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1. Introduction

Let f:[a,b]>R be such that f™ (n>1) is continuous on [a,b] and
m, < f™(t)<M,, te[ab], for some real numbers m, and M .In [1], M. Matié
et al. proved the following inequality:

Jroa- 2220w 10)]< O, -m), (L
k- b-a)e( 22| < L2, ), 12
't 00222 (1) 1)+ O 1) f'<aj <L, m), 0
and
(2 o-a) (23] L o e 1< om0

Further, in [2], C. E. M. Pearce et al. proved the following inequality, for
n=12,3:

["tt)at- (b6a){f(b) 4f(a;bj+ f(a)}

where

<C,(b-a)"'(M,-m,), (1.5)

c-loc. ! 1

- Ci=—.
12 2430 0 964105

Recently, in [3], Lj. Dedi¢ et al. established some inequalities of Euler-Griiss type
to generalize all the above inequalities and improve the inequality (1.3) with the factor

] |
675 244/5°

(1.1), (1.2) and (1.4) with the factors

replaced by Further, in [4], Xiao-Liang Cheng improve the inequalities

replaced by 11

1 1 1
—, — and —— ,
437 43 2445 8 8

respectively. The other inequalities of Euler type see [5, 6, 7].
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In this paper, using some Euler formulas, we shall establish some new
generalization of all the above inequalities and improve inequalities (1.3) and (1.5). In
section 4 and 5, we apply the obtained results to estimate the error bounds for
composite quadrature rule and to apply for expectation.

2. Some ldentities

Let B (t), k>0 be the Bernoulli polynomials, and B, =B, (0), k >0, the
Bernoulli numbers. The first few Bernoulli polynomials are

1 1 3, 1
B,(t)=1, &ﬁ%ﬂ—a,Bxﬂzﬁ—t+g,Bxﬂzﬁ—5ﬁ+EL

and the first few Bernoulli numbers are

1 1 1 1
B, =1, Blz_Ea Bzzgs B; =0, 842_59 B; =0, B6:E

For some details on the Bernoulli polynomials and the Bernoulli numbers, see for
example [8, 9].

Further, let the function B: (t), k >0, be periodic functions of period 1, related
to the Bernoulli polynomials as

*

B, (t)=B,(t), 0<t<1,

*

B/(t+1)=B,(t), teR,

so that B, =1, B, is a discontinuous function with a jump of —1 at each integer,

and B,, k>2,is a continuous function.

As stated in [3], the following Euler type identities hold.
Let a, beR, a<b, xe[ab], and let f:[a,b]>R be such that f™ is

continuous on [a,b] for some n>1. Then the following formula for expansion in
Bernoulli polynomials is valid.

1

)= :f(t)dt+(ﬂ——)[f(b)— F@)]+T. (x)+ R (x) @.1)

1
-a b-a 2



122 Dah-Yan Hwang, Shiow-Ru Hwang and Chung-Shin Wang

where T,(x)=0,

1}@):§:®—éy45(x_ajh“IKM—f“IK@] 2)

for n>1.
Let x=Db in(2.1). Then the following trapezoid type identity holds.
Trapezoid type identity:

[Tt Um———4ﬂ) t(b)]+$, (a,b)+ o7 (a.b), 2.3)

where S/ (a,b)=0,

a2 o-ap )= -SG5 8 10 10)- 1),

for n>2, and

ph(an)=—b-ak, ()= 2 g 1 oo

for n>1.

Let x= .

in (2.1). Then the following midpoint type identity holds.
Midpoint type identity:

jbf(t)dt:(b—a)f(a;bj+s§”(a,b)+p:” (a,b), (2.4)

a

where S (a,b)=
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5 (a.b) = —(b - aﬁn(a + bj _Go-a)” (=28, [t E(b) £ )(a)].

2 i= (2j)!

for n>2, and

o (@) =—(o-a,[ 212 =2l gy ] e,

2 n! a 2 b-a

for n>1.

Further, by (2.3) and (2.4) doing as in [3], the following Simpson type, Two-point
type and Three-point type identities hold.

