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Abstract

In this paper, we consider a q-analogue of the Dunkl operator on
R, we define and study its associated Fourier transform which is a q-
analogue of the Dunkl transform. In addition to several properties, we
establish an inversion formula and prove a Plancherel theorem for this
q-Dunkl transform. Next, we study the q-Dunkl intertwining operator
and its dual via the q-analogues of the Riemann-Liouville and Weyl
transforms. Using this dual intertwining operator, we provide a relation
between the q-Dunkl transform and the q2-analogue Fourier transform
introduced and studied in [17, 18].

Keywords and Phrases: q-Dunkl operator, q-Dunkl transform, q-Dunkl
intertwining operator.

1. Introduction

The Dunkl operator on R of index

(
α +

1

2

)
associated with the reflection

group Z2 is the differential-difference operator Λα introduced by C. F. Dunkl
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in [3] by

Λα(f)(x) =
df(x)

dx
+

(
α +

1

2

)
f(x)− f(−x)

x
, α ≥ −1

2
. (1)

These operators are very important in pure mathematics and physics. They
provide a useful tool in the study of special functions with root systems [4, 2]
and they are closely related to certain representations of degenerate affine
Heke algebras [1, 16], moreover the commutative algebra generated by these
operators has been used in the study of certain exactly solvable models of
quantum mechanics, namely the Calogero-Suterland-Moser models, which deal
with systems of identical particles in a one dimensional space [15, 13].

In [5], C. F. Dunkl has introduced and studied a Fourier transform associ-
ated with the operator Λα, called Dunkl transform, but the basic results such
as inversion formula and Placherel theorem were established later by M. F. E.
de Jeu in [10, 11].

C. F. Dunkl has proved in [4] that there exists a linear isomorphism Vα,
called the Dunkl intertwining operator, from the space of polynomials on R of
degree n onto itself, satisfying the transmutation relation

ΛαVα = Vα
d

dx
, Vα(1) = 1. (2)

Next, K. Trimèche has proved in [19] that the operator Vα can be extended to
a topological isomorphism from E(R), the space of C∞-functions on R, onto
itself satisfying the relation (2).

The goal of this paper is to provide a similar construction for a q-analogue
context. The analogue transform we employ to make our construction is based
on some q-Bessel functions and orthogonality results from [14], which have im-
portant applications to q-deformed mechanics. The q-analogue of the Bessel
operator and the Dunkl operator are defined in terms of the q2-analogue dif-
ferential operator, ∂q, introduced in [18].

This paper is organized as follows: In Section 2, we present some prelim-
inaries results and notations that will be useful in the sequel. In Section 3,
we establish some results associated with the q-Bessel transform and study
the q-Riemann-Liouville and the q-Weyl operators. In Section 4, we intro-
duce and study a q-analogue of the Dunkl operator (1) and we deal with its
eigenfunctions by giving some of their properties and providing for them a
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q-integral representations of Mehler type as well as an orthogonality relation.
In section 5, we define and study the q-Dunkl intertwining operator and its
dual via the q-Riemann-Liouville and the q-Weyl transforms. Finally, in Sec-
tion 6, we study the Fourier transform associated with the q-Dunkl operator
(q-Dunkl transform), we establish an inversion formula, prove a Plancherel
theorem and we provide a relation between the q-Dunkl transform and the
q2-analogue Fourier transform (see [17, 18]).

2. Notations and preliminaries

For the convenience of the reader, we provide in this section a summary of the
mathematical notations and definitions used in this paper. We refer the reader
to the general references [8] and [12], for the definitions, notations and prop-
erties of the q-shifted factorials and the q-hypergeometric functions. Through-
out this paper, we assume q ∈]0, 1[ and we denote Rq = {±qn : n ∈ Z},
Rq,+ = {qn : n ∈ Z}.

2.1 Basic symbols

For x ∈ C, the q-shifted factorials are defined by

(x; q)0 = 1; (x; q)n =
n−1∏
k=0

(1−xqk), n = 1, 2, ...; (x; q)∞ =
∞∏
k=0

(1−xqk). (3)

We also denote

[x]q =
1− qx

1− q
, x ∈ C and [n]q! =

(q; q)n
(1− q)n

, n ∈ N. (4)

2.2 Operators and elementary special functions

The q-Gamma function is given by (see [9] )

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, x 6= 0,−1,−2, ...
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It satisfies the following relations

Γq(x+ 1) = [x]qΓq(x), Γq(1) = 1 and lim
q−→1−

Γq(x) = Γ(x),<(x) > 0. (5)

The q-trigonometric functions q-cosine and q-sine are defined by ( see [17, 18])

cos(x; q2) =
∞∑
n=0

(−1)nqn(n+1) x2n

[2n]q!
, sin(x; q2) =

∞∑
n=0

(−1)nqn(n+1) x2n+1

[2n+ 1]q!
.

(6)
The q-analogue exponential function is given by ( see [17, 18])

e(z; q2) = cos(−iz; q2) + i sin(−iz; q2). (7)

These three functions are absolutely convergent for all z in the plane and
when q tends to 1 they tend to the corresponding classical ones pointwise and
uniformly on compacts.
Note that we have for all x ∈ Rq (see [17])

| cos(x; q2)| ≤ 1

(q; q)∞
, | sin(x; q2)| ≤ 1

(q; q)∞
,

and

| e(ix; q2)| ≤ 2

(q; q)∞
. (8)

The q2-analogue differential operator is ( see [17, 18])

∂q(f)(z) =


f (q−1z) + f (−q−1z)− f (qz) + f (−qz)− 2f(−z)

2(1− q)z
if z 6= 0

lim
x→0

∂q(f)(x) (in Rq) if z = 0.

(9)
Remark that if f is differentiable at z, then lim

q→1
∂q(f)(z) = f ′(z).

A repeated application of the q2-analogue differential operator n times is de-
noted by:

∂0
qf = f, ∂n+1

q f = ∂q(∂
n
q f).

The following lemma lists some useful computational properties of ∂q, and
reflects the sensitivity of this operator to parity of its argument. The proof is
straightforward.
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Lemma 1.
1) ∂q sin(x; q2) = cos(x; q2), ∂q cos(x; q2) = − sin(x; q2) and ∂qe(x; q2) = e(x; q2).

