Improvements and Generalizations of Some **Euler Grüss Type Inequalities and Applications***

Dah-Yan Hwang[†]

Department of Information and Management, Technology and Science Institute of Northern Taiwan, No. 2, Xueyuan Rd., Peitou, 112 Taipei, TAIWAN, R.O.C.

Shiow-Ru Hwang[‡]

China institute of Technology, Nankang, Taipei, Taiwan 11522

Chung-Shin Wang

Department of Mathematics, Aletheia University

Received September 21, 2005, Accepted March 14, 2009.

Abstract

A sharp bound for some Euler-Grüss type inequalities are established and some applications are given.

Keywords and Phrases: Euler formulae, Bernoulli polynomials, Grüss inequality, Simpson's rule.

^{* 2000} Mathematics Subject Classification. 26D15. † E-mail: dyhuang@ntist.edu.tw

[‡] E-mail: hsru@cc.chit.edu.tw

1. Introduction

Let $f:[a,b] \to R$ be such that $f^{(n)}$ $(n \ge 1)$ is continuous on [a,b] and $m_n \le f^{(n)}(t) \le M_n$, $t \in [a,b]$, for some real numbers m_n and M_n . In [1], M. Matić et al. proved the following inequality:

$$\left| \int_{a}^{b} f(t)dt - \frac{b-a}{2} \left[f(a) + f(b) \right] \right| \le \frac{(b-a)^{2}}{4\sqrt{3}} (M_{1} - m_{1}), \tag{1.1}$$

$$\left| \int_{a}^{b} f(t)dt - (b-a)f\left(\frac{a+b}{2}\right) \right| \le \frac{(b-a)^{2}}{4\sqrt{3}} (M_{1} - m_{1}), \tag{1.2}$$

$$\left| \int_{a}^{b} f(t)dt - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right| \le \frac{(b-a)^{2}}{6\sqrt{5}} (M_{2} - m_{2}), \quad (1.3)$$

and

$$\left| \int_{a}^{b} f(t)dt - (b-a)f\left(\frac{a+b}{2}\right) - \frac{(b-a)^{2}}{24} \left[f'(b) - f'(a) \right] \le \frac{(b-a)^{2}}{24\sqrt{5}} \left(M_{2} - m_{2} \right). \tag{1.4}$$

Further, in [2], C. E. M. Pearce et al. proved the following inequality, for n = 1,2,3:

$$\left| \int_{a}^{b} f(t)dt - \frac{(b-a)}{6} \left[f(b) + 4f\left(\frac{a+b}{2}\right) + f(a) \right] \right| \le C_{n} (b-a)^{n+1} (M_{n} - m_{n}), \tag{1.5}$$

where

$$C_1 = \frac{1}{12}, \ C_2 = \frac{1}{24\sqrt{30}}, \ C_3 = \frac{1}{96\sqrt{105}}.$$

Recently, in [3], Lj. Dedić et al. established some inequalities of Euler-Grüss type to generalize all the above inequalities and improve the inequality (1.3) with the factor $\frac{1}{6\sqrt{5}}$ replaced by $\frac{1}{24\sqrt{5}}$. Further, in [4], Xiao-Liang Cheng improve the inequalities (1.1), (1.2) and (1.4) with the factors $\frac{1}{4\sqrt{3}}$, $\frac{1}{4\sqrt{3}}$ and $\frac{1}{24\sqrt{5}}$ replaced by $\frac{1}{8}$, $\frac{1}{8}$

and $\frac{1}{72\sqrt{3}}$, respectively. The other inequalities of Euler type see [5, 6, 7].

In this paper, using some Euler formulas, we shall establish some new generalization of all the above inequalities and improve inequalities (1.3) and (1.5). In section 4 and 5, we apply the obtained results to estimate the error bounds for composite quadrature rule and to apply for expectation.

2. Some Identities

Let $B_k(t)$, $k \ge 0$ be the Bernoulli polynomials, and $B_k = B_k(0)$, $k \ge 0$, the Bernoulli numbers. The first few Bernoulli polynomials are

$$B_0(t) = 1$$
, $B_1(t) = t - \frac{1}{2}$, $B_2(t) = t^2 - t + \frac{1}{6}$, $B_3(t) = t^3 - \frac{3}{2}t^2 + \frac{1}{2}t$,

and the first few Bernoulli numbers are

$$B_0 = 1$$
, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_3 = 0$, $B_4 = -\frac{1}{30}$, $B_5 = 0$, $B_6 = \frac{1}{42}$

For some details on the Bernoulli polynomials and the Bernoulli numbers, see for example [8, 9].

Further, let the function $B_k^*(t)$, $k \ge 0$, be periodic functions of period 1, related to the Bernoulli polynomials as

$$B_k^*(t) = B_k(t), \quad 0 \le t < 1,$$

$$B_k^*(t+1) = B_k^*(t), \quad t \in R,$$

so that $B_0^* = 1$, B_1^* is a discontinuous function with a jump of -1 at each integer, and B_k^* , $k \ge 2$, is a continuous function.

As stated in [3], the following Euler type identities hold.

