A New Class Of Meromorphic Multivalent Functions Involving Certain Linear Operator*

S. P. Goyal ${ }^{\dagger}$
Department of Mathematics, University of Rajasthan, Jaipur-302004, Rajasthan, India
and
J. K. Prajapat ${ }^{\ddagger}$
Department of Mathematics, Sobhasaria Engineering College, Gokulpura, NH-11, Sikar-332001, Rajasthan, India

Received August 1, 2007, Accepted September 25, 2007.

Abstract

Making use of certain extended derivative operator of Ruscheweyh type, we introduce a new class $\mathcal{J}_{p}(\lambda, \mu, \alpha)$ of meromorphic multivalent function in the punctured disk $\mathbb{D}=\{z: z \in \mathbb{C}, 0<|z|<1\}$, and obtain some sufficient conditions for the functions belonging to this class.

Keywords and Phrases: Meromorphic multivalent functions; Meromorphic starlike function; Meromorphic convex function; Meromorphic close-to-convex function; Hadamard product(or convolutions), Ruscheweyh derivative.

[^0]
1. Introduction and Definitions

Let $\Sigma(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=1}^{\infty} a_{k} z^{k-p} \quad(p \in \mathbb{N}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the punctured unit disk

$$
\mathbb{D}=\{z: z \in \mathbb{C}, 0<|z|<1\} .
$$

We denote by $\Sigma^{*}(p, \alpha), \Sigma_{k}(p, \alpha)$ and $\Sigma_{c}(p, \alpha)$, the subclasses of the class $\Sigma(p)$, which are defined (for $0 \leq \alpha<p, p \in \mathbb{N}$) as follows:

$$
\begin{gather*}
\Sigma^{*}(p, \alpha)=\left\{f: f \in \Sigma(p), \Re\left(-\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha\right\} \quad(z \in \mathbb{D}), \tag{1.2}\\
\Sigma_{k}(p, \alpha)=\left\{f: f \in \Sigma(p), \Re\left(-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha\right\} \quad(z \in \mathbb{D}), \tag{1.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\Sigma_{c}(p, \alpha)=\left\{f: f \in \Sigma(p), \Re\left(-\frac{f^{\prime}(z)}{z^{-p-1}}\right)>\alpha\right\} \quad(z \in \mathbb{D}) \tag{1.4}
\end{equation*}
$$

Note thet $\Sigma^{*}(p, \alpha), \Sigma_{k}(p, \alpha)$ and $\Sigma_{c}(p, \alpha)$, are the well known subclasses of $\Sigma(p)$ consisting of meromorphic multivalent functions which are respectively starlike, convex and close-to-convex functions of order $\alpha(0 \leq \alpha<p)$. Furthermore $\Sigma^{*}(1, \alpha)=\Sigma^{*}(\alpha), \Sigma_{k}(1, \alpha)=\Sigma_{k}(\alpha)$ and $\Sigma_{c}(1, \alpha)=\Sigma_{c}(\alpha)$, where $\Sigma^{*}(\alpha), \Sigma_{k}(\alpha)$ and $\Sigma_{c}(\alpha)$ are subclasses of $\Sigma(1)$ consisting meromorphic univalent functions which are respectively starlike, convex and close-to-convex of order $\alpha(0 \leq \alpha<1)$. We refer to Liu and Srivastava [2], Mogra [4], Raina and Srivastava [5] and Xu and Yang [8] for related work on the subject of meromorphic functions.