Simpson type identity:
[ttt = b‘Ta{ f (a)+4f(aT+bj R f(b)} iss(ab) ptlab). (25
where S°(a,b)=0,

n/2l(h _ a)2] ) ) )
s:(a,b)%'z(b 2" 1y g, [1r()- 10 )]

for n>2,and
b-a)" (o] _.(, t-a (1 t-a
S b=( B l1-—= [+2B| = ——Z | |f ™(t)dt
pn(a’ ) 3[n') Ia|: n( b—aj—l— ”(2 b—ajj| () ’

for n>1. Note that

SS(a,b)=S5(a,b)=55(a,b)=0.
Tow-point type identity:

[ttt = b;a{f(%‘*b} f(agzbﬂ+Snzp(a,b)+p,f’°(a,b) 2.6)

3
where $"(a,b)=0,
Jb-a)”

p l[n/z
S@b)=2 27
j=

J)!

(1-370)B,, [t ®1(b)- i),

for n>2, and

2 (a,b) = (b-a)" Ib{B:(l_t—_aj N B:(E_t—_aﬂ £ ()t

2(n!j 3 b-a 3 b-a
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for n>1.
Three-point type identity:

[*t(t)dt = b;a 2f(3a;bJ— f(a;b]+2f(az3bﬂ+Sn“’(a,b)+p§'°(a,b), 2.7)

where S;7(a,b)=0,
[n/2] 2] ) ) ) )
s27(a)= -1 SO (g, [r000)- 000

> G))!

for n>2,and

o7 (ab)= ) jb{zsj(l——t_a}B;‘[l——t_ajusg[é——t_aﬂfW(t)dt,
3(n!) a 4 b-a 2 b-a 4 b-a

for n>1. Note that
S:*(a,b)=5:"(a,b)=5;"(a,b)=0.

3. Integral Inequalities

Throughout the rest of the paper, let f :[a,b]—> R be a mapping such that the

derivative f " (n>1) is absolutely continuous on [a,b], and we assume that

m, < f™(x)<M,, a<x<b,
for some real constants m, and M .Let u® and u~ be the positive and negative
parts of the mapping u, respectively.

The following Lemma has been obtained in [3].

Lemmal.Let k>1 and y €R.Then

[ Bi(y-t)dt=0.

0
The following Lemma (see [10]) plays important role in our main results.

Lemma 2. Let F,G:[a,b]—> R be two integrable functions such that

y<G(x)<T,forall xela,b],
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where y,I' e R are constants and I dx 0. Then

JoFO)B(dd < (= 7)[ F* (x)ax.

b
Proof. Since J. F(x)dx =0, we have

a

J.bF‘(x)dx = —ij+(x)dx.

Now, J.: (x)G(x)dx = j “(x)G(x dx+j

< Fij+(x)dx + ;/J.:F‘(x)dx

a

= (T 7)[ F* (x)x

and

I F(x)G(x) x>7I dx+1“J. dx
(= »)[[F(x)ax,

which imply the result of Lemma 2.
We are ready to prove the following:

Theorem 1. For n>1 and for every x < [a,b], we have

‘f(x)_L "¢ (O)dt— (E_lj[f(b)_f(a)]_n(x)(

b—a’a b-a 2

< (b;'a)" (M, —m,)[ B; (s)s

where T,() and B,(-) areas in section 2.

Proof. By Lemma 1, we have

125

3.1)
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T (o P CE T P
a (b-a a b-a b-a
Now, using Lemma 2, we have

I:B:(gf_;jf(")(t)dt <M, -m, jB**(X tjdt=(Mn—mn)(b—a)jOlB;(s)ols,

b-a

B (b _ a)n—l

If we multiply this by '
n:

and use the representation (2.1), we obtain

the desired inequality (3.1)
Corollary 1. For every x < [a,b], we have

1 (o x—a |1 (b-a)
[ F 0ot (m_gj[f(b)_f(a)k M-m) (2
Proof. For n=1,by (2.1), we have T,(x)=0 and
~f(x)— L " x-a_ 1 _
R(0= 100512 [ 10 (X2 10)- e
Also
f, B I/( E)dszg‘
Thus (3.2) follows from (3.1).
Remark 1. It has been shown that é in (3.2) is sharp (see [4]).
Corollary 2. For every x < [a,b], we have
I x-a 1
) [ e (32 et e
. M(ﬁ_if_m 0)- t@)]<®= m. -
R (R e GBI B SRS

Proof. We have
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1

gr(s)ds= [0 [52 s+ L)ds [osf/st—s4 L )ds =
J'O 7(s) s—jo ST s+ S+J-3+(3 ST-s+ o s—m.

