem and the fact that $\left|\psi_{-\lambda}^{\alpha, q}(x)\right| \leq \frac{4}{(q ; q)_{\infty}}$, for all $\lambda, \quad x \in \mathbb{R}_{q}$.
ii) Using the relation (45) and Proposition 6, we obtain the result.
iii) Let $f, g \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q}\right)$.

Since for all $\lambda, x \in \mathbb{R}_{q}$, we have $\left|\psi_{\lambda}^{\alpha, q}(x)\right| \leq \frac{4}{(q ; q)_{\infty}}$, then
$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left|f(x) g(\lambda) \psi_{\lambda}^{\alpha, q}(x)\left\|\left.x\right|^{2 \alpha+1}|\lambda|^{2 \alpha+1} d_{q} x d_{q} \lambda \leq \frac{4}{(q ; q)_{\infty}}\right\| f\left\|_{1, \alpha, q}\right\| g \|_{1, \alpha, q}\right.$.
So, by the Fubini's theorem, we can exchange the order of the q-integrals, which gives the result.

Theorem 10. For all $f \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{align*}
\forall x \in \mathbb{R}_{q}, \quad f(x) & =\frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} F_{D}^{\alpha, q}(f)(\lambda) \psi_{\lambda}^{\alpha, q}(x) \cdot|\lambda|^{2 \alpha+1} d_{q} \lambda \tag{66}\\
& =\overline{F_{D}^{\alpha, q}\left(\overline{F_{D}^{\alpha, q}(f)}\right)}(x)
\end{align*}
$$

Proof. Let $f \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q}\right)$ and $x \in \mathbb{R}_{q}$. Since for all $\lambda, t \in \mathbb{R}_{q}$, we have $\left|\psi_{\lambda}^{\alpha, q}(t)\right| \leq \frac{4}{(q ; q)_{\infty}}$, and $\lambda \mapsto \psi_{\lambda}^{\alpha, q}(x)$ is in $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, then

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|f(t) \psi_{-\lambda}^{\alpha, q}(t) \psi_{\lambda}^{\alpha, q}(x) \| t \lambda\right|^{2 \alpha+1} d_{q} t d_{q} \lambda \\
\leq & \frac{4}{(q ; q)_{\infty}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|f(t)\left\|\psi_{\lambda}^{\alpha, q}(x)\right\| t \lambda\right|^{2 \alpha+1} d_{q} t d_{q} \lambda \\
= & \frac{4}{(q ; q)_{\infty}}\|f\|_{1, \alpha, q}\left\|\psi_{x}^{\alpha, q}(\cdot)\right\|_{1, \alpha, q} .
\end{aligned}
$$

Hence, by the Fubini's theorem, we can exchange the order of the q-integrals and by Proposition 7, we obtain

$$
\begin{aligned}
& \frac{c_{\alpha, q}}{2} \int_{-\infty}^{\infty} F_{D}^{\alpha, q}(f)(\lambda) \psi_{\lambda}^{\alpha, q}(x)|\lambda|^{2 \alpha+1} d_{q} \lambda \\
= & \left(\frac{c_{\alpha, q}}{2}\right)^{2} \int_{-\infty}^{\infty} f(t)\left(\int_{-\infty}^{\infty} \psi_{-\lambda}^{\alpha, q}(t) \psi_{\lambda}^{\alpha, q}(x)|\lambda|^{2 \alpha+1} d_{q} \lambda\right)|t|^{2 \alpha+1} d_{q} t=f(x) .
\end{aligned}
$$

The second equality is a direct consequence of the definition of the q-Dunkl transform, Proposition 6 and the definition of the q-Jackson integral.