For $f(z) \in \Sigma(p)$ given by (1.1) and $g(z) \in \Sigma(p)$ given by

$$
\begin{equation*}
g(z)=z^{-p}+\sum_{k=1}^{\infty} b_{k} z^{k-p} \quad(p \in \mathbb{N}) \tag{1.5}
\end{equation*}
$$

the Hadamard product (or convolution) of f and g is defined by

$$
\begin{equation*}
(f * g)(z)=z^{-p}+\sum_{k=1}^{\infty} a_{k} b_{k} z^{k-p}=(f * g)(z) \tag{1.6}
\end{equation*}
$$

The extended linear derivative operator of Ruscheweyh type for the functions belonging to the class $\Sigma(p)$

$$
\mathcal{D}_{*}^{\lambda, p}: \Sigma(p) \rightarrow \Sigma(p),
$$

is defined by the following convolution:

$$
\begin{equation*}
\mathcal{D}_{*}^{\lambda, p} f(z)=\frac{1}{z^{p}(1-z)^{\lambda+1}} * f(z) \quad(\lambda>-1 ; f \in \Sigma(p)) \tag{1.7}
\end{equation*}
$$

In terms of binomial coefficients, (1.7) can be written as

$$
\begin{equation*}
\mathcal{D}_{*}^{\lambda, p} f(z)=z^{-p}+\sum_{k=1}^{\infty}\binom{\lambda+k}{k} a_{k} z^{k-p} \quad(\lambda>-1 ; f \in \Sigma(p)) . \tag{1.8}
\end{equation*}
$$

In particular when $\lambda=n(n \in \mathbb{N})$, it is easily observed from (1.7) and (1.8) that

$$
\begin{equation*}
\mathcal{D}_{*}^{n, p} f(z)=\frac{z^{-p}\left(z^{n+p} f(z)\right)^{(n)}}{n!} \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) \tag{1.9}
\end{equation*}
$$

The definition (1.7) of linear operator $\mathcal{D}_{*}^{\lambda, p}$ is motivated essentially by familiar Ruscheweyh operator D^{λ}, which has been used widely on the space of analytic and univalent functions (see for details, [7]). A linear operator $D^{\lambda, p}$ analogous to $\mathcal{D}_{*}^{\lambda, p}$ (defined by (1.7)), was considered recently by Raina and Srivastava [6] on the space of analytic and p-valent functions in $\mathbb{U}(\mathbb{U}=\mathbb{D} \cup\{0\})$. We remark in passing that a more general convolution operator then the operator $\mathcal{D}_{*}^{\lambda, p}$ considered recently by Liu and Srivastava [2].

By using the operator $\mathcal{D}_{*}^{\lambda, p}(\lambda>-p ; p \in \mathbb{N})$ given by (1.7), we now introduce a new class of meromorphically p-valent analytic functions defined as follows:
Definition 1. A function $f(z) \in \Sigma(p)$, is said to be a member of the class $\mathcal{J}_{p}(\lambda, \mu, \alpha)$ if and only if

$$
\begin{equation*}
\left|\frac{z^{p+1}\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\left(z^{p} \mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\mu-1}}+p\right|<p-\alpha \tag{1.10}
\end{equation*}
$$

$$
(z \in \mathbb{D} ; p \in \mathbb{N} ; \lambda>-1 ; \mu \geq 0 ; 0 \leq \alpha<p)
$$

Note that condition (1.10) implies that

$$
\begin{equation*}
\Re\left(-\frac{z^{p+1}\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\left(z^{p} \mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\mu-1}}\right)>\alpha \tag{1.11}
\end{equation*}
$$

It is obvious that

$$
\mathcal{J}_{p}(0,2, \alpha)=\Sigma^{*}(p, \alpha) \quad \text { and } \quad \mathcal{J}_{p}(0,1, \alpha)=\Sigma_{c}(p, \alpha) .
$$

The object in the present paper is to obtain some sufficient conditions of functions belonging to the above defined subclass $\mathcal{J}_{p}(\lambda, \mu, \alpha)$.

