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Abstract

In this paper, we consider a g-analogue of the Dunkl operator on
R, we define and study its associated Fourier transform which is a ¢-
analogue of the Dunkl transform. In addition to several properties, we
establish an inversion formula and prove a Plancherel theorem for this
g-Dunkl transform. Next, we study the ¢g-Dunkl intertwining operator
and its dual via the g-analogues of the Riemann-Liouville and Weyl
transforms. Using this dual intertwining operator, we provide a relation
between the ¢-Dunkl transform and the g?-analogue Fourier transform
introduced and studied in [17, 18].

Keywords and Phrases: ¢-Dunkl operator, q-Dunkl transform, q-Dunkl
ntertwining operator.

1. Introduction

1
The Dunkl operator on R of index (a + —) associated with the reflection

group Zs is the differential-difference operator A, introduced by C. F. Dunkl
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Mol = T (a3 ) OEIE s D0

These operators are very important in pure mathematics and physics. They
provide a useful tool in the study of special functions with root systems [4, 2]
and they are closely related to certain representations of degenerate affine
Heke algebras [1, 16], moreover the commutative algebra generated by these
operators has been used in the study of certain exactly solvable models of
quantum mechanics, namely the Calogero-Suterland-Moser models, which deal
with systems of identical particles in a one dimensional space [15, 13].

In [5], C. F. Dunkl has introduced and studied a Fourier transform associ-
ated with the operator A,, called Dunkl transform, but the basic results such
as inversion formula and Placherel theorem were established later by M. F. E.
de Jeu in [10, 11].

C. F. Dunkl has proved in [4] that there exists a linear isomorphism V,
called the Dunkl intertwining operator, from the space of polynomials on R of
degree n onto itself, satisfying the transmutation relation

d

AaVa = Va_

. Vu)=1 2)

Next, K. Trimeche has proved in [19] that the operator V,, can be extended to
a topological isomorphism from £(R), the space of C*-functions on R, onto
itself satisfying the relation (2).

The goal of this paper is to provide a similar construction for a g-analogue
context. The analogue transform we employ to make our construction is based
on some ¢-Bessel functions and orthogonality results from [14], which have im-
portant applications to g-deformed mechanics. The g-analogue of the Bessel
operator and the Dunkl operator are defined in terms of the ¢?-analogue dif-
ferential operator, d,, introduced in [18].

This paper is organized as follows: In Section 2, we present some prelim-
inaries results and notations that will be useful in the sequel. In Section 3,
we establish some results associated with the ¢-Bessel transform and study
the g-Riemann-Liouville and the ¢-Weyl operators. In Section 4, we intro-
duce and study a g-analogue of the Dunkl operator (1) and we deal with its
eigenfunctions by giving some of their properties and providing for them a
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g-integral representations of Mehler type as well as an orthogonality relation.
In section 5, we define and study the ¢g-Dunkl intertwining operator and its
dual via the g-Riemann-Liouville and the ¢-Weyl transforms. Finally, in Sec-
tion 6, we study the Fourier transform associated with the g-Dunkl operator
(¢-Dunkl transform), we establish an inversion formula, prove a Plancherel
theorem and we provide a relation between the ¢-Dunkl transform and the
q*-analogue Fourier transform (see [17, 18]).

2. Notations and preliminaries

For the convenience of the reader, we provide in this section a summary of the
mathematical notations and definitions used in this paper. We refer the reader
to the general references [8] and [12], for the definitions, notations and prop-
erties of the ¢g-shifted factorials and the ¢g-hypergeometric functions. Through-
out this paper, we assume ¢ €]0,1[ and we denote R, = {£q¢" : n € Z},
R,+ ={q":neZ}.

2.1 Basic symbols
For x € C, the ¢-shifted factorials are defined by

n—1 o)
(@)oo =1; (ziq)a=[[(1—2q"), n=1,2,; (¥;9)0 = [[(1—2¢"). (3)
k=0 k=0
We also denote
1—¢* (¢ @)n
x|, = , reC and |n],)!=-—""—, n € N. 4
ol = 2 = 0 (1

2.2 Operators and elementary special functions

The ¢-Gamma function is given by (see [9] )

Fq<33) = <Q7Q)OO (1 - Q)l_x’ Z 7é 07 _17 _27

(4% 0)
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It satisfies the following relations

Fyz+1)=[z],[y(z), Ty(l)=1 and lim Ty (z) =T(z),R(z) >0. (5)

qg—1~

The g-trigonometric functions g-cosine and g¢-sine are defined by ( see [17, 18])

cos(w; ¢°) = Y (—=1)"¢" “)W ,sin(a; ) =) (—1) g™ +l)m'
n=0 a° n=0 q

(6)

The g-analogue exponential function is given by ( see [17, 18])
e(z;¢%) = cos(—iz; ¢*) +isin(—iz; ¢*). (7)

These three functions are absolutely convergent for all z in the plane and
when ¢ tends to 1 they tend to the corresponding classical ones pointwise and
uniformly on compacts.