Theorem 11. i) Plancherel formula
For $\alpha \geq-1 / 2$, the q-Dunkl transform $F_{D}^{\alpha, q}$ is an isomorphism from $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ onto itself. Moreover, for all $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{equation*}
\left\|F_{D}^{\alpha, q}(f)\right\|_{2, \alpha, q}=\|f\|_{2, \alpha, q} . \tag{67}
\end{equation*}
$$

ii) Plancherel theorem

The q-Dunkl transform can be uniquely extended to an isometric isomorphism on $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$. Its inverse transform $\left(F_{D}^{\alpha, q}\right)^{-1}$ is given by :

$$
\begin{equation*}
\left(F_{D}^{\alpha, q}\right)^{-1}(f)(x)=\frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} f(\lambda) \psi_{\lambda}^{\alpha, q}(x) \cdot|\lambda|^{2 \alpha+1} d_{q} \lambda=F_{D}^{\alpha, q}(f)(-x) \tag{68}
\end{equation*}
$$

Proof. i) From Theorem 10, to prove the first part of i) it suffices to prove that $F_{D}^{\alpha, q}$ lives $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ invariant. Moreover, from the definition of $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ and
the properties of the operator ∂_{q} (Lemma 1), one can easily see that $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ is also the set of all function defined on \mathbb{R}_{q}, such that for all $k, l \in \mathbb{N}$, we have

$$
\sup _{x \in \mathbb{R}_{q}}\left|\partial_{q}^{k}\left(x^{l} f(x)\right)\right|<\infty \quad \text { and } \quad \lim _{x \rightarrow 0} \partial_{q}^{k} f(x) \quad \text { exists. }
$$

Now, let $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ and $k, l \in \mathbb{N}$. On the one hand, using the notation $\Lambda_{\alpha, q}^{0} f=f$ and
$\Lambda_{\alpha, q}^{n+1} f=\Lambda_{\alpha, q}\left(\Lambda_{\alpha, q}^{n} f\right), n \in \mathbb{N}$, we obtain from the properties of the operator $\Lambda_{\alpha, q}$ that for all $n \in \mathbb{N}, \Lambda_{\alpha, q}^{n} f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right) \subset L_{\beta, q}^{1}\left(\mathbb{R}_{q}\right)$ for all $\beta \geq-1 / 2$.
On the other hand, from the relation (64), we have

$$
\begin{aligned}
\lambda^{l} F_{D}^{\alpha, q}(f)(\lambda) & =(-i)^{l} F_{D}^{\alpha, q}\left(\Lambda_{\alpha, q}^{l} f\right)(\lambda) \\
& =(-i)^{l} \frac{c_{\alpha, q}}{2} \int_{-\infty}^{\infty} \Lambda_{\alpha, q}^{l} f(x) \psi_{-\lambda}^{\alpha, q}(x)|x|^{2 \alpha+1} d_{q} x .
\end{aligned}
$$

So, using the relation (49), we obtain

$$
\begin{aligned}
\left|\partial_{q}^{k}\left(\lambda^{l} F_{D}^{\alpha, q}(f)(\lambda)\right)\right| & \left.=\left.\left|(-i)^{l} \frac{c_{\alpha, q}}{2} \int_{-\infty}^{\infty} \Lambda_{\alpha, q}^{l} f(x) \partial_{q}^{k} \psi_{-x}^{\alpha, q}(\lambda)\right| x\right|^{2 \alpha+1} d_{q} x \right\rvert\, \\
& \leq \frac{2 c_{\alpha, q}}{(q ; q)_{\infty}} \int_{-\infty}^{\infty}\left|\Lambda_{\alpha, q}^{l} f(x)\right||x|^{2 \alpha+k+1} d_{q} x<\infty
\end{aligned}
$$

This together with the Lebesgue theorem prove that $F_{D}^{\alpha, q}(f)$ belongs to $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$. By Theorem 10, we deduce that $F_{D}^{\alpha, q}$ is an isomorphism of $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ onto itself and for $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, we have $\left(F_{D}^{\alpha, q}\right)^{-1}(f)(x)=F_{D}^{\alpha, q}(f)(-x), \quad x \in \mathbb{R}_{q}$.
Finally, the Plancherel formula (67) is a direct consequence of the second equality in Theorem 10 and the relation (65).
ii) The result follows from i), Theorem 10 and the density of $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ in $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$.