2. Main Results

In our present investigation of the function class $\mathcal{J}_{p}(\lambda, \mu, \alpha) \quad(\lambda>-1 ; \mu \geq$ $0 ; 0 \leq \alpha<p)$, we shall require the following Lammas.
Lemma 1(see, [1]). Let the nonconstant function $w(z)$ be analytic in \mathbb{U}, with $w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at a point $z_{0} \in \mathbb{U}$, then

$$
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)
$$

where $k \geq 1$ is a real number.
Lemma 2 (see, [3]). Let S be a set in the complex plane \mathbb{C} and suppose that $\phi(z)$ is a mapping from $\mathbb{C}^{2} \times \mathbb{U}$ to \mathbb{C} which satisfies $\Phi(i x, y ; z) \notin S$ for all $z \in \mathbb{U}$, and for all real x, y such that $y \leq-\left(1+x^{2}\right) / 2$. If the function $q(z)=1+q_{1} z+q_{2} z^{2}+\cdots$ is analytic in \mathbb{U} such that $\phi\left(q(z), z q^{\prime}(z) ; z\right) \in S$ for all $z \in \mathbb{U}$, then $\Re(q(z))>0$.

Making use of Lemma 1, we first prove
Theorem 1. Let $p \in \mathbb{N}, \gamma \geq 0, \lambda>-p, \mu \geq 0$ and $0 \leq \alpha<p$. If $f(z) \in \Sigma(p)$ satisfies the following inequality
$\left|1+p+\frac{z\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime \prime}}{\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}-(\mu-1)\left(p+\frac{z\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\mathcal{D}_{*}^{\lambda, p} f(z)}\right)-\gamma\left(\frac{z^{p+1}\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\left(z^{p} \mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\mu-1}}+p\right)\right|$

$$
\begin{equation*}
<\frac{(p-\alpha)(\gamma(2 p-\alpha)+1)}{2 p-\alpha} \tag{2.1}
\end{equation*}
$$

then $f(z) \in \mathcal{J}_{p}(\lambda, \mu, \alpha)$.
Proof. Define the function $w(z)$ by

$$
\begin{equation*}
\frac{z^{p+1}\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\left(z^{p} \mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\mu-1}}=-p+(\alpha-p) w(z) \tag{2.2}
\end{equation*}
$$

then $w(z)$ is analytic in \mathbb{U} and $w(0)=0$. Differentiating logarithmically both sides of (2.2) with respect to z, we get

$$
\begin{equation*}
p+1+\frac{z\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime \prime}}{\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}-(\mu-1)\left(p+\frac{z\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\mathcal{D}_{*}^{\lambda, p} f(z)}\right)=\frac{(p-\alpha) z w^{\prime}(z)}{p+(p-\alpha) w(z)} \tag{2.3}
\end{equation*}
$$

Now using (2.2) in (2.3), we find that

$$
\begin{align*}
p+1+\frac{z\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime \prime}}{\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}} & -(\mu-1)\left(p+\frac{z\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\mathcal{D}_{*}^{\lambda, p} f(z)}\right)-\gamma\left(\frac{z^{p+1}\left(\mathcal{D}_{*}^{\lambda, p} f(z)^{\prime}\right.}{\left(z^{p} \mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\mu-1}}+p\right) \\
& =\gamma(p-\alpha) w(z)+\frac{(p-\alpha) z w^{\prime}(z)}{p+(p-\alpha) w(z)} \tag{2.4}
\end{align*}
$$

Let us suppose that there exist $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z|<\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1,
$$

and apply Lemma 1, we find that

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right) \quad(k \geq 1) \tag{2.5}
\end{equation*}
$$

writting $w(z)=e^{i \theta}(0 \leq \theta<2 \pi)$ and setting $z=z_{0}$ in (2.4), we get

$$
\left|p+1+\frac{z_{0}\left(\mathcal{D}_{*}^{\lambda, p} f\left(z_{0}\right)\right)^{\prime \prime}}{\left(\mathcal{D}_{*}^{\lambda, p} f\left(z_{0}\right)\right)^{\prime}}-(\mu-1)\left(p+\frac{z_{0}\left(\mathcal{D}_{*}^{\lambda, p} f\left(z_{0}\right)\right)^{\prime}}{\mathcal{D}_{*}^{\lambda, p} f\left(z_{0}\right)}\right)-\gamma\left(\frac{z_{0}^{p+1}\left(\mathcal{D}_{*}^{\lambda, p} f\left(z_{0}\right)\right)^{\prime}}{\left(z_{0}^{p} \mathcal{D}_{*}^{\lambda, p} f\left(z_{0}\right)\right)^{\mu-1}}+p\right)\right|
$$