Let $a, b \in R, a < b, x \in [a,b]$, and let $f:[a,b] \to R$ be such that $f^{(n)}$ is continuous on [a,b] for some $n \ge 1$. Then the following formula for expansion in Bernoulli polynomials is valid.

$$f(x) = \frac{1}{b-a} \int_{a}^{b} f(t)dt + \left(\frac{x-a}{b-a} - \frac{1}{2}\right) [f(b) - f(a)] + T_n(x) + R_n(x)$$
 (2.1)

where $T_1(x) = 0$,

$$T_n(x) = \sum_{k=2}^n \frac{(b-a)^{k-1}}{k!} B_k \left(\frac{x-a}{b-a}\right) \left[f^{(k-1)}(b) - f^{(k-1)}(a) \right]$$
 (2.2)

for $n \ge 2$ and

$$R_{n}(x) = -\frac{(b-a)^{n-1}}{n!} \int_{a}^{b} B_{n}^{*} \left(\frac{x-t}{b-a}\right) f^{(n)}(t) dt$$

for $n \ge 1$.

Let x = b in (2.1). Then the following trapezoid type identity holds.

Trapezoid type identity:

$$\int_{a}^{b} f(t)dt = \frac{b-a}{2} [f(a)+f(b)] + S_{n}^{T}(a,b) + \rho_{n}^{T}(a,b), \qquad (2.3)$$

where $S_1^T(a,b) = 0$,

$$S_n^T(a,b) = -(b-a)T_n(b) = -\sum_{j=1}^{\lfloor n/2\rfloor} \frac{(b-a)^{2j}}{(2j)!} B_{2j} \Big[f^{(2j-1)}(b) - f^{(2j-1)}(a) \Big],$$

for $n \ge 2$, and

$$\rho_n^T(a,b) = -(b-a)R_n(b) = \frac{(b-a)^n}{n!} \int_a^b B_n^* \left(1 - \frac{t-a}{b-a}\right) f^{(n)}(t) dt,$$

for $n \ge 1$.

Let $x = \frac{a+b}{2}$ in (2.1). Then the following midpoint type identity holds.

Midpoint type identity:

$$\int_{a}^{b} f(t)dt = (b-a)f\left(\frac{a+b}{2}\right) + S_{n}^{M}(a,b) + \rho_{n}^{M}(a,b),$$
 (2.4)

where $S_1^M(a,b) = 0$,

$$S_n^M(a,b) = -(b-a)T_n\left(\frac{a+b}{2}\right) = \sum_{j=1}^{\lfloor n/2\rfloor} \frac{(b-a)^{2j}}{(2j)!} (1-2^{1-2j})B_{2j}\left[f^{(2j-1)}(b)-f^{(2j-1)}(a)\right],$$

for $n \ge 2$, and

$$\rho_n^M(a,b) = -(b-a)R_n\left(\frac{a+b}{2}\right) = \frac{(b-a)^n}{n!} \int_a^b B_n^* \left(\frac{1}{2} - \frac{t-a}{b-a}\right) f^{(n)}(t) dt,$$

for $n \ge 1$.

Further, by (2.3) and (2.4) doing as in [3], the following Simpson type, Two-point type and Three-point type identities hold.

Simpson type identity:

$$\int_{a}^{b} f(t)dt = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] + S_{n}^{s}(a,b) + \rho_{n}^{s}(a,b), \tag{2.5}$$

where $S_1^S(a,b) = 0$,

$$S_n^{S}(a,b) = \frac{1}{3} \sum_{j=1}^{\lfloor n/2 \rfloor} \frac{(b-a)^{2j}}{(2j)!} (1 - 2^{2-2j}) B_{2j} \left[f^{(2j-1)}(b) - f^{(2j-1)}(a) \right],$$

for $n \ge 2$, and

$$\rho_n^{S}(a,b) = \frac{(b-a)^n}{3(n!)} \int_a^b \left[B_n^* \left(1 - \frac{t-a}{b-a} \right) + 2B_n^* \left(\frac{1}{2} - \frac{t-a}{b-a} \right) \right] f^{(n)}(t) dt,$$

for $n \ge 1$. Note that

$$S_1^{S}(a,b) = S_2^{S}(a,b) = S_3^{S}(a,b) = 0.$$

Tow-point type identity:

$$\int_{a}^{b} f(t)dt = \frac{b-a}{2} \left[f\left(\frac{2a+b}{3}\right) + f\left(\frac{a+2b}{3}\right) \right] + S_{n}^{2P}(a,b) + \rho_{n}^{2P}(a,b)$$
 (2.6)

where $S_1^{2P}(a,b) = 0$,

$$S_n^{2P}(a,b) = \frac{1}{2} \sum_{j=1}^{\lfloor n/2 \rfloor} \frac{(b-a)^{2j}}{(2j)!} (1-3^{-2j}) B_{2j} \Big[f^{(2j-1)}(b) - f^{(2j-1)}(a) \Big],$$

for $n \ge 2$, and

$$\rho_n^{2P}(a,b) = \frac{(b-a)^n}{2(n!)} \int_a^b \left[B_n^* \left(\frac{1}{3} - \frac{t-a}{b-a} \right) + B_n^* \left(\frac{2}{3} - \frac{t-a}{b-a} \right) \right] f^{(n)}(t) dt ,$$

for $n \ge 1$.