2) For all function f on Rq, ∂qf(z) =
fe(q

−1z)− fe(z)

(1− q)z
+
fo(z)− fo(qz)

(1− q)z
.

3) For two functions f and g on Rq, we have
� if f even and g odd

∂q(fg)(z) = q∂q(f)(qz)g(z)+f(qz)∂q(g)(z) = ∂q(g)(z))f(z)+qg(qz)∂q(f)(qz);

� if f and g are even

∂q(fg)(z) = ∂q(f)(z)g(q−1z) + f(z)∂q(g)(z).

Here, for a function f defined on Rq, fe and fo are its even and odd parts
respectively.
The q-Jackson integrals are defined by (see [9])∫ a

0
f(x)dqx = (1− q)a

∞∑
n=0

qnf(aqn),
∫ b

a
f(x)dqx =

∫ b

0
f(x)dqx−

∫ a

0
f(x)dqx,

(10)∫ ∞
0

f(x)dqx = (1− q)
∞∑

n=−∞

qnf(qn),

∫ ∞
−∞

f(x)dqx = (1− q)
∞∑

n=−∞

qnf(qn) + (1− q)
∞∑

n=−∞

qnf(−qn), (11)

provided the sums converge absolutely. In particular, for a ∈ Rq,+,∫ ∞
a

f(x)dqx = (1− q)a
−1∑

n=−∞

qnf(aqn), (12)

The following simple result, giving q-analogues of the integration by parts
theorem, can be verified by direct calculation.

Lemma 2.

1) For a > 0, if

∫ a

−a
(∂qf)(x)g(x)dqx exists, then

∫ a

−a
(∂qf)(x)g(x)dqx = 2

[
fe(q−1a)go(a) + fo(a)ge(q−1a)

]
−
∫ a

−a
f(x)(∂qg)(x)dqx.

(13)
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2) If

∫ ∞
−∞

(∂qf)(x)g(x)dqx exists,∫ ∞
−∞

(∂qf)(x)g(x)dqx = −
∫ ∞
−∞

f(x)(∂qg)(x)dqx. (14)

2.3 Sets and spaces

By the use of the q2-analogue differential operator ∂q, we note:
• Eq(Rq) the space of functions f defined on Rq, satisfying

∀n ∈ N, a ≥ 0, Pn,a(f) = sup
{
|∂kq f(x)|; 0 ≤ k ≤ n;x ∈ [−a, a] ∩ Rq

}
<∞

and
lim
x→0

∂nq f(x) (in Rq) exists.

We provide it with the topology defined by the semi norms Pn,a.
• E∗,q(Rq) the subspace of Eq(Rq) constituted of even functions.
• Sq(Rq) the space of functions f defined on Rq satisfying

∀n,m ∈ N, Pn,m,q(f) = sup
x∈Rq

| xm∂nq f(x) |< +∞

and
lim
x→0

∂nq f(x) (in Rq) exists.

• S∗,q(Rq) the subspace of Sq(Rq) constituted of even functions.
• Dq(Rq) the space of functions defined on Rq with compact supports.
• D∗,q(Rq) the subspace of Dq(Rq) constituted of even functions.
Using the q-Jackson integrals, we note for p > 0 and α ∈ R,

•Lpq(Rq) =

{
f : ‖f‖p,q =

(∫ ∞
−∞
|f(x)|pdqx

) 1
p

<∞

}
,

• Lpq(Rq,+) =

{
f : ‖f‖p,q =

(∫ ∞
0

|f(x)|pdqx
) 1

p

<∞

}
,

• Lpα,q(Rq) =

{
f : ‖f‖p,α,q =

(∫ ∞
−∞
|f(x)|p|x|2α+1dqx

) 1
p

<∞

}
,

• Lpα,q(Rq,+) =

{
f : ‖f‖p,α,q =

(∫ ∞
0

|f(x)|px2α+1dqx

) 1
p

<∞

}
,
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• L∞q (Rq) =

{
f : ‖f‖∞,q = sup

x∈Rq

|f(x)| <∞

}
,

• L∞q (Rq,+) =

{
f : ‖f‖∞,q = sup

x∈Rq,+

|f(x)| <∞

}
.

2.4 q2-Analogue Fourier transform

R. L. Rubin defined in [18] the q2-analogue Fourier transform as

f̂(x; q2) = K

∫ ∞
−∞

f(t)e(−itx; q2)dqt, (15)

where K =
(1 + q)

1
2

2Γq2
(

1
2

) .
Letting q ↑ 1 subject to the condition

Log(1− q)
Log(q)

∈ 2Z, (16)

gives, at least formally, the classical Fourier transform. In the remainder of
this paper, we assume that the condition (16) holds.

It was shown in [18] that f̂(.; q2) verifies the following properties:

1) If f(u), uf(u) ∈ L1
q(Rq), then ∂q

(
f̂
)

(x; q2) = (−iuf(u))̂(x; q2).

2) If f, ∂qf ∈ L1
q(Rq), then (∂qf) ̂(x; q2) = ixf̂ (x; q2).

3) f̂ (.; q2) is an isomorphism from L2
q(Rq) onto itself. For f ∈ L2

q(Rq), we have

∀x ∈ Rq,
(
f̂
)−1

(x; q2) = f̂(−x; q2) and ‖f̂ (.; q2)‖2,q = ‖f‖2,q.

3. q-Bessel Fourier Transform

The normalized q-Bessel function is defined by

jα(x; q2) =
+∞∑
n=0

(−1)n
Γq2(α + 1)qn(n+1)

Γq2(α + n+ 1)Γq2(n+ 1)

(
x

1 + q

)2n

. (17)

Note that we have

jα(x; q2) = (1− q2)αΓq2(α + 1) ((1− q)x)−α Jα((1− q)x; q2), (18)
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where

Jα(x; q2) =
xα(q2α+2; q2)∞

(q2; q2)∞
.1ϕ1(0; q2α+2; q2, q2x2) (19)

is the Jackson’s third q-Bessel function.
Using the relations (17) and (6), we obtain

j− 1
2
(x; q2) = cos(x; q2), (20)

j 1
2
(x; q2) =

sin(x; q2)

x
(21)

and

∂qjα(x; q2) = − x

[2α + 2]q
jα+1(x; q2). (22)

In [6], the authors proved the following estimation.