6

From (2.2), we have

T (0= {M[—lj —b‘—a][f o)~ 1(a)].

2 b-a 2 24

Hence (3.3) follows from (3.1) by taking n=2.

Remark 2. We note that Corollary 2 is an improvement of Corollary 2 in [3]. If we
choose x=Db in(3.3), we have

j:f(t)dt_b‘Ta[f(a)+ f(b)]+

(b-a)’
12

(b-a)
3643

which is obtained in [3], with 2445 replaced by 363 . Similarly, choose
a+b
X =

(Mz - mz)’ (3-4)

[t'(b)- f '(a)4 <

in (3.3), we have

Fre)- @]« O m o). as

IN

jbf(t)dt—(b—a)f(a;‘bj_(b_

a
a 24

which is the inequality (1.4) with 24+/5 replaced by 364/3.

Corollary 3. Let S](a,b) be defined as in section 2. For n>1, we have

Jr0e- 02 1) s;(a,b)(

s%(Mn -m, )| B; (s)ds (3.6)

Proof. This follows from (3.1) by taking x=b.

Remark 3. Choose n=1 in (3.6), we have

I -2 ) 1) < 222w, ).

a
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The constant % is sharp (see [4]). Also, (3.6) reduces to (3.4) when n=2.

Corollary 4. Let S (a,b) be defined as in section 2. For n>1, we have

["ft)dt-(o- a)f(a;b) SM(a,b)1

s%(Mn -m,)| B; (s)ds (3.7)

Proof. This follows from (3.1) by taking X = aT“D

Remark 4. Choose n=1 in (3.7), we have

j:f(t)dt—(b—a)f(a;bJs

b-a)

3 1_m1)'

The constant % is sharp (see [4]). Also, (3.7) reduces to (3.5) when n=2.

Theorem 2. Let S*(a,b) be defined as in section 2. For n>1, we have

["tt)dt- (b6a)[f(b) 4f[a;bj+ f(a)}—S,f(a,b){

s%(mn —mn)jol{B:(l—s)+ 2836—sﬂ+ds (3.8)

Proof. By Lemma 1, we have

oty
et

=(b- a)J'O1 B, (1-s)ds+2(b - a)J'O1 Bne - sj ds =0 .
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Now, using Lemma 2, we have
[’ B:(l —t_—aj ; 28:(1 —t_—a) £ O(t)dt
a b-a 2 b-a
<M, -m,)[’ B;(l—t_—ajwsj(l—t_—a dt
a b-a 2 b-a
[ . (1 '
~(b-afM, -m,)[ {Bn(l—s)+28n(——sﬂ ds.
0 2
(b—a)’

S(n !)
desired inequality (3.8).

jjf(t)dt—%a){f(b)*“(%m} f(a)}‘

5 2
Si(b—a) (M, —m,). (3.9)

Multiplying this by and use the representation (2.5), we obtain the

Corollary 5.

Proof. Since

Bl(l—s):Bl(l—s):%—s if 0<s<1
and

B, l—s =—s, if OSSSl
B*(l j_ 2 2

277, (3 1
2 Bl(——sjzl—s, if —<s<1

2 2

We have

3, if 0<s<t
2

-3s, if 0<s<l1
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Therefore
+ 1 5
'[l B (1-s)+ 2Bf(l— sj ds=j6(l—3sjds +j16(§— sjds SN
0 2 02 7\2 24
Since S} (a,b) =0, we see that (3.9) follows from (3.8) for n=1.

I:f(t)dt—@{f(bﬁﬂ(%m}u f(a)}

Corollary 6.

<—(b-a)(M,-m,). (3.10)

L
162
Proof. Since

B;(l—s):Bz(l—s):sz—SJr% if 0<s<1

and
Bz(l—sj: Z—L, if 0<s<_
B*(l j_ 2 12 2
2787 3 1
Bz{z—sj=52—25+—, if —<s<l,
we have
, . 1
1 38" —s, if 0<s<—
B;(I—s)+2B;(——sj= 7
2 3s* —5s+2, if E<SS1.
Therefore
[Bi(1-5)+28; LI +ds=J';(3sz—s)ds+j§(3sz—53+2)ds=i
o 2 2\ 2 3 3 27
Since S (a,b) =0, we see that (3.10) follows from (3.8) for n=2.
Corollary 7. I:f(t)dt—@{f(bﬁﬂ(%m}t f(a)}
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1 4
<—_(b-a)' (M, -m,).