Note that we have for all z € R, (see [17])

1 1
2 . 2
cos(x;q7)| < , sin(z; q°)| < ,
| cos(a; )] (¢:9) |sin(z; )| (€5 @)oo
and 5
- 2
e(iz;q7)| < : 8
el ) (4; ) (8)

The g*-analogue differential operator is ( see [17, 18])

flat2) + f(=q'2) — f(g2) + f(—qz) —2f(=2) if 2#0
04 F)(=) = SNl
limd,()(x)  (in R) o=l

(9)

Remark that if f is differentiable at z, then lirri 2,(f)(=z) = f'(2).
q—)

A repeated application of the g>-analogue differential operator n times is de-
noted by:

Nf =1 o =0,
The following lemma lists some useful computational properties of J,, and

reflects the sensitivity of this operator to parity of its argument. The proof is
straightforward.
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Lemma 1.
1) 9, sin(z; ¢*) = cos(x; ¢*), 9, cos(x; q ) = —sm(a: q %) and Oe(z; ¢%) = e(x; ¢?).
2) For all function f on R, 9,f(z) = fela” a _) e fe(2) fo((i — g;iqz)

3) For two functions f and g on R,, we have
. if [ even and g odd

94(f9)(2) = a094(f)(a2)9(2)+f(q2)04(9)(2) = 94(9)(2)) f (2) +a9(q2)04(f)(q2);
«if f and g are even

0y(f9)(2) = 04(£)(2)g(a =) + f(2)0,(9)(2)-

Here, for a function f defined on R, f. and f, are its even and odd parts
respectively.
The ¢-Jackson integrals are defined by (see [9])

| @ == aa quaq [ 1 dx—/f s~ [ rlad

(10)
/ Foddge =1 =0) 3 10"
/ fla (1—q) Z ¢"flq") + (1 —q) i q"f(=4q"), (11)
provided the sums converge ;;s_c?futely. In particula:,:f_oo: ac Ry,
/ f(@)dyr = (1= q)a Z q" f(ag™), (12)

n=—oo

The following simple result, giving g-analogues of the integration by parts
theorem, can be verified by direct calculation.

Lemma 2. .
1) Fora >0, if/ (0,f)(x)g(x)dyx exists, then
| @uh@s@de =2 [fla  gola) + £o@gela )] - [ 1@)019)()dy.
(13)
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2) If /OO (0, f)()g(z)dx exists,

| @@=~ [ @00 @ds (14

—c0 0o

2.3 Sets and spaces

By the use of the ¢*-analogue differential operator 9,, we note:
e £,(R,) the space of functions f defined on R, satisfying

VneN, a>0, Poa(f)=sup{|0)f(x);0<k<n;ze[-aadNR,} <oo

and
};ii% d;f(x) (in Ry) exists.

We provide it with the topology defined by the semi norms P, ,.
o & ,(R,) the subspace of ,(R,) constituted of even functions.
e S,(R,) the space of functions f defined on R, satisfying

Vn,m €N, Pyg(f) =sup [ 270; f(z) [< +oo
z€R,

and
glcii% J;f(z) (in Ry) exists.

e S.4(R,) the subspace of S;(R,) constituted of even functions.

e D,(R,) the space of functions defined on R, with compact supports.
e D, ,(R,) the subspace of D,(R,) constituted of even functions.
Using the ¢-Jackson integrals, we note for p > 0 and o € R,

oIN(R,) = {f Nl = ( | |f(:v)lpdqm); < oo} |
o I(R,,) = {f Nl = ( I \f(x)|”dqx>; < oo} ,

° qu(Rq) - {f N llpag = (/; ‘f(l’)‘p’m‘zaﬂdqx) ’ < oo} ,

o [F (R,y) = {f N llpag = (/0 |f(:c)|px2a“dqx)p < oo} ,
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zER,

.LEO(R)_{ [ fllooq = sup | f(z )|<oo},

° L;O(Rq,Jr) = { ||f||ooq = sup |f(z)| < OO}

zE€Rg,+

2.4  ¢*>-Analogue Fourier transform

R. L. Rubin defined in [18] the ¢*-analogue Fourier transform as

x %) K/ f(t)e(—itx; ¢*)d, (15)
1 1
where K = ﬂ
20 (5)
Letting ¢ T 1 subject to the condition
Log(1 —q)
——— € 27, 16
Log(q) (16)

gives, at least formally, the classical Fourier transform. In the remainder of
this paper, we assume that the condition (16) holds.
It was shown in [18] that f(.;¢*) verifies the following properties:

DI fu), uf(u) € LYR,), then 8, ( T ) (2:4%) = (—iuf(u)f(z; ¢*)
2)If f, 9,f € LL(R,), then (9,f) ~(x;¢%) = ixf (x3¢%).
3) ]/”\(, ¢°) is an isomorphism from L7(R,) onto itself. For f € L2(RR,), we have

vieRy, (7)) = F-:?) and |7 ()l = e

3. ¢-Bessel Fourier Transform

The normalized g-Bessel function is defined by

too 2n

‘ T 2(0./ + 1)qn(n+1) T

() = _qy q . 17
Jal2:47) nEO( ) Fp(a+n+1)le(n+1) \1+¢q (1)

Note that we have

Ja(w¢®) = (1= ¢*)*Te(a + 1) (1 = ¢)2) ™" Ju((1 = @i ¢*),  (18)
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where
20+2.

« 2
- \q 14" ) o a
Jo(r;¢%) = ( 3 ) 191(0; ¢**7% %, ¢*2?) (19)
(6% 9%)os
is the Jackson’s third ¢-Bessel function.
Using the relations (17) and (6), we obtain

J-1(@3¢%) = cos(w:¢°), (20)
, sin(z; ¢°
jylasg?) = L) 1)
and .
Djalz; q°) = _mja-l—l(x; 7). (22)
q

In [6], the authors proved the following estimation.

1
Lemma 3. For o > 3 and v € R,

oo o (2058 ) 1 if |z < -
° |ja(x; q )| - (q204+1- q2> Loq(l—’q)\x\ 2 _
$0%)oc )i e >

e for all veER,ju(v;¢*) =o0(x™") as |z] — +oo (in R,).

As a consequence of the previous lemma and the relation (22), we have for

1
o> ——,
-2

ja<-§ q2) € S*,q<]Rq)~

With the same technique used in [7], we can prove that for « > —5 Ja(1q?)
has the following g-integral representation of Mehler type

1
Jo(;¢%) ZC(a;QQ)/ Wal(t; ¢°) cos(xt; ¢°)dyt, (23)
0

where

Pg(a+1)
L

C(a§q2):(1+Q) (l)FQ(Oz—O—l)

(24)
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and Yy o
(0% ¢*) o
(T2¢*+; ) oo

Remark. Since the functions W,(.;¢*) and cos(.;¢*) are even and sin(.; ¢°)

Wa(t; ) = (25)

is odd, we can write for « > —5

1
ol ) = %C(a; 2) / Woa(t: )e(—it: ¢?)dt. (26)
—1

In particular, using the inequality (8), we obtain

a5 4%)] < Yz € R, (27)

9
(4 9)

Proposition 1. For z,y € R, 1, we have

+oo 1+ ¢)*T2%(a+1
(xy)a—H/ Jo(xt; %) alyt; )Tyt = Sl : ( >59: - (28)
0 (I—-q) ’
Proof. The result follows from the relation (18) and the orthogonality rela-
tion of the Jackson’s third ¢-Bessel function J,(.; ¢*) proved in [14]. |

Using the same technique as in [7], one can prove the following result.

Proposition 2. For A\ € C, the function z +— jo(Ax;¢*) is the unique even
solution of the problem

Poaf(z) = —Xf(z),
{ 0) =1, (29)
b
|x|2a+1

where Do o f(x) = Oyl|=[*** 0y f ()]
Definition 1. The g-Bessel Fourier transform is defined for f € Li’q(Rq7+),
by

Faral D) = o /O T F @) )2 dya (30)
where
(I 4q)

o , 31
= Ta(a+1) (31)
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Letting ¢ T 1 subject to the condition (16), gives, at least formally, the
classical Bessel-Fourier transform.
Some properties of the ¢-Bessel Fourier transform are given in the following
result.

Proposition 3. 1) For f € L}, (Ry+), we have Foq(f) € L*(Ry+) and

2¢a,q

[ Faa(Fllocq < (q;q)oonHLq-
2)For f,g € L, ,(Ry ), we have
/ F(@) Fag(g)(@)a*dex = / Foq /) N)gN)N*Fd N (32)
0

3) If f and Ngof are in L} (R, ), then

FoalLagf)(A) = =N Faq(f)(N).
4) If f and 2*f are in L}, ,(Ry4), then

Dag(Faqlf)) = =Faq@™f).

Proof. 1) follows from the definition of F, , and the relation (27).
2) Let f,g € L}, ,(Rg+).