Three-point type identity:

$$\int_{a}^{b} f(t)dt = \frac{b-a}{3} \left[2f\left(\frac{3a+b}{4}\right) - f\left(\frac{a+b}{2}\right) + 2f\left(\frac{a+3b}{4}\right) \right] + S_{n}^{3P}(a,b) + \rho_{n}^{3P}(a,b), (2.7)$$
where $S_{n}^{3P}(a,b) = 0$

where $S_1^{3P}(a,b) = 0$,

$$S_n^{3P}(a,b) = -\frac{1}{3} \sum_{j=1}^{\lfloor n/2 \rfloor} \frac{(b-a)^{2j}}{(2j)!} (1 - 2^{2-2j}) (1 - 2^{1-2j}) B_{2j} [f^{(2j-1)}(b) - f^{(2j-1)}(a)],$$

for $n \ge 2$, and

$$\rho_n^{3P}(a,b) = \frac{(b-a)^n}{3(n!)} \int_a^b \left[2B_n^* \left(\frac{1}{4} - \frac{t-a}{b-a} \right) - B_n^* \left(\frac{1}{2} - \frac{t-a}{b-a} \right) + 2B_n^* \left(\frac{3}{4} - \frac{t-a}{b-a} \right) \right] f^{(n)}(t) dt,$$

for $n \ge 1$. Note that

$$S_1^{3P}(a,b) = S_2^{3P}(a,b) = S_3^{3P}(a,b) = 0$$
.

3. Integral Inequalities

Throughout the rest of the paper, let $f:[a,b] \to R$ be a mapping such that the derivative $f^{(n-1)}$ $(n \ge 1)$ is absolutely continuous on [a,b], and we assume that

$$m_n \le f^{(n)}(x) \le M_n, \quad a \le x \le b,$$

for some real constants m_n and M_n . Let u^+ and u^- be the positive and negative parts of the mapping u, respectively.

The following Lemma has been obtained in [3].

Lemma 1. Let $k \ge 1$ and $\gamma \in R$. Then

$$\int_0^1 B_k^* (\gamma - t) dt = 0.$$

The following Lemma (see [10]) plays important role in our main results.

Lemma 2. Let $F,G:[a,b] \to R$ be two integrable functions such that

$$\gamma \leq G(x) \leq \Gamma$$
, for all $x \in [a,b]$,

where $\gamma, \Gamma \in R$ are constants and $\int_a^b F(x) dx = 0$. Then

$$\left| \int_a^b F(x)G(x)dx \right| \leq (\Gamma - \gamma) \int_a^b F^+(x)dx.$$

Proof. Since $\int_a^b F(x) dx = 0$, we have

$$\int_{a}^{b} F^{-}(x) dx = -\int_{a}^{b} F^{+}(x) dx.$$
Now,
$$\int_{a}^{b} F(x) G(x) dx = \int_{a}^{b} F^{+}(x) G(x) dx + \int_{a}^{b} F^{-}(x) G(x) dx$$

$$\leq \Gamma \int_{a}^{b} F^{+}(x) dx + \gamma \int_{a}^{b} F^{-}(x) dx$$

$$= (\Gamma - \gamma) \int_{a}^{b} F^{+}(x) dx$$

and

$$\int_{a}^{b} F(x)G(x)dx \ge \gamma \int_{a}^{b} F^{+}(x)dx + \Gamma \int_{a}^{b} F^{-}(x)dx$$
$$= -(\Gamma - \gamma) \int_{a}^{b} F^{+}(x)dx,$$

which imply the result of Lemma 2.

We are ready to prove the following:

Theorem 1. For $n \ge 1$ and for every $x \in [a,b]$, we have

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt - \left(\frac{x-a}{b-a} - \frac{1}{2} \right) [f(b) - f(a)] - T_{n}(x) \right|$$

$$\leq \frac{(b-a)^{n}}{n!} (M_{n} - m_{n}) \int_{0}^{1} B_{n}^{+}(s) ds$$
(3.1)

where $T_n(\cdot)$ and $B_n(\cdot)$ are as in section 2.

Proof. By Lemma 1, we have

$$\int_{a}^{b} B_{n}^{*} \left(\frac{x-t}{b-a} \right) dt = \int_{a}^{b} B_{n}^{*} \left(\frac{x-a}{b-a} - \frac{t-a}{b-a} \right) dt = (b-a) \int_{0}^{1} B_{n}^{*} \left(\frac{x-a}{b-a} - s \right) ds = 0$$

Now, using Lemma 2, we have

$$\left| \int_{a}^{b} B_{n}^{*} \left(\frac{x-t}{b-a} \right) f^{(n)}(t) dt \right| \leq (M_{n} - m_{n}) \int_{a}^{b} B_{n}^{*+} \left(\frac{x-t}{b-a} \right) dt = (M_{n} - m_{n}) (b-a) \int_{0}^{1} B_{n}^{+}(s) ds.$$

If we multiply this by $\left| -\frac{(b-a)^{n-1}}{n!} \right|$ and use the representation (2.1), we obtain

the desired inequality (3.1)

Corollary 1. For every $x \in [a,b]$, we have

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt - \left(\frac{x-a}{b-a} - \frac{1}{2} \right) [f(b) - f(a)] \right| \le \frac{(b-a)}{8} (M_1 - m_1)$$
 (3.2)

Proof. For n = 1, by (2.1), we have $T_1(x) = 0$ and

$$R_1(x) = f(x) - \frac{1}{b-a} \int_a^b f(t) dt - \left(\frac{x-a}{b-a} - \frac{1}{2}\right) [f(b) - f(a)].$$

Also

$$\int_{0}^{1} B_{1}^{+}(s) ds = \int_{1/2}^{1} \left(s - \frac{1}{2} \right) ds = \frac{1}{8}$$

Thus (3.2) follows from (3.1).