Lemma 3. For α ≥ −1

2
and x ∈ Rq,

• |jα(x; q2)| ≤ (−q2; q2)∞(−q2α+1; q2)∞
(q2α+1; q2)∞

 1, if |x| ≤ 1
1−q

q(
Log(1−q)|x|

Logq )
2

, if |x| ≥ 1
1−q

• for all v ∈ R, jα(x; q2) = o(x−v) as |x| −→ +∞ (in Rq).

As a consequence of the previous lemma and the relation (22), we have for

α ≥ −1

2
,

jα(.; q2) ∈ S∗,q(Rq).

With the same technique used in [7], we can prove that for α > −1

2
, jα(.; q2)

has the following q-integral representation of Mehler type

jα(x; q2) = C(α; q2)

∫ 1

0

Wα(t; q2) cos(xt; q2)dqt, (23)

where

C(α; q2) = (1 + q)
Γq2(α + 1)

Γq2(
1
2
)Γq2(α + 1

2
)

(24)
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and

Wα(t; q2) =
(t2q2; q2)∞

(t2q2α+1; q2)∞
. (25)

Remark. Since the functions Wα(.; q2) and cos(.; q2) are even and sin(.; q2)

is odd, we can write for α > −1

2
,

jα(x; q2) =
1

2
C(α; q2)

∫ 1

−1

Wα(t; q2)e(−ixt; q2)dqt. (26)

In particular, using the inequality (8), we obtain

|jα(x; q2)| ≤ 2

(q; q)∞
,∀x ∈ Rq. (27)

Proposition 1. For x, y ∈ Rq,+, we have

(xy)α+1

∫ +∞

0

jα(xt; q2)jα(yt; q2)t2α+1dqt =
(1 + q)2αΓ2

q2(α + 1)

(1− q)
δx,y. (28)

Proof. The result follows from the relation (18) and the orthogonality rela-
tion of the Jackson’s third q-Bessel function Jα(.; q2) proved in [14]. �

Using the same technique as in [7], one can prove the following result.

Proposition 2. For λ ∈ C, the function x 7→ jα(λx; q2) is the unique even
solution of the problem {

4α,qf(x) = −λ2f(x),
f(0) = 1,

(29)

where 4α,qf(x) =
1

|x|2α+1
∂q[|x|2α+1∂qf(x)].

Definition 1. The q-Bessel Fourier transform is defined for f ∈ L1
α,q(Rq,+),

by

Fα,q(f)(λ) = cα,q

∫ ∞
0

f(x)jα(λx; q2)x2α+1dqx (30)

where

cα,q =
(1 + q)−α

Γq2(α + 1)
. (31)
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Letting q ↑ 1 subject to the condition (16), gives, at least formally, the
classical Bessel-Fourier transform.
Some properties of the q-Bessel Fourier transform are given in the following
result.

Proposition 3. 1) For f ∈ L1
α,q(Rq,+), we have Fα,q(f) ∈ L∞q (Rq,+) and

‖Fα,q(f)‖∞,q ≤
2cα,q

(q; q)∞
‖f‖1,q.

2)For f, g ∈ L1
α,q(Rq,+), we have∫ ∞

0

f(x)Fα,q(g)(x)x2α+1dqx =

∫ ∞
0

Fα,q(f)(λ)g(λ)λ2α+1dqλ. (32)

3) If f and 4α,qf are in L1
α,q(Rq,+), then

Fα,q(4α,qf)(λ) = −λ2Fα,q(f)(λ).

4) If f and x2f are in L1
α,q(Rq,+), then

4α,q(Fα,q(f)) = −Fα,q(x2f).

Proof. 1) follows from the definition of Fα,q and the relation (27).
2) Let f, g ∈ L1

α,q(Rq,+).

Since for all λ, x ∈ Rq,+, we have | jα(λx; q2) |≤ 2

(q; q)∞
, then∫ +∞

0

∫ +∞

0

| f(x)g(λ)jα(λx; q2)|x2α+1λ2α+1dqxdqλ

≤ 2

(q; q)∞
‖f‖1,α,q‖g‖1,α,q <∞.

So, by the Fubini’s theorem, we can exchange the order of the q-integrals and
obtain, ∫ ∞

0

f(x)Fα,q(g)(x)x2α+1dqx

=

∫ +∞

0

∫ +∞

0

f(x)g(λ)jα(λx; q2)x2α+1λ2α+1dqλdqx

=

∫ +∞

0

g(λ)

(∫ +∞

0

f(x)jα(λx; q2)x2α+1dqx

)
λ2α+1dqλ

=

∫ ∞
0

Fα,q(f)(λ)g(λ)λ2α+1dqλ.
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3) For f ∈ L1
α,q(Rq,+) such that 4α,qf ∈ L1

α,q(Rq,+), let f̃ be the even function

defined on Rq whose f is its restriction on Rq,+. We have 4̃α,qf=4α,qf̃ and

Fα,q(4α,qf)(λ) = cα,q

∫ ∞
0

(4α,qf)(x)jα(xλ; q2)x2α+1dqx (33)

=
cα,q
2

∫ ∞
−∞

(4α,qf̃)(x)jα(xλ; q2)|x|2α+1dqx. (34)

So, Proposition 2 and two q-integrations by parts give the result.
4) The result follows from Proposition 2. �

Proposition 4. If f ∈ L1
α,q(Rq,+), then

∀x ∈ Rq,+, f(x) = cα,q

∫ ∞
0

Fα,q(f)(λ)jα(λx; q2)λ2α+1dqλ.

Proof. The result follows from the relation (27), Proposition 1 and the Fu-
bini’s theorem. �

Theorem 1. 1) Plancherel formula
For all f ∈ D∗,q(Rq), we have

‖Fα,q(f)‖2,α,q = ‖f‖2,α,q. (35)

2) Plancherel theorem
The q-Bessel transform can be uniquely extended to an isometric isomorphism
on L2

α,q(Rq,+) with F−1
α,q = Fα,q.

Proof. 1) Let f ∈ D∗,q(Rq), it is easy to show that Fα,q(f) is in L1
α,q(Rq,+).