2
Since for all A,z € R, ,, we have | j,(Ar;¢®) |[< ———, then

(¢: @)

“+oo +oo
/ / (Mo (x5 @) |22\ 2 d A

< fltaqllgllia < oo
bl

So, by the Fubini’s theorem, we can exchange the order of the g-integrals and

obtain,
/ F(2) Fog(9) (@)2? dya
+oo +oo
— / f ( )ja()\xa q2)$2a+1)\2a+1dq)\dq$
_ / o) ( F(@)ja(Ar: q2>x2a+1dqo:) A2, )
0

= / Faa FYN)GNNH1d A,



188 Néji Bettaibi and Rym Bettaieb

3) For f € L}, (R, ) such that A, of € L ,(Rg4), let f be the even function

defined on R, whose f is its restriction on R, ;. We have A, , f:Aa7qfv and

Foa(Bagl)(A) = Ca,q/o (Dag£)(@)ja(; @) dy (33)
- % OO(Aa,qf)(@ja(x)\;q2)|x\2a+ldqx, (34)

So, Proposition 2 and two g-integrations by parts give the result.
4) The result follows from Proposition 2. |

Proposition 4. If f € L} (R,), then

Vo eRys, ()= coy / Fua(F) V) hs 2NN,
0

Proof. The result follows from the relation (27), Proposition 1 and the Fu-
bini’s theorem. [

Theorem 1. 1) Plancherel formula
For all f € D, ,(R,), we have

Hfa,q(f)”?,a,q = ||f|

2,0,q (35)

2) Plancherel theorem
The q-Bessel transform can be uniquely extended to an isometric isomorphism
on L7 ,(Ry 1) with Fo b = Fag.

Proof. 1) Let f € D,(R,), it is easy to show that Fo4(f) is in L} ,(Rg ).
From Proposition 4, we have f = F, ,(Fa4(f)), so using the relation (32), we
obtain

By = [ SRty = [ Fo P @) T

- / Foa ) @) Fa () ()2 gt = | Fog () 2y

2) The result follows from 1), Proposition 4 and the density of D, ,(R,) in
Li,q (Rq,—l-)‘ u
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1
Definition 2. For a > 5 the g-Riemann-Liouville operator R, , is defined
for f e &4 (Ry) by

Ros(1)(@) = 5C(aia?) [ Waltia)at)dt. (36)

The q-Weyl operator is defined for f € D, ,(R,) by

- % +o0
R0 = o [ W (B?) s @

In the end of this section, we shall give some useful properties of these two
operators. First, by simple calculus, one can easily prove that for f € &, ,(R,)
and g € D, ,(R,), we have

ca7 oo o oo
% [ R D@l g = K [ S0 RO 39
Next, using the relation (26), we obtain
Ja(50%) = Rag (e(=i507)). (39)
Lemma 4. The operator R, , is continuous from &, ,(R,) into itself.

Proof. Let f bein &, ,(R,). The function © — R, ,(f)(z) is an even function
on R,.
By ¢-derivation under the ¢-integral sign, we deduce that for all n € N,

1
O RoalP)la) = 5C1es ) [ Walls )@ 1)at)t
Then,
Va > 0,Yn € N, P, o(Roq(f)) < Poo(f) < 0.

This relation together with the Lebesgue theorem proves that R, ,(f) belongs
to £, 4(R,) and it shows that the operator R, , is continuous from &, ,(RR,) into
itself. [ |
Using the previous lemma and making a proof as in Theorems 3 and 4 of [7],
we obtain the following result.
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Theorem 2. The g-Riemann-Liouville operator R, q s a topological isomor-
phism from &, ,(R,) onto itself and it transmutes the operators A, 4 and 83 mn
the following sense

Ay qRoq = Ra,qag. (40)

Theorem 3. The q-Weyl operator 'R, is an isomorphism from D, ,(R,) onto
itself, it transmutes the operators A, , and (93 in the following sense

ltRoz,qAa,q = ag(tRa,q) (41)
and for f € D, 4(R,), we have
Faa(f) = (‘Rag(f)) (5. (42)

Proof. The first part of the result can be proved as Proposition 3 of [7] page
158.

The relation (42) is a consequence of the relations (38) and (39).

Let us now, prove the relation (41). Let g € D, ,(R,). For all f € D, ,(R,),
we have, using the g-integration by parts theorem, the relations (38) and (40),

K [ 02 (Rass) 0)F )i
= K/ aqg an( )

Ca o
A

—00

_ Cag /°° 9(0) Aag R f (@) 2 dya
_Caa / 049(2) 0y Ro g f) () |[*+ dyo
_ Cog / Bog9() Raa f ()]l dya
:K/ Rog( B qg) () f (x)dyz.
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4. The ¢-Dunkl operator and its eigenfunctions

1
For a > —5 consider the operators:

Hog: f=fet for— fet+ " fo (43)

and
f(z) = f(-x)
2x ’

It is easy to see that for a differentiable function f, the g-Dunkl operator
Ao (f) tends, as ¢ tends to 1, to the classical Dunkl operator A, (f) given by

(1).