$$
\begin{aligned}
& =\left|\gamma(p-\alpha) e^{i \theta}+\frac{(p-\alpha) k e^{i \theta}}{p+(p-\alpha) e^{i \theta}}\right| \\
& \geq \Re\left(\gamma(p-\alpha)+\frac{(p-\alpha) k}{p+(p-\alpha) e^{i \theta}}\right) \\
& >\gamma(p-\alpha)+\frac{(p-\alpha)}{2 p-\alpha} \\
& =\frac{(p-\alpha)(\gamma(2 p-\alpha)+1)}{2 p-\alpha}
\end{aligned}
$$

which contradicts our assumption (2.1). Therefore, we have $|w(z)|<1$ in \mathbb{U}. Finally, we have

$$
\begin{gather*}
\left|\frac{z^{p+1}\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\left(z^{p} \mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\mu-1}}+p\right|=|(p-\alpha) w(z)|=(p-\alpha)|w(z)| \\
<p-\alpha \quad(z \in \mathbb{U}), \tag{2.6}
\end{gather*}
$$

that is $f(z) \in \mathcal{J}_{p}(\lambda, \mu, \alpha)$. This proves the Theorem 1.
Theorem 2. Let $p \in \mathbb{N}, \lambda>-p, \mu \geq 0$ and $0 \leq \delta<p$. If $f(z) \in \Sigma(p)$ satisfies the following inequality

$$
\begin{align*}
\Re\left[\frac{z^{p+1}\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\left(z^{p} \mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\mu-1}}\right. & \left.\left(\frac{z^{p+1}\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\left(z^{p} \mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\mu-1}}+(\mu-1) \frac{z\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\mathcal{D}_{*}^{\lambda, p} f(z)}-\frac{z\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime \prime}}{\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}-1\right)\right] \\
& >\delta\left(\delta+\frac{1}{2}\right)+\left(\delta(\mu-2)-\frac{1}{2}\right) \tag{2.7}
\end{align*}
$$

then $f(z) \in \mathcal{J}_{p}(\lambda, \mu, \delta)$.
Proof. Define the functions $q(z)$ by

$$
\begin{equation*}
\frac{z^{p+1}\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\left(z^{p} \mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\mu-1}}=-\delta+(\delta-p) q(z), \tag{2.8}
\end{equation*}
$$

then we see that $q(z)=1+q_{1} z+q_{2} z^{2}+\ldots$ is analytic in \mathbb{U}. Now differentiating both sides of (2.8) with respect to z logarithmically, we get

$$
\delta+(p-\delta) q(z)\left(1+\frac{z\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime \prime}}{\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}+(1-\mu) \frac{z\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\mathcal{D}_{*}^{\lambda, p} f(z)}\right)
$$

$$
\begin{equation*}
=(p-\delta) z q^{\prime}(z)+p(\mu-2)[\delta+(p-\delta) q(z)] \tag{2.9}
\end{equation*}
$$

¿From (2.8) and (2.9) we have

$$
\begin{align*}
& -\frac{z^{p+1}\left(D_{*}^{\lambda, p} f(z)\right)^{\prime}}{\left(z^{p} D_{*}^{\lambda, p} f(z)\right)^{\mu-1}}\left(1+\frac{z\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime \prime}}{\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}+(1-\mu) \frac{z\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\mathcal{D}_{*}^{\lambda, p} f(z)}\right) \\
& =(p-\delta) z q^{\prime}(z)+p(\mu-2)[\delta+(p-\delta) q(z)] \tag{2.10}
\end{align*}
$$