From Proposition 4, we have f = Fα,q(Fα,q(f)), so using the relation (32), we
obtain

‖f‖22,α,q =

∫ ∞
0

f(x)f(x)x2α+1dqx =

∫ ∞
0

Fα,q(Fα,qf)(x)f(x)x2α+1dqx

=

∫ ∞
0

Fα,q(f)(x)Fα,q(f)(x)x2α+1dqx = ‖Fα,q(f)‖22,α,q.

2) The result follows from 1), Proposition 4 and the density of D∗,q(Rq) in
L2
α,q(Rq,+). �
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Definition 2. For α > −1

2
, the q-Riemann-Liouville operator Rα,q is defined

for f ∈ E∗,q(Rq) by

Rα,q(f)(x) =
1

2
C(α; q2)

∫ 1

−1

Wα(t; q2)f(xt)dqt. (36)

The q-Weyl operator is defined for f ∈ D∗,q(Rq) by

tRα,q(f)(t) =
(1 + q)−α+ 1

2

Γq2(α + 1
2
)

∫ +∞

q|t|
Wα

(
t

x
; q2

)
f(x)x2αdqx. (37)

In the end of this section, we shall give some useful properties of these two
operators. First, by simple calculus, one can easily prove that for f ∈ E∗,q(Rq)
and g ∈ D∗,q(Rq), we have

cα,q
2

∫ ∞
−∞

Rα,q(f)(x)g(x)|x|2α+1dqx = K

∫ ∞
−∞

f(t)tRα,q(g)(t)dqt. (38)

Next, using the relation (26), we obtain

jα(.; q2) = Rα,q

(
e(−i.; q2)

)
. (39)

Lemma 4. The operator Rα,q is continuous from E∗,q(Rq) into itself.

Proof. Let f be in E∗,q(Rq). The function x 7−→ Rα,q(f)(x) is an even function
on Rq.
By q-derivation under the q-integral sign, we deduce that for all n ∈ N,

∂nqRα,q(f)(x) =
1

2
C(α; q2)

∫ 1

−1

Wα(t; q2)tn(∂nq f)(xt)dqt.

Then,

∀a ≥ 0,∀n ∈ N, Pn,a(Rα,q(f)) ≤ Pn,a(f) <∞.

This relation together with the Lebesgue theorem proves that Rα,q(f) belongs
to E∗,q(Rq) and it shows that the operator Rα,q is continuous from E∗,q(Rq) into
itself. �
Using the previous lemma and making a proof as in Theorems 3 and 4 of [7],
we obtain the following result.
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Theorem 2. The q-Riemann-Liouville operator Rα,q is a topological isomor-
phism from E∗,q(Rq) onto itself and it transmutes the operators ∆α,q and ∂2

q in
the following sense

∆α,qRα,q = Rα,q∂
2
q . (40)

Theorem 3. The q-Weyl operator tRα,q is an isomorphism from D∗,q(Rq) onto
itself, it transmutes the operators ∆α,q and ∂2

q in the following sense

tRα,q∆α,q = ∂2
q (
tRα,q) (41)

and for f ∈ D∗,q(Rq), we have

Fα,q(f) =
(
tRα,q(f)

) ̂(.; q2). (42)

Proof. The first part of the result can be proved as Proposition 3 of [7] page
158.
The relation (42) is a consequence of the relations (38) and (39).
Let us now, prove the relation (41). Let g ∈ D∗,q(Rq). For all f ∈ D∗,q(Rq),
we have, using the q-integration by parts theorem, the relations (38) and (40),

K

∫ ∞
−∞

∂2
q

(
tRα,qg

)
(x)f(x)dqx

= K

∫ ∞
−∞

(
tRα,qg

)
(x)∂2

qf(x)dqx

=
cα,q
2

∫ ∞
−∞

g(x)Rα,q∂
2
qf(x)|x|2α+1dqx

=
cα,q
2

∫ ∞
−∞

g(x)∆α,qRα,qf(x)|x|2α+1dqx

= −cα,q
2

∫ ∞
−∞

∂qg(x)∂q(Rα,qf)(x)|x|2α+1dqx

=
cα,q
2

∫ ∞
−∞

∆α,qg(x)Rα,qf(x)|x|2α+1dqx

= K

∫ ∞
−∞

tRα,q(∆α,qg)(x)f(x)dqx.
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4. The q-Dunkl operator and its eigenfunctions

For α ≥ −1

2
, consider the operators:

Hα,q : f = fe + fo 7−→ fe + q2α+1fo (43)

and

Λα,q(f)(x) = ∂q [Hα,q(f)] (x) + [2α + 1]q
f(x)− f(−x)

2x
. (44)

It is easy to see that for a differentiable function f , the q-Dunkl operator
Λα,q(f) tends, as q tends to 1, to the classical Dunkl operator Λα(f) given by
(1).

In the case α = −1

2
, Λα,q reduces to the q2-analogue differential operator ∂q.

Some properties of the q-Dunkl operator Λα,q are given in the following propo-
sition.

Proposition 5. .

i) If f is odd then Λα,q(f)(x) = q2α+1∂qf(x) + [2α + 1]q
f(x)

x
and if f is even

then Λα,q(f)(x) = ∂qf(x).
ii) If f and g are of the same parity, then∫ +∞

−∞
Λα,q(f)(x)g(x)|x|2α+1dqx = 0.

iii) For all f and g such that

∫ +∞

−∞
Λα,q(f)(x)g(x)|x|2α+1dqx exists, we have

∫ +∞

−∞
Λα,q(f)(x)g(x)|x|2α+1dqx = −

∫ +∞

−∞
Λα,q(g)(x)f(x)|x|2α+1dqx. (45)

iv) The operator Λα,q lives Eq(Rq), Sq(Rq) and Dq(Rq) invariant.