In the case « = —=, A, , reduces to the ¢*-analogue differential operator 9,.

Aag(F)(@) = 0 [Hag()] () + 20+ 1], (44)

Some properties of the ¢-Dunkl operator A, , are given in the following propo-
sition.

Proposition 5. .

i) If f is odd then Ao q(f)(x) = ¢***10,f(2) + 20+ 1]61@

then Ao q(f)(x) = 0, f ().
it) If f and g are of the same parity, then

and if f is even

/ " M (F) (@) )2y = 0.

o0

+o0o
iii) For all f and g such that/ Ao q(f)(@)g(z)|x** T d,z exists, we have
e 2a-+1 e 2041
/ Aag(N)(@)g(@)|2]** " dgr = —/ Aag(9)(@)f(@)]a*dga.  (45)

iv) The operator A, lives E,(R,), S4(R,) and D,(R,) invariant.

Proof. i) is a direct consequence of the definition of A, .

ii) follows from the properties of the g-integrals and the fact that A, , change
the parity of functions.

iii) From ii) we have the result when f and g are of the same parity.
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Now, suppose that f is even and g is odd. Using Lemma 2, the property i) of
A, 4 and the properties of the ¢*-analogue differential operator 9, we obtain

“+oo
/ Rag(f)(@)g(@)]a?* dyz

= [ o @@ e
= [ 1@, o))

+oo
= -/ [l [q2“+16‘q9(93) + 20+ 1],

S
S

:| |$|2a+1dq$

“+oo
- - f(I)A%q(g)(l‘)|ZL’|2a+1qu.

iv) follows from the facts that for f € &,(R,),

Aeal @) = 0, [Hoal 1] 2) + 22520 [ 0 f) (et

and for f € Sy(R,),

Aeal D)) = O, [Hal1) @)+ 20+ 1), [ 0L 00t
= ey @) - a1, [ 0L a0t

Let us now introduce the eigenfunctions of the ¢-Dunkl operator. .
Theorem 4. For A € C, the g-differential-difference equation:
{2 e
has as unique solution, the function
VYl jo(AT;¢°) + AT Jar1(Az; ¢?). (47)

[2a + 2],
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Proof. Let f = f. + f,. The problem (46) is equivalent to the system

{ Oyfe(x) + ¢*T10, folx) + [2a + 1]qfo:(f) = ife(x) +iNf,()
fe(0) =1,
witch is equivalent to
Ogfe(x) = iAfo(x)
¢ fel(w) + 20+ l]qaqf;(m) = X fel2)

fe(0) = 1.

Now, using Proposition 2 and the relation (22), we obtain

fe(x) = ja(/\l'; q2)

1 ) I
fo(l') = aaq(Ja()\x;QQ)) = m3a+l(>\x; q2).
q
Finally, for A € C,
e . Z)\I .
Viz) = f(z) = ja(Da;¢%) + mjaﬂ()\l‘; 7*). [
q

The function ¢}"?(z), called ¢g-Dunkl kernel has an unique extention to C x
C and verifies the following properties.

Proposition 6. 1) A, 37 = iAyp$?.

2) Y3 () = ' (A), (@) = 9% az)  and  Y3(x) = P2{(2), for
ANx€eR anda e C.

1
3)If a= —5 then ¥\ (x) = e(idz; ¢%).
1
For a > —5 Y has the following g-integral representation of Mehler type
1 1
Vi(x) = 50(04; q2)/ Wo(t;¢*) (1 + t)e(idat; ¢*)d,t, (48)
~1

where C(a; ¢*) and W, (t;¢*) are given respectively by (24) and (25).
4) For alln € N we have

W

RYE
(¢:9)

In particular for all X € Ry, ¥3"? is bounded on R, and we have

| Y3 () |<

| 0" (@) |< , YAz eR, (49)

T ek (50)
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5) For all X € Ry, Y7 € S4(R,).

Proof. 1) and 2) are immediate consequences of the definition of ¢

1
3) Ifa= —3 then the relations (20), (21) and (7) give the result.

1
If o > —3 using the definition of ¥, the parity of the function j,(.; ¢*) and
the relations (26) and (22), we obtain

V()
. 2 1 . 2
= Ja(A1;07) + aaQ(ja()‘x;q )
.2 1
= @ Walt; ¢*)e(idat; ¢*)dyt

1
anq / W (t; ¢)ite(idet; ¢*)d,t,

which achieves the proof.
4) By induction on n we prove that

8;71&/0\"(1(35):%% / Walt; 2)(1 + t)t"e(idat; ¢2)d,t.