Remark 1. It has been shown that $\frac{1}{8}$ in (3.2) is sharp (see [4]).

Corollary 2. For every $x \in [a,b]$, we have

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt - \left(\frac{x-a}{b-a} - \frac{1}{2} \right) [f(b) - f(a)] \right|
- \left[\frac{(b-a)}{2} \left(\frac{x-a}{b-a} - \frac{1}{2} \right)^{2} - \frac{b-a}{24} \right] [f'(b) - f'(a)] \le \frac{(b-a)^{2}}{36\sqrt{3}} (M_{2} - m_{2})$$
(3.3)

Proof. We have

$$\int_0^1 B_2^+(s) ds = \int_0^{\frac{3-\sqrt{3}}{6}} \left(s^2 - s + \frac{1}{6} \right) ds + \int_{\frac{3+\sqrt{3}}{6}}^1 \left(s^2 - s + \frac{1}{6} \right) ds = \frac{1}{18\sqrt{3}}.$$

From (2.2), we have

$$T_2(x) = \left[\frac{(b-a)}{2} \left(\frac{x-a}{b-a} - \frac{1}{2} \right)^2 - \frac{b-a}{24} \right] [f'(b) - f'(a)].$$

Hence (3.3) follows from (3.1) by taking n = 2.

Remark 2. We note that Corollary 2 is an improvement of Corollary 2 in [3]. If we choose x = b in (3.3), we have

$$\left| \int_{a}^{b} f(t)dt - \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(b) - f'(a)] \right| \le \frac{(b-a)^{3}}{36\sqrt{3}} (M_{2} - m_{2}), \quad (3.4)$$

which is obtained in [3], with $24\sqrt{5}$ replaced by $36\sqrt{3}$. Similarly, choose $x = \frac{a+b}{2}$ in (3.3), we have

$$\left| \int_{a}^{b} f(t)dt - (b-a)f\left(\frac{a+b}{2}\right) - \frac{(b-a)^{2}}{24} \left[f'(b) - f'(a) \right] \le \frac{(b-a)^{3}}{36\sqrt{3}} \left(M_{2} - m_{2} \right). \tag{3.5}$$

which is the inequality (1.4) with $24\sqrt{5}$ replaced by $36\sqrt{3}$.

Corollary 3. Let $S_n^T(a,b)$ be defined as in section 2. For $n \ge 1$, we have

$$\left| \int_{a}^{b} f(t)dt - \frac{(b-a)}{2} [f(b) + f(a)] - S_{n}^{T}(a,b) \right|$$

$$\leq \frac{(b-a)^{n+1}}{n!} (M_{n} - m_{n}) \int_{0}^{1} B_{n}^{+}(s) ds$$
(3.6)

Proof. This follows from (3.1) by taking x = b.

Remark 3. Choose n = 1 in (3.6), we have

$$\left| \int_{a}^{b} f(t)dt - \frac{b-a}{2} [f(a) + f(b)] \right| \leq \frac{(b-a)^{2}}{8} (M_{1} - m_{1}).$$

The constant $\frac{1}{8}$ is sharp (see [4]). Also, (3.6) reduces to (3.4) when n = 2.

Corollary 4. Let $S_n^M(a,b)$ be defined as in section 2. For $n \ge 1$, we have

$$\left| \int_{a}^{b} f(t)dt - (b-a)f\left(\frac{a+b}{2}\right) - S_{n}^{M}(a,b) \right|$$

$$\leq \frac{(b-a)^{n+1}}{n!} (M_{n} - m_{n}) \int_{0}^{1} B_{n}^{+}(s) ds$$
(3.7)

Proof. This follows from (3.1) by taking $x = \frac{a+b}{2}$.

Remark 4. Choose n = 1 in (3.7), we have

$$\left| \int_a^b f(t)dt - (b-a)f\left(\frac{a+b}{2}\right) \right| \leq \frac{(b-a)^2}{8} (M_1 - m_1).$$

The constant $\frac{1}{8}$ is sharp (see [4]). Also, (3.7) reduces to (3.5) when n = 2.

Theorem 2. Let $S_n^s(a,b)$ be defined as in section 2. For $n \ge 1$, we have

$$\left| \int_{a}^{b} f(t)dt - \frac{(b-a)}{6} \left[f(b) + 4f\left(\frac{a+b}{2}\right) + f(a) \right] - S_{n}^{s}(a,b) \right|$$

$$\leq \frac{(b-a)^{n+1}}{3(n!)} (M_{n} - m_{n}) \int_{0}^{1} \left[B_{n}^{*}(1-s) + 2B_{n}^{*}\left(\frac{1}{2} - s\right) \right]^{+} ds$$
(3.8)

Proof. By Lemma 1, we have

$$\int_{a}^{b} \left[B_{n}^{*} \left(1 - \frac{t - a}{b - a} \right) + 2B_{n}^{*} \left(\frac{1}{2} - \frac{t - a}{b - a} \right) \right] dt$$

$$= \int_{a}^{b} B_{n}^{*} \left(1 - \frac{t - a}{b - a} \right) dt + 2 \int_{a}^{b} B_{n}^{*} \left(\frac{1}{2} - \frac{t - a}{b - a} \right) dt$$

$$= (b - a) \int_{0}^{1} B_{n}^{*} (1 - s) ds + 2(b - a) \int_{0}^{1} B_{n}^{*} \left(\frac{1}{2} - s \right) ds = 0.$$