Proof. i) is a direct consequence of the definition of Λα,q.
ii) follows from the properties of the q-integrals and the fact that Λα,q change
the parity of functions.
iii) From ii) we have the result when f and g are of the same parity.
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Now, suppose that f is even and g is odd. Using Lemma 2, the property i) of
Λα,q and the properties of the q2-analogue differential operator ∂q we obtain∫ +∞

−∞
Λα,q(f)(x)g(x)|x|2α+1dqx

=

∫ +∞

−∞
∂q(f)(x)g(x)|x|2α+1dqx

= −
∫ +∞

−∞
f(x)∂q

[
g(x)|x|2α+1

]
dqx

= −
∫ +∞

−∞
f(x)

[
q2α+1∂qg(x) + [2α + 1]q

g(x)

x

]
|x|2α+1dqx

= −
∫ +∞

−∞
f(x)Λα,q(g)(x)|x|2α+1dqx.

iv) follows from the facts that for f ∈ Eq(Rq),

Λα,q(f)(x) = ∂q [Hα,q(f)] (x) +
[2α + 1]q

2

∫ 1

−1

∂q(f)(xt)dqt

and for f ∈ Sq(Rq),

Λα,q(f)(x) = ∂q [Hα,q(f)] (x) + [2α + 1]q

∫ 1

0

∂q(fo)(xt)dqt

= ∂q [Hα,q(f)] (x)− [2α + 1]q

∫ ∞
1

∂q(fo)(xt)dqt.

�
Let us now introduce the eigenfunctions of the q-Dunkl operator.

Theorem 4. For λ ∈ C, the q-differential-difference equation:{
Λα,q(f) = iλf
f(0) = 1

(46)

has as unique solution, the function

ψα,qλ : x 7−→ jα(λx; q2) +
iλx

[2α + 2]q
jα+1(λx; q2). (47)
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Proof. Let f = fe + fo. The problem (46) is equivalent to the system{
∂qfe(x) + q2α+1∂qfo(x) + [2α + 1]q

fo(x)

x
= iλfe(x) + iλfo(x)

fe(0) = 1,
witch is equivalent to

∂qfe(x) = iλfo(x)

q2α+1∂2
qfe(x) + [2α + 1]q

∂qfe(x)

x
= −λ2fe(x)

fe(0) = 1.
Now, using Proposition 2 and the relation (22), we obtain fe(x) = jα(λx; q2)

fo(x) =
1

iλ
∂q(jα(λx; q2)) =

iλx

[2α + 2]q
jα+1(λx; q2).

Finally, for λ ∈ C,

ψα,qλ (x) = f(x) = jα(λx; q2) +
iλx

[2α + 2]q
jα+1(λx; q2). �

The function ψα,qλ (x), called q-Dunkl kernel has an unique extention to C×
C and verifies the following properties.

Proposition 6. 1) Λα,qψ
α,q
λ = iλψα,qλ .

2) ψα,qλ (x) = ψα,qx (λ), ψα,qaλ (x) = ψα,qλ (ax) and ψα,qλ (x) = ψα,q−λ(x), for
λ, x ∈ R and a ∈ C.

3) If α = −1

2
, then ψα,qλ (x) = e(iλx; q2).

For α > −1

2
, ψα,qλ has the following q-integral representation of Mehler type

ψα,qλ (x) =
1

2
C(α; q2)

∫ 1

−1

Wα(t; q2)(1 + t)e(iλxt; q2)dqt, (48)

where C(α; q2) and Wα(t; q2) are given respectively by (24) and (25).
4) For all n ∈ N we have

| ∂nq ψ
α,q
λ (x) |≤ 4 | λ |n

(q; q)∞
, ∀λ, x ∈ Rq. (49)

In particular for all λ ∈ Rq, ψ
α,q
λ is bounded on Rq and we have

| ψα,qλ (x) |≤ 4

(q; q)∞
, ∀x ∈ Rq. (50)
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5) For all λ ∈ Rq, ψ
α,q
λ ∈ Sq(Rq).

Proof. 1) and 2) are immediate consequences of the definition of ψα,qλ .

3) If α = −1

2
then the relations (20), (21) and (7) give the result.

If α > −1

2
, using the definition of ψα,qλ , the parity of the function jα(.; q2) and

the relations (26) and (22), we obtain

ψα,qλ (x)

= jα(λx; q2) +
1

iλ
∂q(jα(λx; q2))

=
C(α; q2)

2

∫ 1

−1

Wα(t; q2)e(iλxt; q2)dqt

+
1

i

C(α; q2)

2

∫ 1

−1

Wα(t; q2)ite(iλxt; q2)dqt,

which achieves the proof.
4) By induction on n we prove that

∂nq ψ
α,q
λ (x) =

C(α; q2)

2
(iλ)n

∫ 1

−1

Wα(t; q2)(1 + t)tne(iλxt; q2)dqt.

So, the fact that |e(ix; q2)| ≤ 2

(q; q)∞
gives the result.

5) The result follows from Lemma 3, the relation (22) and the properties of
∂q. �
The function ψα,qλ verifies the following orthogonality relation.

Proposition 7. For all x, y ∈ Rq, we have

∫ +∞

−∞
ψα,qλ (x)ψα,qλ (y)|λ|2α+1dqλ =

4(1 + q)2αΓ2
q2(α + 1)δx,y

(1− q)|xy|α+1
. (51)

Proof. Let x, y ∈ Rq, the use of the relation (28) and the properties of the
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q-Jackson’s integral lead to∫ +∞

−∞
ψα,qλ (x)ψα,qλ (y)|λ|2α+1dqλ

=
∫ +∞

−∞
jα(λx; q2)jα(λy; q2)|λ|2α+1dqλ

+
xy

[2α+ 2]2q

∫ +∞

−∞
jα+1(λx; q2)jα+1(λy; q2)|λ|2α+3dqλ

=
2(1 + q)2αΓ2

q2(α+ 1)δ|x|,|y|
(1− q)|xy|α+1

+
2xy(1 + q)2α+2Γ2

q2(α+ 2)δ|x|,|y|
[2α+ 2]2q(1− q)|xy|α+2

=
2(1 + q)2αΓ2

q2(α+ 1)δ|x|,|y|
(1− q)|xy|α+1

(1 + sgn(xy)) =
4(1 + q)2αΓ2

q2(α+ 1)δx,y
(1− q)|xy|α+1

.

�

5. q−Dunkl intertwining operator

Definition 3. We define the q−Dunkl intertwining operator Vα,q on Eq(Rq) by

∀x ∈ Rq, Vα,q(f)(x) =
C(α; q2)

2

∫ 1

−1

Wα(t; q2)(1 + t)f(xt)dqt, (52)

where C(α; q2) and Wα(t; q2) are given by (24) and (25) respectively.