Proof. Since

B;(1-s)=B,(1-s)=-s’ +%s2 —%s if 0<s<l1

and
B3(l—sjz—s3+ls, if 0<s<i
B*(l—s)— 2 4 2

; =
2 B, é_s :_s3+332—ﬂs+§, if l<SSI,
2 4 4 2

we have

—3s3+§sz, if OSSS%

B;(l—s)+28;e—sj =

—-3s° +1?552 —6s+%, if 0<s<I.

Therefore

I;[B:(I—S)+2B (——sﬂ ds= I [ 35 += s jds é

Since S; (a,b) =0, we see that (3.11) follows from (3.8) for n=3.

(3.11)

Remark 5. Corollary 5, Corollary 6 and Corollary 7 are improvements of (1.5) for

n=1, n=2 and n=3, respectively.

Theorem 3. Let S"(a,b) be defined as in section 2. For n>1, we have

[t - (b;a){f(2a3+bj+ f[a%bﬂ—s?(aab){

<%(Mn —mn)j;{B:@—sj+ B:@—SJT ds

Proof. By Lemma 1, we have

(3.12)
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(oGl
Sl e e

=(b- a)fo1 BHG - s) ds+(b - a)ﬂ Bn@ - sj ds =0.

Now, using Lemma 2, we have

J‘b|:B:(l_t__aj+ B:(g_t__aj}f (”)(t)dt
a 3 b-a 3 b-a

Multiplying this by b-a and use the representation (2.6), we obtain the
2(n 'j

desired inequality (3.12).

Lbf(t)dt— (b;a){f(Za;bj+ f[agzbﬂ‘
s;—z(b-a)z(Ml—ml).

Proof. Since

Corollary 8.

and

(3.13)
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3
we have
] 1
- 2s, if 0<s<-—
3
Bf(l—sj+8f(g—sj: —-2s+1, if l<s£g
3 3 3 3
-2s+2 if §<531
Therefore

J'O[BI*G—SJ (——sﬂ ds= j 2S+1)dS+J.§1(—25+2)ds=—

Since Sfp(a,b) =0, we see that (3.13) follows from (3.12) for n=1.

Corollary 9. I dt— a)I_f 224D, ¢fa+2b ~S2"(a,b
2 |\ 3 3
s%(b a)(M,-m,). (3.14)
Proof. Since
B{l—SJ:s2 lS—L, if 0<s<i
B*(l—sj— 3 3718 3
; -
3 B, 4 :sz—§s+£, if —<s<lI
3 3 18 3
and
B, 2 s :sz—ls—i, if 0<s<2
73 3718 3
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we have

Therefore

[ B;‘[l—sjwsg‘(%—sj ds
0 3 3
! 2 =2
=I31 (252—ljds+_[§(252—2s+§]ds+j26 (252 +1—7jds=&.
;1 9 3 9 3

Thus (3.14) follows from (3.12) for n=2.

Remark 6. Corollary 8 and Corollary 9 are improvements of Theorem 5 in [3] for
V2

n=1 and n=2 with the factors L and Loreplaced by — and —,
12 360 72 162

respectively.
Theorem 4. Let S*F(a,b) be defined as in section 2. For n>1, we have

j:f(t)dt— (b;a){zf[Zaa:bj_ f[a;b}L f[azzabﬂ_ssp(a’b){
<M(Mn_mn)jol{zsj(%—sj—B:(%—sjuB:G—sHds. (3.1

3(n !)
5)
Proof. By Lemma 1, we have

[’ 28:(1——t_aj—Bj(l——t_ajuaj(i——t_aj dt
2 b-a 4 b-a

a 4 b-a

:ZIbB:(l—t_—ajdt— bB:(l—t_—ajdeij:(é——jdt
a 4 b-a 2 b-a a 4 b-a
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=2(b - a)‘[o1 BnG = s} ds—(b - a)j; Bn[% - sj ds+2(b — a)jol Bn(% - sj ds=0.