Again using (2.8) in (2.10), we find that

$$
\begin{aligned}
& \left(\frac{z^{p+1}\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\left(z^{p} \mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\mu-1}}\right)^{2}-\frac{z^{p+1}\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\left(z^{p} \mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\mu-1}}\left(1+\frac{z\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime \prime}}{\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}+(1-\mu) \frac{z\left(\mathcal{D}_{*}^{\lambda, p} f(z)\right)^{\prime}}{\mathcal{D}_{*}^{\lambda, p} f(z)}\right) \\
& \quad=(p-\delta) z q^{\prime}(z)+(p-\delta)^{2} q^{2}(z)+(p-\delta)[2 \delta+p(\mu-2)] q(z)+p \delta(\mu-2)+\delta^{2} \\
& =\phi\left(q(z), z q^{\prime}(z) ; z\right)
\end{aligned}
$$

where

$$
\begin{equation*}
\phi(r, s, z)=(p-\delta) s+(p-\delta)^{2} r^{2}+(p-\delta)[2 \delta+p(\mu-2)] r+p \delta(\mu-2)+\delta^{2} \tag{2.11}
\end{equation*}
$$

For all real x, y satisfying $y \leq-\left(1+x^{2}\right) / 2$, we have

$$
\begin{aligned}
\Re(\phi(i x, y, z)) & =(p-\delta) y+(p-\delta)^{2} x^{2}+p \delta(\mu-2)+\delta^{2} \\
& \leq-\frac{1}{2}(p-\delta)\left(1+x^{2}\right)-(p-\delta)^{2} x^{2}+\delta p(\mu-2)+\delta^{2} \\
& =-\frac{1}{2}(p-\delta)-(p-\delta)\left(\frac{1}{2}+p-\delta\right) x^{2}+\delta p(\mu-2)+\delta^{2} \\
& \leq \delta p(\mu-2)+\delta^{2}-\frac{1}{2}(p-\delta) \\
& =\delta\left(\delta+\frac{1}{2}\right)+p\left(\delta(\mu-2)-\frac{1}{2}\right) .
\end{aligned}
$$

Let

$$
S=\left\{w: \Re(w)>\delta\left(\delta+\frac{1}{2}\right)+p\left(\delta(\mu-2)-\frac{1}{2}\right)\right\}
$$

then $\phi\left(q(z), z q^{\prime}(z) ; z\right) \in S$ and $\phi(i x, y ; z) \notin S$ for all real x and $y<-(1+$ $\left.x^{2}\right) / 2, \quad z \in \mathbb{U}$. By using Lemma 2, we have $\Re(q(z))>0$, that is $f(z) \in$ $\mathcal{J}_{p}(\lambda, \mu, \delta)$. This proves the Theorem 2.

3. Some Consequences Of Main Results

Among various intersting and importent consequences of our Theorems 1 and 2 we mentioned here some of the corollaries relating subclasses $\Sigma^{*}(\alpha), \Sigma_{c}(\alpha), \Sigma^{*}$ and Σ_{c} which are easily deduciable from the main results.

Firstly, if we take $\lambda=0$ and $\mu=\gamma=p=1$, then Theorem 1 gives the following result

Corollary 1. If $f(z) \in \Sigma$ satisfies the following inequality

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-z^{2} f^{\prime}(z)+1\right|<\frac{(1-\alpha)(3-\alpha)}{2-\alpha} \quad(0 \leq \alpha<1) \tag{3.1}
\end{equation*}
$$

then $f(z) \in \Sigma_{c}(\alpha)$.
Further setting $\alpha=0$ in Corollary 1, we get
Corolary 2. If $f(z) \in \Sigma$ satisfies the following inequality

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-z^{2} f^{\prime}(z)+1\right|<\frac{3}{2}, \tag{3.2}
\end{equation*}
$$

then $f(z) \in \Sigma_{c}\left(\Sigma_{c}=\Sigma_{c}(0)\right)$.
Again if we set $\lambda=\gamma=\alpha=0$ and $\mu=p=1$ in theorem 1 , we get
Corolary 3. If $f(z) \in \Sigma$ satisfies the following inequality