Now, using Lemma 2, we have

$$\left| \int_{a}^{b} \left[B_{n}^{*} \left(1 - \frac{t - a}{b - a} \right) + 2B_{n}^{*} \left(\frac{1}{2} - \frac{t - a}{b - a} \right) \right] f^{(n)}(t) dt \right|$$

$$\leq \left(M_{n} - m_{n} \right) \int_{a}^{b} \left[B_{n}^{*} \left(1 - \frac{t - a}{b - a} \right) + 2B_{n}^{*} \left(\frac{1}{2} - \frac{t - a}{b - a} \right) \right]^{+} dt$$

$$= \left(b - a \right) \left(M_{n} - m_{n} \right) \int_{0}^{1} \left[B_{n}^{*} (1 - s) + 2B_{n}^{*} \left(\frac{1}{2} - s \right) \right]^{+} ds .$$

Multiplying this by $\frac{(b-a)^n}{3(n!)}$ and use the representation (2.5), we obtain the

desired inequality (3.8).

Corollary 5.
$$\int_{a}^{b} f(t)dt - \frac{(b-a)}{6} \left[f(b) + 4f\left(\frac{a+b}{2}\right) + f(a) \right]$$

$$\leq \frac{5}{72} (b-a)^{2} (M_{1} - m_{1}).$$
(3.9)

Proof. Since

$$B_1^*(1-s) = B_1(1-s) = \frac{1}{2} - s$$
 if $0 \le s \le 1$

and

$$B_{1}^{*}\left(\frac{1}{2}-s\right) = \begin{cases} B_{1}\left(\frac{1}{2}-s\right) = -s, & if \quad 0 \le s \le \frac{1}{2} \\ B_{1}\left(\frac{3}{2}-s\right) = 1-s, & if \quad \frac{1}{2} < s \le 1 \end{cases}$$

We have

$$B_1^*(1-s) + 2B_1^*(\frac{1}{2}-s) = \begin{cases} \frac{1}{2} - 3s, & \text{if } 0 \le s \le \frac{1}{2} \\ \frac{5}{2} - 3s, & \text{if } 0 < s \le 1 \end{cases}.$$

Therefore

$$\int_{0}^{1} \left[B_{1}^{*} (1-s) + 2B_{1}^{*} \left(\frac{1}{2} - s \right) \right]^{+} ds = \int_{0}^{\frac{1}{6}} \left(\frac{1}{2} - 3s \right) ds + \int_{\frac{1}{2}}^{\frac{5}{6}} \left(\frac{5}{2} - s \right) ds = \frac{5}{24}.$$

Since $S_1^s(a,b) = 0$, we see that (3.9) follows from (3.8) for n = 1.

Corollary 6.
$$\left| \int_{a}^{b} f(t)dt - \frac{(b-a)}{6} \left[f(b) + 4f\left(\frac{a+b}{2}\right) + f(a) \right] \right|$$

$$\leq \frac{1}{162} (b-a)^{3} (M_{2} - m_{2}).$$
(3.10)

Proof. Since

$$B_2^*(1-s) = B_2(1-s) = s^2 - s + \frac{1}{6}$$
 if $0 \le s \le 1$

and

$$B_{2}^{*}\left(\frac{1}{2}-s\right) = \begin{cases} B_{2}\left(\frac{1}{2}-s\right) = s^{2} - \frac{1}{12}, & \text{if } 0 \le s \le \frac{1}{2} \\ B_{2}\left(\frac{3}{2}-s\right) = s^{2} - 2s + \frac{11}{12}, & \text{if } \frac{1}{2} < s \le 1, \end{cases}$$

we have

$$B_{2}^{*}(1-s)+2B_{2}^{*}\left(\frac{1}{2}-s\right) = \begin{cases} 3s^{2}-s, & \text{if } 0 \leq s \leq \frac{1}{2} \\ 3s^{2}-5s+2, & \text{if } \frac{1}{2} < s \leq 1. \end{cases}$$

Therefore

$$\int_0^1 \left[B_2^* (1-s) + 2B_2^* \left(\frac{1}{2} - s \right) \right]^+ ds = \int_{\frac{1}{2}}^{\frac{1}{2}} (3s^2 - s) ds + \int_{\frac{1}{2}}^{\frac{2}{3}} (3s^2 - 5s + 2) ds = \frac{1}{27}.$$

Since $S_2^s(a,b) = 0$, we see that (3.10) follows from (3.8) for n = 2.