Theorem 5. We have
i) Vα,q(e(−iλx; q2)) = ψα,q−λ(x), λ, x ∈ Rq.
ii) Vα,q verifies the following transmutation relation

Λα,qVα,q(f) = Vα,q(∂qf), Vα,q(f)(0) = f(0). (53)

Proof. i) follows from the relation (48).
ii) Let f = fo + fe ∈ Eq(Rq), we have on the one hand

Vα,q(∂qf)(x)

=
C(α; q2)

2

∫ 1

−1

Wα(t; q2)∂qfo(xt)dqt

+
C(α; q2)

2

∫ 1

−1

Wα(t; q2)t∂qfe(xt)dqt.
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On the other hand, we have

Λα,qVα,q(f)(x)

=
C(α; q2)

2

∫ 1

−1

Wα(t; q2)t∂qfe(xt)dqt

+
q2α+1C(α; q2)

2

∫ 1

−1

Wα(t; q2)t2∂qfo(xt)dqt

+
[2α + 1]qC(α; q2)

2x

∫ 1

−1

Wα(t; q2)tfo(xt)dqt.

Now, using a q-integration by parts and the facts that

∂q
[
(1− q2t2)Wα(qt; q2)

]
= −[2α + 1]qtWα(t; q2)

and
(1− q2t2)Wα(qt; q2) = (1− t2q2α+1)Wα(t; q2),

we get

[2α + 1]q
C(α; q2)

2x

∫ 1

−1

Wα(t; q2)tfo(xt)dqt

=
C(α; q2)

2

∫ 1

−1

(1− q2t2)Wα(qt; q2)∂qfo(xt)dqt

=
C(α; q2)

2

∫ 1

−1

(1− t2q2α+1)Wα(t; q2)∂qfo(xt)dqt,

which completes the proof. �

Theorem 6. For all f ∈ Eq(Rq), we have

∀x ∈ Rq, Vα,q(f)(x) = Rα,q(fe)(x) + ∂qRα,qIq(fo)(x), (54)

where Rα,q is given by (36) and Iq is the operator given by

∀x ∈ Rq, Iq(fo)(x) =

∫ |qx|
0

fo(t)dqt.
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Proof.From the definitions of the q−Dunkl intertwining and the q-Riemann-
Liouville operators, we have

Vα,q(f)(x) =
C(α; q2)

2

∫ 1

−1

Wα(t; q2)(1 + t)(fo(xt) + fe(xt))dqt

=
C(α; q2)

2

∫ 1

−1

Wα(t; q2)fe(xt)dqt+
C(α; q2)

2

∫ 1

−1

Wα(t; q2)tfo(xt)dqt.

= Rα,q(fe)(x) +
C(α; q2)

2

∫ 1

−1

Wα(t; q2)tfo(xt)dqt.

On the other hand, by q-derivation under the q-integral sign and the fact that
∂q(Iqfo) = fo, we obtain

∂q [Rα,qIq(fo)] (x) =
C(α; q2)

2

∫ 1

−1
Wα(t; q2)t∂q(Iqfo)(xt)dqt

=
C(α; q2)

2

∫ 1

−1
Wα(t; q2)tfo(xt)dqt.

This gives the result. �

Theorem 7. The transform Vα,q is an isomorphism from Eq(Rq) onto itself,
its inverse transform is given by

∀x ∈ Rq, V
−1
α,q (f)(x) = R−1

α,q(fe)(x) + ∂q
(
R−1
α,qIq(fo)

)
(x), (55)

where R−1
α,q is the inverse transform of Rα,q.

Proof. Let H be the operator defined on Eq(Rq) by

H(f) = R−1
α,q(fe) + ∂q(R

−1
α,qIq(fo)).

We have Vα,q(f) = Rα,q(fe)+∂q (Rα,qIq(fo)) , Rα,q(fe) is even and ∂q(Rα,qIq(fo))
is odd, then

HVα,q(f) = R−1
α,qRα,qfe + ∂qR

−1
α,qIq(∂qRα,qIq(fo))

= fe + ∂qR
−1
α,qIq(∂qRα,qIq(fo)).

Using the fact that for ϕ ∈ E∗,q(Rq), Iq(∂qϕ)(x) = ϕ(x)− lim
t→0

ϕ(t), we obtain

Iq(∂qRα,qIq(fo)) = Rα,qIq(fo).
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So,

R−1
α,qIq(∂qRα,qIq(fo)) = Iq(fo)

and

∂qR
−1
α,qIq(∂qRα,qIq(fo)) = ∂qIq(f0) = f0.

Thus,

HVα,q(f) = fe + fo = f.

With the same technique, we prove that Vα,qH(f) = f. �

Definition 4. For f ∈ Dq(Rq) and α > −1

2
, we define the q-transpose of Vα,q

by

(tVα,q)(f)(t) = Mα,q

∫
|x|≥q|t|

Wα

(
t

x
; q2

)(
1 +

t

x

)
f(x)

|x|2α+1

x
dqx, (56)

where Wα(.; q2) is given by (25) and

Mα,q =
(1 + q)−α+ 1

2

2Γq2(α + 1
2
)
. (57)

Note that by simple computation, we obtain for f ∈ Eq(Rq) and g ∈ Dq(Rq)

cα,q
2

∫ +∞

−∞
Vα,q(f)(x)g(x)|x|2α+1dqx = K

∫ +∞

−∞
f(t)(tVα,q)(g)(t)dqt. (58)

Proposition 8. For f ∈ Dq(Rq), we have

∂q(
tVα,q)(f) = (tVα,q)(Λα,q)(f). (59)

Proof. Using a q-integration by parts and the relations (58), (53) and (45),
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we get for all f ∈ Dq(Rq) and g ∈ Eq(Rq),

K

∫ +∞

−∞
g(x)∂q(

tVα,q)f(x)dqx

= −K
∫ +∞

−∞
∂qg(x)(tVα,q)f(x)dqx

= −cα,q
2

∫ +∞

−∞
Vα,q(∂qg)(x)f(x)|x|2α+1dqx

= −cα,q
2

∫ +∞

−∞
Λα,q(Vα,qg)(x)f(x)|x|2α+1dqx

=
cα,q
2

∫ +∞

−∞
Vα,q(g)(x)Λα,qf(x)|x|2α+1dqx

= K

∫ +∞

−∞
g(x)(tVα,q)(Λα,qf)(x)dqx.