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+2\right|<\frac{1}{2} \tag{3.3}
\end{equation*}
$$

then $f(z) \in \Sigma_{c}$.
Also for $\lambda=\delta=0$ and $\mu=p=1$, Theorem 2 gives
Corolary 4. If $f(z) \in \Sigma$ satisfies the following inequality

$$
\begin{equation*}
\Re\left[z^{2}\left\{f^{\prime}(z)\left(z^{2} f^{\prime}(z)-1\right)-z f^{\prime \prime}(z)\right\}\right]>-\frac{1}{2} \tag{3.4}
\end{equation*}
$$

then $f(z) \in \Sigma_{c}$.
Again on setting $\mu=2, \gamma=p=1$ and $\lambda=0$ in Theorem 1, we get

Corollary 5. If $f(z) \in \Sigma$ satisfies the following inequality

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)}\right|<\frac{(1-\alpha)(3-\alpha)}{2-\alpha} \quad(0 \leq \alpha<1) \tag{3.5}
\end{equation*}
$$

then $f(z) \in \Sigma^{*}(\alpha)$.
On further setting $\alpha=0$ in Corollary 5, we get
Corollary 6. If $f(z) \in \Sigma$ satisfies the following inequality

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)}\right|<\frac{3}{2} \tag{3.6}
\end{equation*}
$$

then $f(z) \in \Sigma^{*}\left(\Sigma^{*}=\Sigma^{*}(0)\right)$.
Also let $\mu=2, p=1$ and $\gamma=\alpha=\lambda=0$ in Theorem 1, we have
Corollary 7. If $f(z) \in \Sigma$ satisfies the following inequality

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}+1\right|<\frac{1}{2}, \tag{3.7}
\end{equation*}
$$

then $f(z) \in \Sigma^{*}$.
For $\mu=2, p=1$ and $\delta=\lambda=0$, Theorem 2 gives
Corollary 8. If $f(z) \in \Sigma$ satisfies the following inequality

$$
\begin{equation*}
\Re\left[\frac{z f^{\prime}(z)}{f(z)}\left\{\frac{2 z f^{\prime}(z)}{f(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-1\right\}\right]>-\frac{1}{2} \tag{3.8}
\end{equation*}
$$

then $f(z) \in \Sigma^{*}$.

References

[1] Jack, I. S., Functions starlike and convex of order α, J. Londan Math. Soc. 3(2)(1971), 469-474.
[2] Liu, J. L. and Srivastava, H. M., A linear operator and associated families of meromorphically multivalent functions, J. Math. anal. appl. 259(2001), 566-581.
[3] Miller, S. S. and Mocanu, P. T., Differential subordinations and inequalities in the complex plane, J. Differ. Equations. 67(1987), 199-211.
[4] Mogra, M. L., Hadamard product of certain meromorphic univalent functions, J. Math. Anal. Appl. 157(1991), 10-16.
[5] Raina, R. K. and Srivastava, H. M., A new class of meromorphically multivalent functions with applications of generalized hypergeometric functions, Math. Comput. Modelling 43(2006), 350-356.
[6] Raina, R. K. and Srivastava, H. M., Inclusion and neighborhoods properties of some analytic and multivalent functions, J. Inequal. Pure and Appl. Math. 7(1)(2006), Article 5, 1-6 (electronic).
[7] Rusheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc. 49(1975), 109-115.
[8] Xu, N. and Yang, D., On starlikeness and close to convexity of certain meromorphic function, J. Korean Soc. Math. Edus. Ser B : Pure appl. Math. 10(2003), 566-581.

[^0]: *2000 Mathematics Subject Classification. Primary 30C45.
 †E-mail: spgoyal@rediffmail.com
 ${ }^{\ddagger}$ E-mail: jkp _0007@rediffmail.com