Theorem 12. The q-Dunkl transform and the q^{2}-analogue Fourier transform are linked by

$$
\begin{equation*}
\forall f \in \mathcal{D}_{q}\left(\mathbb{R}_{q}\right), \quad F_{D}^{\alpha, q}(f)=\left[{ }^{t} V_{\alpha, q}(f)\right] \wedge\left(. ; q^{2}\right) \tag{69}
\end{equation*}
$$

Proof. Using the relation (58) and Theorem 5, we obtain for $f \in \mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$,

$$
\begin{aligned}
{\left[{ }^{t} V_{\alpha, q}(f)\right] \uparrow(\lambda) } & =K \int_{-\infty}^{+\infty}\left({ }^{t} V_{\alpha, q}\right)(f)(t) e\left(-i \lambda t ; q^{2}\right) d_{q} t \\
& =\frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} V_{\alpha, q}\left(e\left(-i \lambda x ; q^{2}\right)\right) f(x)|x|^{2 \alpha+1} d_{q} x \\
& =\frac{c_{\alpha, q}}{2} \int_{-\infty}^{+\infty} f(x) \psi_{-\lambda}^{\alpha, q}(x) \cdot|x|^{2 \alpha+1} d_{q} x \\
& =F_{D}^{\alpha, q}(f)(\lambda)
\end{aligned}
$$

References

[1] L. Cherednik, A unification of the Knizhnik-Zamolodchicov equations and Dunkl operators via affine Heke algebras, Invent. Math., 106(1991), 411432.
[2] J. F. van Diejen, Confluent hypergeometric orthogonal polynomials related to the rational quantum Cologero system with harmonic confinement, Comm. Math. Phys. 188(1997), 467-497.
[3] C. F. Dunkl, Differential-difference operators associated to reflexion groups, Trans. Amer. Math. Soc., 311(1989), 167-183.
[4] C. F. Dunkl, Integral kernels with reflexion group invariance, Can. J. Maths. 43(1991), 1213-1227.
[5] C. F. Dunkl, Hankel transform associated to finite reflexion groups, Contemp. Math. 138(1992), 123-138.
[6] A. Fitouhi and N. Bettaibi and W. Binous, Inversion formulas for the q-Riemann-Liouville and q-Weyl transforms using wavelets, J. fract. Anal. Vilume 4, 2007.
[7] A. Fitouhi, M. M. Hamza and F. Bouzeffour, The $q-j_{\alpha}$ Bessel function, J. Approx. Theory., 115(2002), 144-166.
[8] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its application, Vol 35 Cambridge Univ. Press, Cambridge, UK, 1990.
[9] F. H. Jackson, On a q-Definite Integrals, Quarterly Journal of Pure and Applied Mathematics, 41(1910), 193-203.
[10] M. F. E. de Jeu, The Dunkl transform, Invent. Math., 113(1993), 147-162.
[11] M. F. E. de Jeu, The Dunkl operators, Thesis, University of Amesterdam, 1994.
[12] V. G. Kac and P. Cheung, Quantum Calculus, Universitext, SpringerVerlag, New York, (2002).
[13] S. Kakei, Common algebraic structure for the Calogero-Sutherland models, J. Phys. 178(1996), 425-452.
[14] T. H. Koornwinder and R. F. Swarttouw, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333(1992), 445-461.
[15] L. Lapointe and L. Vinet, Exact operator solution of the CalogeroSutherland model, Comm. Math. Phys. A, 29(1996), 619-624.
[16] E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compositio. Math. 85(1993), 333-373.
[17] Richard L. Rubin, A q^{2}-Analogue Operator for q^{2}-analogue Fourier Analysis,J. Math. Analys. App. 212(1997), 571-582.
[18] Richard L. Rubin, Duhamel Solutions of non-Homogenous q^{2}-Analogue Wave Equations, Proc. of Amer. Math. Soc. V 135, Nr 3(2007), 777785.
[19] K. Trimèche, The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual, Integ. Transf. Spec. Funct. V 12, Nr 4(2001), 349-374.

[^0]: *2000 Mathematics Subject Classification. 33D15, 39A12, 42A38, 44A15, 44A20.
 ${ }^{\dagger}$ E-mail: neji.bettaibi@ipein.rnu.tn
 ${ }^{\ddagger}$ E-mail: rym.bettaieb@yahoo.fr