Now, using Lemma 2, we have

Joosi(3-im2 (1o 2 sy 2 2 e

a 4 b-a 2 b-a 4 b-a

s(Mn_mn)jbzgg(l_t—_aj_B:[l_t—aj”B:(g_t—a] "
a 4 b-a 2 b-a 4 b-a

=M, - mn)(b—a).[ol{zB:G—sj— BQ‘G—S)+2B:G—SH+ ds.
(b-a)

{n)

Multiplying this by and use the representation (2.7), we obtain the

desired inequality (3.13).

corotery 0. [ 10 822212 o[22
5
_&(b-a)z(Ml—ml). (3.16)

Proof. Since

Bl[l_sj:—s—l, if Ogs_l

"4 B 5 1
Bl[——SJz—S+—, if —<s<l,
4

and
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we have

-3s if 0<s<

1
| | 3 —-3s+2 if —<s<

231*(—— j—Bl*[——strZBf(——sj: f
4 2 —3s+1 if —<s<

2

3
-35s+3 if =<s<

4

Therefore

1 ® 1 * 1 * 3 " 1 1 5
Io[zBl(Z_Sj_Bl (5—3j+281 (Z—sﬂ ds=jf(—3s+1)ds+_|'i(—3s+3)ds=E.

Since S;*(a,b)=0, we see that (3.16) follows from (3.15) for n=1.

Corollary 11. ‘I:f(t)dt— (b ; a)[z f (3a+bj_ f(a_J“bj + f(aﬂbﬂ‘

4 2 4

s%g(b-af(Mz—mz).

Proof. Since

(3.17)
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2 Bz(i_sjzsz—25+—, if —<s<1
and
o3-e] s ook it 0zas3
B*(g_s)_ 4 48 4
1 =
4 Bl(l_sj:sziﬁﬂ, if —<s<l,
4
we have
, _ 1
3s?, if 0<s<-—
4
, 1 1
35" —4s+1, if —<s<—
«f 1 <1 «3 4 2
2B,| ==s|-B,| ==s |[+2B,| —=—5s |= 1 3
4 2 4 3s?—2s, if —<s<=
2 4
38 —6s+3, if §<5S1
4
Therefore

(o 1o - o4 2si 3]
=j0‘1‘332ds +I§(332 —4s+1)ds+ I;(Ssz —2s.)ds+E(352 —65+3)ds
4 3 4

5

108

Since S;° (a,b) =0, we see that (3.17) follows from (3.15) for n=2

Remark 7. Corollary 10 and Corollary 11 are improvements of Theorem 6 in [3] for

n=1 and n=2 with the factors Q and 1300 replaced by % and N

648 °

respectively.
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4. Application for The Error Bound for Composite

Quadrature Rule

Theorem 5. Let I, be a partition a=x, <X, <---<X,, <X, =b of the interval
[a,b]. Then

M, —-m, &
ff’,l){ <—223%h’ 4.1
U 17 3643 Zo: @b
where h, =x,, —x, and A (f,f’,1,) isperturbed trapezoid quadrature rule
defined by

A(F,101,): ;Z[f() .+1]h——2h %)= 1706

Proof. From (3.4), with [x,,x,,] inplace of [a,b], we get

[, f(t)dt_%[f(xm)"‘ f(x )]+M[f ()= 106

12

<(X|+1_X)3 _
<2t -m,)

Summing this over i=0,1,---,n—1, we get the desired result.

Remark 8. The inequality in (4.1) is an improvement of the inequality (4.5) in [1].

5. Applications for Expectation

Theorem 6. Let X be a random variable having the p.d.f., f:[a,b]> R and the
cumulative distribution function F :[a,b]— [0.1], i.e.,

F(x)= IX f(t)dt, xe[a,b].

a

If F is absolutely continuous on [a,b] and m, < f"(x)<M, for xel[a,b],
then we have the inequality:
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ax>—3+b—@‘ay[NM—f@4

2 12

(26_\/&5)3 (Mz _mz) (5.1

<

Proof. Replaced f by F in(3.4), we have

I:F(t)olt—%F(b)(b_a)+ bl 1r6)- f(a)i

_b-a)'

_W( ,—m,).

However, F(a)=0, F(b)=1 and

(5.2)

[CF)dt=b-E(x),

a

the desired inequality (5.1) follows from (5.2).
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