Corollary 7.
$$\left| \int_a^b f(t)dt - \frac{(b-a)}{6} \left[f(b) + 4f\left(\frac{a+b}{2}\right) + f(a) \right] \right|$$

$$\leq \frac{1}{1152} (b - a)^4 (M_3 - m_3). \tag{3.11}$$

Proof. Since

$$B_3^*(1-s) = B_3(1-s) = -s^3 + \frac{3}{2}s^2 - \frac{1}{2}s$$
 if $0 \le s \le 1$

and

$$B_{3}^{*}\left(\frac{1}{2}-s\right) = \begin{cases} B_{3}\left(\frac{1}{2}-s\right) = -s^{3} + \frac{1}{4}s, & \text{if } 0 \le s \le \frac{1}{2} \\ B_{3}\left(\frac{3}{2}-s\right) = -s^{3} + 3s^{2} - \frac{11}{4}s + \frac{3}{4}, & \text{if } \frac{1}{2} < s \le 1, \end{cases}$$

we have

$$B_{3}^{*}(1-s)+2B_{3}^{*}\left(\frac{1}{2}-s\right) = \begin{cases} -3s^{3} + \frac{3}{2}s^{2}, & \text{if } 0 \le s \le \frac{1}{2} \\ -3s^{3} + \frac{15}{2}s^{2} - 6s + \frac{3}{2}, & \text{if } 0 < s \le 1. \end{cases}$$

Therefore

$$\int_0^1 \left[B_3^* (1-s) + 2B_3^* \left(\frac{1}{2} - s \right) \right]^+ ds = \int_0^{\frac{1}{2}} \left(-3s^3 + \frac{3}{2}s^2 \right) ds = \frac{1}{64}.$$

Since $S_3^s(a,b) = 0$, we see that (3.11) follows from (3.8) for n = 3.

Remark 5. Corollary 5, Corollary 6 and Corollary 7 are improvements of (1.5) for n = 1, n = 2 and n = 3, respectively.

Theorem 3. Let $S_n^{2P}(a,b)$ be defined as in section 2. For $n \ge 1$, we have

$$\left| \int_{a}^{b} f(t)dt - \frac{(b-a)}{2} \left[f\left(\frac{2a+b}{3}\right) + f\left(\frac{a+2b}{3}\right) \right] - S_{n}^{2P}(a,b) \right|$$

$$\leq \frac{(b-a)^{n+1}}{2(n!)} (M_{n} - m_{n}) \int_{0}^{1} \left[B_{n}^{*} \left(\frac{1}{3} - s\right) + B_{n}^{*} \left(\frac{2}{3} - s\right) \right]^{+} ds$$
(3.12)

Proof. By Lemma 1, we have

$$\int_{a}^{b} \left[B_{n}^{*} \left(\frac{1}{3} - \frac{t - a}{b - a} \right) + B_{n}^{*} \left(\frac{2}{3} - \frac{t - a}{b - a} \right) \right] dt$$

$$= \int_{a}^{b} B_{n}^{*} \left(\frac{1}{3} - \frac{t - a}{b - a} \right) dt + \int_{a}^{b} B_{n}^{*} \left(\frac{2}{3} - \frac{t - a}{b - a} \right) dt$$

$$= (b - a) \int_{0}^{1} B_{n}^{*} \left(\frac{1}{3} - s \right) ds + (b - a) \int_{0}^{1} B_{n}^{*} \left(\frac{2}{3} - s \right) ds = 0.$$

Now, using Lemma 2, we have

$$\left| \int_{a}^{b} \left[B_{n}^{*} \left(\frac{1}{3} - \frac{t - a}{b - a} \right) + B_{n}^{*} \left(\frac{2}{3} - \frac{t - a}{b - a} \right) \right] f^{(n)}(t) dt \right|$$

$$\leq \left(M_{n} - m_{n} \right) \int_{a}^{b} \left[B_{n}^{*} \left(\frac{1}{3} - \frac{t - a}{b - a} \right) + B_{n}^{*} \left(\frac{2}{3} - \frac{t - a}{b - a} \right) \right]^{+} dt$$

$$= \left(M_{n} - m_{n} \right) (b - a) \int_{0}^{1} \left[B_{n}^{*} \left(\frac{1}{3} - s \right) + B_{n}^{*} \left(\frac{2}{3} - s \right) \right]^{+} ds .$$

Multiplying this by $\frac{(b-a)^n}{2(n!)}$ and use the representation (2.6), we obtain the

desired inequality (3.12).

Corollary 8.
$$\left| \int_{a}^{b} f(t)dt - \frac{(b-a)}{2} \left[f\left(\frac{2a+b}{3}\right) + f\left(\frac{a+2b}{3}\right) \right] \right|$$

$$\leq \frac{5}{72} (b-a)^{2} (M_{1} - m_{1}). \tag{3.13}$$

Proof. Since

$$B_{1}^{*}\left(\frac{1}{3}-s\right) = \begin{cases} B_{1}\left(\frac{1}{3}-s\right) = -s - \frac{1}{6}, & if \quad 0 \le s \le \frac{1}{3} \\ B_{1}\left(\frac{4}{3}-s\right) = -s + \frac{5}{6}, & if \quad \frac{1}{3} < s \le 1 \end{cases}$$

and

$$B_{1}^{*}\left(\frac{2}{3}-s\right) = \begin{cases} B_{1}\left(\frac{2}{3}-s\right) = -s + \frac{1}{6}, & if \quad 0 \le s \le \frac{2}{3} \\ B_{1}\left(\frac{5}{3}-s\right) = -s + \frac{7}{6}, & if \quad \frac{2}{3} < s \le 1, \end{cases}$$

we have

$$B_{1}^{*}\left(\frac{1}{3}-s\right)+B_{1}^{*}\left(\frac{2}{3}-s\right)=\begin{cases} -2s, & if & 0 \leq s \leq \frac{1}{3} \\ -2s+1, & if & \frac{1}{3} < s \leq \frac{2}{3} \\ -2s+2 & if & \frac{2}{3} < s \leq 1. \end{cases}$$

Therefore

$$\int_{0}^{1} \left[B_{1}^{*} \left(\frac{1}{3} - s \right) + B_{1}^{*} \left(\frac{2}{3} - s \right) \right]^{+} ds = \int_{\frac{1}{3}}^{\frac{1}{2}} \left(-2s + 1 \right) ds + \int_{\frac{2}{3}}^{1} \left(-2s + 2 \right) ds = \frac{5}{36}.$$

Since $S_1^{2p}(a,b) = 0$, we see that (3.13) follows from (3.12) for n = 1.