As g is arbitrary in Eq(Rq), we obtain the result. �

Theorem 8. For f ∈ Dq(Rq), we have

∀x ∈ Rq, (
tVα,q)(f)(x) = (tRα,q)(fe)(x) + ∂q

[
tRα,qJq(fo)

]
(x), (60)

where tRα,q is given by (37) and Jq is the operator defined by

Jq(fo)(x) =

∫ qx

−∞
fo(t)dqt.

Proof. Let f, g ∈ Dq(Rq), using Theorem 6, the relation (38) and a q-
integration by parts, we obtain
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cα,q
2

∫ +∞

−∞
Vα,q(g)(x)f(x)|x|2α+1dqx

=
cα,q
2

∫ +∞

−∞
[Rα,q(ge)(x) + ∂qRα,qIq(go)(x)] f(x)|x|2α+1dqx

=
cα,q
2

∫ +∞

−∞
Rα,q(ge)(x).fe(x).|x|2α+1dqx

+
cα,q
2

∫ +∞

−∞
∂qRα,qIq(go)(x).fo(x).|x|2α+1dqx

= K

∫ +∞

−∞
(tRα,q)(fe)(x).ge(x)dqx

−cα,q
2

∫ +∞

−∞
Rα,qIq(go)(x).∂q

[
fo(x).|x|2α+1

]
dqx.

It is easily seen that the map Jq is bijective from D∗q(Rq) onto D∗,q(Rq) and
J−1
q = ∂q, whereD∗q(Rq) is the subspace ofDq(Rq) constituted of odd functions.

Hence, by writing fo = ∂qJqfo and by making use of (40) and (38) we get

cα,q
2

∫ +∞

−∞
Rα,qIq(go)(x).∂q

[
fo(x).|x|2α+1

]
dqx

=
cα,q
2

∫ +∞

−∞
Rα,qIq(go)(x).

1

|x|2α+1
∂q
[
|x|2α+1∂qJqfo(x)

]
|x|2α+1dqx

=
cα,q
2

∫ +∞

−∞
Rα,qIq(go)(x).∆α,qJqfo(x).|x|2α+1dqx

= K

∫ +∞

−∞
Iq(go)(x).tRα,q∆α,qJqfo(x)dqx

= K

∫ +∞

−∞
Iq(go)(x).∂2

q (
tRα,q)Jqfo(x)dqx

= −K
∫ +∞

−∞
∂qIq(go)(x).∂q(

tRα,q)Jqfo(x)dqx.

Since ∂qIq(go)(x) = go(x), then
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cα,q
2

∫ +∞

−∞
Vα,q(g)(x)f(x)|x|2α+1dqx

= K

∫ +∞

−∞
g(x)

[
(tRα,q)fe(x) + ∂q(

tRα,q)Jqfo(x)
]
dqx.

As g is arbitrary in Dq(Rq), this relation when combined with (58) gives the
result. �

Theorem 9. The transform (tVα,q) is an isomorphism from Dq(Rq) onto itself,
its inverse transform is given by

∀x ∈ Rq, (
tVα,q)

−1(f)(x) = (tRα,q)
−1(fe)(x) + ∂q

[
(tRα,q)

−1Jq(fo)
]

(x), (61)

where (tRα,q)
−1 is the inverse transform of tRα,q.

Proof. Taking account of the relation Jq∂qf(x) = f(x) for all f ∈ D∗,q(Rq)
and proceeding as in Theorem 7 we obtain the result. �

6. q-Dunkl transform

Definition 5. Define the q-Dunkl transform for f ∈ L1
α,q(Rq) by

Fα,q
D (f)(λ) =

cα,q
2

∫ +∞

−∞
f(x)ψα,q−λ(x).|x|2α+1dqx, (62)

where cα,q is given by (31).

Remarks.
1) It is easy to see that in the even case Fα,q

D reduces to the q-Bessel Fourier

transform given by (30) and in the case α = −1

2
, it reduces to the q2-analogue

Fourier transform given by (15).
2) Letting q ↑ 1 subject to the condition (16), gives, at least formally, the
classical Bessel-Dunkl transform.
Some properties of the q-Dunkl transform are given in the following proposi-
tion.
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Proposition 9. i) If f ∈ L1
α,q(Rq) then Fα,q

D (f) ∈ L∞q (Rq),

‖Fα,q
D (f)‖∞,q ≤

2cα,q
(q; q)∞

‖f‖1,α,q (63)

and

lim
λ→∞

Fα,q
D (f)(λ) = 0.

ii) For f ∈ L1
α,q(Rq),

Fα,q
D (Λα,qf)(λ) = iλFα,q

D (f)(λ). (64)

iii) For f, g ∈ L1
α,q(Rq),∫ +∞

−∞
Fα,q
D (f)(λ)g(λ)|λ|2α+1dqλ =

∫ +∞

−∞
f(x)Fα,q

D (g)(x)|x|2α+1dqx. (65)

Proof. i) Follows from the definition of Fα,q
D (f), the Lebesgue theorem and

the fact that |ψα,q−λ(x)| ≤ 4

(q; q)∞
, for all λ, x ∈ Rq.

ii) Using the relation (45) and Proposition 6, we obtain the result.
iii) Let f, g ∈ L1

α,q(Rq).

Since for all λ, x ∈ Rq,we have | ψα,qλ (x) |≤ 4

(q; q)∞
, then

∫ +∞

−∞

∫ +∞

−∞
| f(x)g(λ)ψα,qλ (x)||x|2α+1|λ|2α+1dqxdqλ ≤

4

(q; q)∞
‖f‖1,α,q‖g‖1,α,q.

So, by the Fubini’s theorem, we can exchange the order of the q-integrals,
which gives the result. �

Theorem 10. For all f ∈ L1
α,q(Rq), we have

∀x ∈ Rq, f(x) =
cα,q
2

∫ +∞

−∞
Fα,q
D (f)(λ)ψα,qλ (x).|λ|2α+1dqλ

= Fα,q
D (Fα,q

D (f))(x).

(66)
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Proof. Let f ∈ L1
α,q(Rq) and x ∈ Rq. Since for all λ, t ∈ Rq, we have

| ψα,qλ (t) |≤ 4

(q; q)∞
, and λ 7→ ψα,qλ (x) is in Sq(Rq), then

∫ ∞
−∞

∫ ∞
−∞
|f(t)ψα,q−λ(t)ψα,qλ (x)||tλ|2α+1dqtdqλ

≤ 4
(q; q)∞

∫ ∞
−∞

∫ ∞
−∞
|f(t)||ψα,qλ (x)||tλ|2α+1dqtdqλ

=
4

(q; q)∞
‖f‖1,α,q‖ψα,qx (�)‖1,α,q.