2
So, the fact that |e(iz; ¢*)| < @0 gives the result.
4;4)c
5) The result follows from Lemma 3, the relation (22) and the properties of
Dy ]

The function ¢} verifies the following orthogonality relation.

Proposition 7. For all x,y € R,, we have

oo _ . 4(1+ q)* T3 (a + 1)04y
,\’q(x) ,\’q(y)|)‘|2 Hdgh = .

= e (51

Proof. Let z,y € R,, the use of the relation (28) and the properties of the
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g-Jackson’s integral lead to

+o0o
R @)U ()P g

—+o00
- / ja s @) O ) A2+ dgA

—00

Ty too 2\ 211y [20+3
_|_[7 ja+1()\.%';q )ja-i-l(Ay;q )‘)\’ dQ)\

20+ 212 |
204 @) TR (et Doy | 22y(1+ @) PTG (@ + 2)dp)
(1= gq)|zy|**! 20+ 2]2(1 — q)|zy|**+2
2(1 + q)2al“32 (a + 1)(5|m|"y| 4(1 + q)Qo‘ng (Oz + 1)5z,y

= (14 sgn(zy)) =

(1 —q)|aylo! (1 —q)|zyloT!

5. ¢—Dunkl intertwining operator

Definition 3. We define the g— Dunkl intertwining operator V, , on E,(R,) by

Clo:a?) 1
OO [ W)+ 0s s, 6

-1

where C(a; ¢*) and W, (t; ¢*) are given by (24) and (25) respectively.

Theorem 5. We have

i) Vagle(—idz; ¢%) = v*i(x), N,z € R,.

ii) Va4 verifies the following transmutation relation

Aa,qvmq(f) = Va,q(aqf)a Va,q(f) (0) - f(0> (53)

Proof. i) follows from the relation (48).
ii) Let f = f, + f. € £&(R,), we have on the one hand

Vo e Ry, Vo (f)(x) =

Va,q@qf)(x)
Cla;¢%)

1
- Yo /Waa;q?)aqfo(xt)dqt
-1

Cla; ¢?)
T

/ 1 W (t; ¢°)t0, fo(zt)d,t.
-1
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On the other hand, we have

AagVao(f)(2)
_ C’(O;;Q)/ W (t; )0, fo(t)dyt

1

2a41 L2 1
%@"Q) / W (t: ¢2)820, f,(xt)d,t
—1

N [2a + 1],C(a; ¢%)
2z

1
/ W (t; @)t fo(xt)dt.

-1
Now, using a ¢-integration by parts and the facts that

Oy [(1 = PYWalat; )] = —[2a + 1]t W, (t; ¢°)
and
(1= " t)Walat;¢*) = (1 = *¢* ) Wal(t; ¢),

we get

2t 1, ED [ v gty

X 1
= C<0427 7°) /1 (1 — @)W, (qgt; q2)aqfa($t)dqt

1
1

_ C(O;;qZ) / (1 — 2 YWo (t: 20y fo (2t )d,t,

1

which completes the proof.

Theorem 6. For all f € £,(R,), we have

Va € Ry, Vo (f)(2) = Rag(fe) () + 04 Ra g1y (fo) (),

where R4 is given by (36) and 1, is the operator given by

lq|

Vo € Ry I(f)@) = [ folt)dt
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Proof.From the definitions of the g—Dunkl intertwining and the g-Riemann-
Liouville operators, we have

Vaal D)) = G [ Wt )0+ 07t + 5ot
= C(OQQQ) IWa(t;qz)fe(xt)dqt+C(O;q2> /1Wa(t;q2)tfo(:vt)dqt.

C(a; ¢?)
2

= Rug(f))+ [ Wttt

On the other hand, by ¢-derivation under the g-integral sign and the fact that
0q4(1,f5) = fo, we obtain

a: 2 1
Oy Realy(fo)] () = &) | Waltay,L, o) et

2
C : 2 1
= (O;q )/_1 Wa(t; ¢*)t fo(wt)dyt.

This gives the result. [ |

Theorem 7. The transform V,, is an isomorphism from E,(R,) onto itself,
its inverse transform is given by

Vo € Ry, Vo (F)(@) = Ry o (fo) (@) + 84 (Ro 41 (fo)) (o), (55)
where R, is the inverse transform of R,

a?q

Proof. Let H be the operator defined on &,(R,) by

H(f) = Rgg(fe) + 0g(Ro oo (fo))-

We have V, ,(f) = Raoq(fe)+0; (Ragly(fo)) s Rag(fe) iseven and 0, (Ra o 1,(fo))
is odd, then