Corollary 9.
$$\left| \int_{a}^{b} f(t)dt - \frac{(b-a)}{2} \left[f\left(\frac{2a+b}{3}\right) + f\left(\frac{a+2b}{3}\right) \right] - S_{2}^{2P}(a,b) \right|$$

$$\leq \frac{\sqrt{2}}{162} (b-a)^{3} (M_{2} - m_{2}).$$
(3.14)

Proof. Since

$$B_{2}^{*}\left(\frac{1}{3}-s\right) = \begin{cases} B_{2}\left(\frac{1}{3}-s\right) = s^{2} + \frac{1}{3}s - \frac{1}{18}, & \text{if } 0 \le s \le \frac{1}{3} \\ B_{2}\left(\frac{4}{3}-s\right) = s^{2} - \frac{5}{3}s + \frac{11}{18}, & \text{if } \frac{1}{3} < s \le 1 \end{cases}$$

and

$$B_{2}^{*}\left(\frac{2}{3}-s\right) = \begin{cases} B_{2}\left(\frac{2}{3}-s\right) = s^{2} - \frac{1}{3}s - \frac{1}{18}, & if \quad 0 \le s \le \frac{2}{3} \\ B_{2}\left(\frac{5}{3}-s\right) = s^{2} - \frac{7}{3}s + \frac{23}{18}, & if \quad \frac{2}{3} < s \le 1, \end{cases}$$

we have

$$B_{2}^{*}\left(\frac{1}{3}-s\right)+B_{2}^{*}\left(\frac{2}{3}-s\right)=\begin{cases} 2s^{2}-\frac{1}{9}, & if \quad 0 \leq s \leq \frac{1}{3}\\ 2s^{2}-2s+\frac{5}{9}, & if \quad \frac{1}{3} < s \leq \frac{2}{3}\\ 2s^{2}-4s+\frac{17}{9} & if \quad \frac{2}{3} < s \leq 1. \end{cases}$$

Therefore

$$\int_{0}^{1} \left[B_{2}^{*} \left(\frac{1}{3} - s \right) + 2B_{2}^{*} \left(\frac{2}{3} - s \right) \right]^{+} ds$$

$$= \int_{\frac{1}{3\sqrt{2}}}^{\frac{1}{3}} \left(2s^{2} - \frac{1}{9} \right) ds + \int_{\frac{1}{3}}^{\frac{2}{3}} \left(2s^{2} - 2s + \frac{5}{9} \right) ds + \int_{\frac{2}{3}}^{\frac{6-\sqrt{2}}{6}} \left(2s^{2} - 4s + \frac{17}{9} \right) ds = \frac{2\sqrt{2}}{81}.$$

Thus (3.14) follows from (3.12) for n = 2.

Remark 6. Corollary 8 and Corollary 9 are improvements of Theorem 5 in [3] for n = 1 and n = 2 with the factors $\frac{1}{12}$ and $\frac{\sqrt{70}}{360}$ replaced by $\frac{5}{72}$ and $\frac{\sqrt{2}}{162}$, respectively.

Theorem 4. Let $S_n^{3P}(a,b)$ be defined as in section 2. For $n \ge 1$, we have

$$\left| \int_{a}^{b} f(t)dt - \frac{(b-a)}{3} \left[2f \left(\frac{3a+b}{4} \right) - f \left(\frac{a+b}{2} \right) + f \left(\frac{a+3b}{4} \right) \right] - S_{n}^{3P}(a,b) \right|$$

$$\leq \frac{(b-a)^{n+1}}{3(n!)} (M_{n} - m_{n}) \int_{0}^{1} \left[2B_{n}^{*} \left(\frac{1}{4} - s \right) - B_{n}^{*} \left(\frac{1}{2} - s \right) + 2B_{n}^{*} \left(\frac{3}{4} - s \right) \right]^{+} ds .$$
 (3.1)

Proof. By Lemma 1, we have

$$\int_{a}^{b} \left[2B_{n}^{*} \left(\frac{1}{4} - \frac{t-a}{b-a} \right) - B_{n}^{*} \left(\frac{1}{2} - \frac{t-a}{b-a} \right) + 2B_{n}^{*} \left(\frac{3}{4} - \frac{t-a}{b-a} \right) \right] dt$$

$$= 2\int_{a}^{b} B_{n}^{*} \left(\frac{1}{4} - \frac{t-a}{b-a} \right) dt - \int_{a}^{b} B_{n}^{*} \left(\frac{1}{2} - \frac{t-a}{b-a} \right) dt + 2\int_{a}^{b} B_{n}^{*} \left(\frac{3}{4} - \frac{t-a}{b-a} \right) dt$$

$$=2(b-a)\int_0^1 B_n^* \left(\frac{1}{4}-s\right) ds - (b-a)\int_0^1 B_n^* \left(\frac{1}{2}-s\right) ds + 2(b-a)\int_0^1 B_n^* \left(\frac{3}{4}-s\right) ds = 0.$$