Hence, by the Fubini’s theorem, we can exchange the order of the q-integrals
and by Proposition 7, we obtain

cα,q
2

∫ ∞
−∞

Fα,q
D (f)(λ)ψα,qλ (x)|λ|2α+1dqλ

=
(cα,q

2

)2
∫ ∞
−∞

f(t)

(∫ ∞
−∞

ψα,q−λ(t)ψα,qλ (x)|λ|2α+1dqλ

)
|t|2α+1dqt = f(x).

The second equality is a direct consequence of the definition of the q-Dunkl
transform, Proposition 6 and the definition of the q-Jackson integral. �

Theorem 11. i) Plancherel formula
For α ≥ −1/2, the q-Dunkl transform Fα,q

D is an isomorphism from Sq(Rq)
onto itself. Moreover, for all f ∈ Sq(Rq), we have

‖Fα,q
D (f)‖2,α,q = ‖f‖2,α,q. (67)

ii) Plancherel theorem
The q-Dunkl transform can be uniquely extended to an isometric isomorphism
on L2

α,q(Rq). Its inverse transform (Fα,q
D )−1 is given by :

(Fα,q
D )−1(f)(x) =

cα,q
2

∫ +∞

−∞
f(λ)ψα,qλ (x).|λ|2α+1dqλ = Fα,q

D (f)(−x). (68)

Proof. i) From Theorem 10, to prove the first part of i) it suffices to prove
that Fα,q

D lives Sq(Rq) invariant. Moreover, from the definition of Sq(Rq) and
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the properties of the operator ∂q (Lemma 1), one can easily see that Sq(Rq) is
also the set of all function defined on Rq, such that for all k, l ∈ N, we have

sup
x∈Rq

∣∣∂kq (xlf(x)
)∣∣ <∞ and lim

x→0
∂kq f(x) exists.

Now, let f ∈ Sq(Rq) and k, l ∈ N. On the one hand, using the notation
Λ0
α,qf = f and

Λn+1
α,q f = Λα,q(Λ

n
α,qf), n ∈ N, we obtain from the properties of the operator

Λα,q that for all n ∈ N, Λn
α,qf ∈ Sq(Rq) ⊂ L1

β,q(Rq) for all β ≥ −1/2.
On the other hand, from the relation (64), we have

λlFα,q
D (f)(λ) = (−i)lFα,q

D (Λl
α,qf)(λ)

= (−i)l cα,q
2

∫ ∞
−∞

Λl
α,qf(x)ψα,q−λ(x)|x|2α+1dqx.

So, using the relation (49), we obtain

|∂kq (λlFα,q
D (f)(λ))| =

∣∣∣∣(−i)l cα,q2

∫ ∞
−∞

Λl
α,qf(x)∂kqψ

α,q
−x (λ)|x|2α+1dqx

∣∣∣∣
≤ 2cα,q

(q; q)∞

∫ ∞
−∞
|Λl

α,qf(x)||x|2α+k+1dqx <∞.

This together with the Lebesgue theorem prove that Fα,q
D (f) belongs to Sq(Rq).

By Theorem 10, we deduce that Fα,q
D is an isomorphism of Sq(Rq) onto itself

and for f ∈ Sq(Rq), we have (Fα,q
D )−1(f)(x) = Fα,q

D (f)(−x), x ∈ Rq.
Finally, the Plancherel formula (67) is a direct consequence of the second
equality in Theorem 10 and the relation (65).

ii) The result follows from i), Theorem 10 and the density of Sq(Rq) in
L2
α,q(Rq). �

Theorem 12. The q-Dunkl transform and the q2-analogue Fourier transform
are linked by

∀f ∈ Dq(Rq), Fα,q
D (f) =

[
tVα,q(f)

] ̂(.; q2). (69)
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Proof. Using the relation (58) and Theorem 5, we obtain for f ∈ Dq(Rq),

[
tVα,q(f)

] ̂(λ) = K

∫ +∞

−∞
(tVα,q)(f)(t)e(−iλt; q2)dqt

=
cα,q
2

∫ +∞

−∞
Vα,q(e(−iλx; q2))f(x)|x|2α+1dqx

=
cα,q
2

∫ +∞

−∞
f(x)ψα,q−λ(x).|x|2α+1dqx

= Fα,q
D (f)(λ).

�
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206 Néji Bettaibi and Rym Bettaieb

[7] A. Fitouhi, M. M. Hamza and F. Bouzeffour, The q-jα Bessel function, J.
Approx. Theory., 115(2002), 144-166.

[8] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia
of Mathematics and its application, Vol 35 Cambridge Univ. Press, Cam-
bridge, UK, 1990.

[9] F. H. Jackson, On a q-Definite Integrals, Quarterly Journal of Pure and
Applied Mathematics, 41(1910), 193-203.

[10] M. F. E. de Jeu, The Dunkl transform, Invent. Math., 113(1993), 147-162.

[11] M. F. E. de Jeu, The Dunkl operators, Thesis, University of Amesterdam,
1994.

[12] V. G. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-
Verlag, New York, (2002).

[13] S. Kakei, Common algebraic structure for the Calogero-Sutherland mod-
els, J. Phys. 178(1996), 425-452.

[14] T. H. Koornwinder and R. F. Swarttouw, On q-analogues of the Fourier
and Hankel transforms, Trans. Amer. Math. Soc. 333(1992), 445-461.

[15] L. Lapointe and L. Vinet, Exact operator solution of the Calogero-
Sutherland model, Comm. Math. Phys. A, 29(1996), 619-624.

[16] E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of
a finite Coxeter group, Compositio. Math. 85(1993), 333-373.

[17] Richard L. Rubin, A q2-Analogue Operator for q2-analogue Fourier Anal-
ysis,J. Math. Analys. App. 212(1997), 571-582.

[18] Richard L. Rubin, Duhamel Solutions of non-Homogenous q2-Analogue
Wave Equations, Proc. of Amer. Math. Soc. V 135, Nr 3(2007), 777-
785.
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