HVoo(f) = RoyRagfe +04R0,15(04Ragly(fo))
= fe + aqR;,}zlq(aqRavqlq(fo))

Using the fact that for p € &, ,(R,), 1,(0,9)(x) = p(x) — Pr% ©(t), we obtain

Iq(aquq]q(fo)) = Ra,q]q(fo)-
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So,
Ry 1y(04Rag1y(fo)) = 1y(fo)
and
0y Ry 4 14(04 Rag1y(fo)) = 0yly(fo) = fo-
Thus,
HVoo(f) =fe+ fo=T.
With the same technique, we prove that V, ,H(f) = f. [ |

1
Definition 4. For f € D,(R,) and o > —5 we define the g-transpose of V, 4

by
. t ) t |I’|2a+1
(Vo) ()(t) = Mag Wal=iq" ) {1+ ) f(2) dgz, (56
j2|>qlt] $ . T
where W, (.; ¢*) is given by (25) and
1+ ¢q) otz
M,, (1+9) : (57)
2Fq2 (Oé + 5)

Note that by simple computation, we obtain for f € &£,(R,) and g € D,(R,)

+oo +oo

o [V (D@g@)adae =K [ f0Va9)dgt.  (58)

2 —00 —00

Proposition 8. For f € D,(R,), we have
0q("Va,g) (f) = (Vag) Aag) (f)- (59)

Proof. Using a g-integration by parts and the relations (58), (53) and (45),
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we get for all f € D,(R,) and g € &,(R,),

K/+Oo Vo) f(2)dyx
- & / " 045 (Vi) )y

Ca a

— 2‘1 V, (0a9) () f ()| ** T g
Ca,q e 2a+1

R Ao g(Vaeg) (@) f (o) |2|** T dyx

B caq +OOV 2041

- ,a(9) (@) Ao g f (7)|2] g7

—K/m Vo) (o) (&)

As g is arbitrary in &,(R,), we obtain the result. [

Theorem 8. For f € D,(R,), we have

Yz € Ry, (Vag) () (@) = (‘Rag)(fe) (@) + 0g ['RagJo(fo)] (), (60)

where 'Ry, 4 is given by (37) and J, is the operator defined by

_ /_ : £(8)dt

Proof. Let f,g € D,(R,), using Theorem 6, the relation (38) and a g¢-
integration by parts, we obtain
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Co o
o [ Va9 @) f @) g
+00

Ca, a
= 0 [Rug(9:)(@) + Oy Ragly(00) ()] S (@) 22 dye
_ Cayg e 20+1
= 20 [ Raglg)(@) fol@) 2 dyo

Caq [T 20+1
+ 9 9y Raq14(90) (). fo().|2] dq

N K/_+Oo(tRa,q)(fe)(m)-ge(m)dqfc

+o0o

_% Rogly(90)(2)-0q [ fo(2).|2** ] dyz.

—00

It is easily seen that the map J; is bijective from D (RR,) onto D, ,(R,) and
J ! = 0,4, where D} (R,) is the subspace of D,(RR,) constituted of odd functions.
Hence, by writing f, = 9,J,f, and by making use of (40) and (38) we get

+oo

Coz, @

ot [ R Lyl00) ()-8, [fol). o] dya

Co, +o0 1 o a

T@ qu[q(go)(l‘),w—aﬂaq (|20, Iy fo(@)] |2** T dy
+oo

% Raqlo(90)(x). Do gy fo(). |2 dyga

“+oo

K/ I4(90) (7). RagDagJofol)dg
-

K [ 1(0)@) 2 Ru)Juf o0y

.
K [0 (0)0) 0, R ool

Since 8‘1111(90) (ZL’) = go(fb), then
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—+00

St [V, g (9) (@) f (@) dye

2 —00
= K[ 9@ [(Ra) o) + 0, Rag) o fo(0)]

As g is arbitrary in Dy(RR,), this relation when combined with (58) gives the
result. |

Theorem 9. The transform (*V,,) is an isomorphism from D,(R,) onto itself,
its inverse transform is given by

V2 € Ry, (Vag) 7 (N)(@) = (Rag) ™ (f)(@) + 04 [(Rag) ™ Jo(fo)] (), (61)
where (*Req)"" is the inverse transform of — 'Rg,.

Proof. Taking account of the relation J,0,f(z) = f(z) for all f € D, ,(R,)
and proceeding as in Theorem 7 we obtain the result. |

6. ¢g-Dunkl transform

Definition 5. Define the q-Dunkl transform for f € L}, (R,) by

—+00

FRHN) =52 [ fapr i) o da, (62)

where cq 4 s given by (31).

Remarks.
1) It is easy to see that in the even case F? reduces to the g-Bessel Fourier

1
transform given by (30) and in the case o = —3 it reduces to the g?-analogue

Fourier transform given by (15).

2) Letting ¢ T 1 subject to the condition (16), gives, at least formally, the
classical Bessel-Dunkl transform.

Some properties of the g-Dunkl transform are given in the following proposi-
tion.
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Proposition 9. i) If f € L}, (R,) then F(f) € L¥(R,),

2Ca

IF5" (Nl < o (63)

and
lim F3*(H)(Y) = 0.

ii) For f € L}l’q(Rq),

Fp'(Bagf)(N) = IAF5(F)(N). (64
iii) For f,g € L}w(]Rq),

+00 +oo
| Er et = [ i@ @l . (63

Proof. i) Follows from the definition of F?(f), the Lebesgue theorem and
4
the fact that [¢*{(z)] < T for all A, z € R,.
q;54)00

ii) Using the relation (45) and Proposition 6, we obtain the result.
iit) Let f,g € L, ,(R,).

4
Since for all A,z € R,,we have | ¢{?(z) |< T then
q;9 )0
oo oo o 2 1 2 1 4
/ / T e e e LT L

So, by the Fubini’s theorem, we can exchange the order of the g¢-integrals,
which gives the result. [

Theorem 10. For all f € L}, ,(R,), we have

_@ e o,q a,q 2a+1
Ve eRy,  flz) = / Fpt(F) A3 (@) | AP dg A (66)

= Fp(Fp*(f))(2).
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Proof. Let f € L} (R,) and = € R,. Since for all At € R,, we have
| () |< and A\ — V() is in Sy (R,), then

/ / S () [t d gt dy A

O (@) [N dytd A

L
(¢ 9)

= mHle,a,q”"‘pg’q(-)Hl,a,q'
Hence, by the Fubini’s theorem, we can exchange the order of the g-integrals
and by Proposition 7, we obtain

o

CO(, [e'N «, 16%
o IR A RO

_ (ng / (/ YAt )|>\|2°‘+1d>\) )2t dt = f(x).

The second equality is a direct consequence of the definition of the g-Dunkl
transform, Proposition 6 and the definition of the ¢g-Jackson integral. |

Theorem 11. i) Plancherel formula
For a > —1/2, the q-Dunkl transform F3? is an isomorphism from S,(R,)
onto itself. Moreover, for all f € S;(R,), we have

IED (Pll20q = [ fll2.00- (67)

ii) Plancherel theorem
The q-Dunkl transform can be uniquely extended to an isometric isomorphism
on L2 (R,). Its inverse transform (F2) ™ s given by :

“+oo

(F") 7 ()@) =252 [ 7O @l AP A = PR () (o). (69)

Proof. i) From Theorem 10, to prove the first part of i) it suffices to prove
that F)? lives S;(R,) invariant. Moreover, from the definition of S,(R,) and
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the properties of the operator d, (Lemma 1), one can easily see that S, (R,) is
also the set of all function defined on Ry, such that for all k,1 € N, we have

sup |95 (' f(z))| < oo and hII(l) O f(x)  exists.
z€Ry r—

Now, let f € S,(R,) and k,I € N. On the one hand, using the notation
Agﬂ f=fand
Agj;f = Aay(AL,f), n € N, we obtain from the properties of the operator

Aog that for all n € N, A7 f € Sy(R,) C Lj (R,) for all § > —1/2.
On the other hand, from the relation (64), we have

NER(H)) = (=)' Fp(AL . f)N)

\Cag [ a o
= % AL f@u @l

So, using the relation (49), we obtain
(oA . cOé, > o, 6%
BNERT O = |02 [ AL o e

QCaq / l 2a+k+1
: A, f(@)]]z]™ d,r < oo.

(e 9]

This together with the Lebesgue theorem prove that F)?(f) belongs to S,(R,).
By Theorem 10, we deduce that F? is an isomorphism of S,(R,) onto itself
and for f € S,(R,), we have (Fy9) "' (f)(z) = FpU(f)(-x), z €R,.
Finally, the Plancherel formula (67) is a direct consequence of the second
equality in Theorem 10 and the relation (65).

ii) The result follows from i), Theorem 10 and the density of S,(R,) in
Li,q (Rq) L

Theorem 12. The q-Dunkl transform and the ¢*-analogue Fourier transform
are linked by

V€ Dy(Ry),  Fp'(f) = [Vaal)] ~(: ). (69)
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Proof. Using the relation (58) and Theorem 5, we obtain for f € D,(R,),

1]

+oo
Vool H] ") = K / Vo) () ()e(—irt: g2)dt

Ca o

= 2q Va,q( (—idz; @) f (@) |z[**F dya
+o0

CO{, (6 (6%
= 7" @)™ (x). |z dyx
= FpU(f)(N).

u
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