Now, using Lemma 2, we have

$$\left| \int_{a}^{b} \left[2B_{n}^{*} \left(\frac{1}{4} - \frac{t-a}{b-a} \right) - B_{n}^{*} \left(\frac{1}{2} - \frac{t-a}{b-a} \right) + 2B_{n}^{*} \left(\frac{3}{4} - \frac{t-a}{b-a} \right) \right] f^{(n)}(t) dt \right| \\
\leq \left(M_{n} - m_{n} \right) \int_{a}^{b} \left[2B_{n}^{*} \left(\frac{1}{4} - \frac{t-a}{b-a} \right) - B_{n}^{*} \left(\frac{1}{2} - \frac{t-a}{b-a} \right) + 2B_{n}^{*} \left(\frac{3}{4} - \frac{t-a}{b-a} \right) \right]^{+} dt \\
= \left(M_{n} - m_{n} \right) (b-a) \int_{0}^{1} \left[2B_{n}^{*} \left(\frac{1}{4} - s \right) - B_{n}^{*} \left(\frac{1}{2} - s \right) + 2B_{n}^{*} \left(\frac{3}{4} - s \right) \right]^{+} ds .$$

Multiplying this by $\frac{(b-a)^n}{3(n!)}$ and use the representation (2.7), we obtain the

desired inequality (3.13).

Corollary 10.
$$\int_{a}^{b} f(t)dt - \frac{(b-a)}{3} \left[2f \left(\frac{3a+b}{4} \right) - f \left(\frac{a+b}{2} \right) + f \left(\frac{a+3b}{4} \right) \right]$$

$$\leq \frac{5}{48} (b-a)^{2} (M_{1} - m_{1}).$$
(3.16)

Proof. Since

$$B_{1}^{*}\left(\frac{1}{4}-s\right) = \begin{cases} B_{1}\left(\frac{1}{4}-s\right) = -s - \frac{1}{4}, & if \quad 0 \le s \le \frac{1}{4} \\ B_{1}\left(\frac{5}{4}-s\right) = -s + \frac{3}{4}, & if \quad \frac{1}{4} < s \le 1, \end{cases}$$

$$B_{1}^{*}\left(\frac{1}{2}-s\right) = \begin{cases} B_{1}\left(\frac{1}{2}-s\right) = -s, & if \quad 0 \le s \le \frac{1}{2} \\ B_{1}\left(\frac{3}{2}-s\right) = -s + 1, & if \quad \frac{1}{2} < s \le 1 \end{cases}$$

and

$$B_{1}^{*}\left(\frac{3}{4}-s\right) = \begin{cases} B_{1}\left(\frac{3}{4}-s\right) = -s + \frac{1}{4}, & if \quad 0 \le s \le \frac{3}{4} \\ B_{1}\left(\frac{7}{4}-s\right) = -s + \frac{5}{4}, & if \quad \frac{3}{4} < s \le 1, \end{cases}$$

we have

$$2B_{1}^{*}\left(\frac{1}{4}-s\right)-B_{1}^{*}\left(\frac{1}{2}-s\right)+2B_{1}^{*}\left(\frac{3}{4}-s\right)=\begin{cases} -3s & if & 0 \leq s \leq \frac{1}{4} \\ -3s+2 & if & \frac{1}{4} < s \leq \frac{1}{2} \\ -3s+1 & if & \frac{1}{2} < s \leq \frac{3}{4} \\ -3s+3 & if & \frac{3}{4} < s \leq 1. \end{cases}$$

Therefore

$$\int_{0}^{1} \left[2B_{1}^{*} \left(\frac{1}{4} - s \right) - B_{1}^{*} \left(\frac{1}{2} - s \right) + 2B_{1}^{*} \left(\frac{3}{4} - s \right) \right]^{+} ds = \int_{\frac{1}{4}}^{\frac{1}{2}} \left(-3s + 1 \right) ds + \int_{\frac{3}{4}}^{1} \left(-3s + 3 \right) ds = \frac{5}{16}.$$

Since $S_1^{3P}(a,b) = 0$, we see that (3.16) follows from (3.15) for n = 1.

Corollary 11.
$$\left| \int_{a}^{b} f(t)dt - \frac{(b-a)}{3} \left[2f \left(\frac{3a+b}{4} \right) - f \left(\frac{a+b}{2} \right) + f \left(\frac{a+3b}{4} \right) \right]$$

$$\leq \frac{5}{648} (b-a)^{3} (M_{2} - m_{2}).$$
(3.17)

Proof. Since

$$B_{2}^{*}\left(\frac{1}{4}-s\right) = \begin{cases} B_{2}\left(\frac{1}{4}-s\right) = s^{2} + \frac{1}{2}s - \frac{1}{48}, & if \quad 0 \leq s \leq \frac{1}{4} \\ B_{2}\left(\frac{5}{4}-s\right) = s^{2} - \frac{3}{2}s + \frac{23}{48}, & if \quad \frac{1}{4} < s \leq 1, \end{cases}$$

$$B_{2}^{*}\left(\frac{1}{2}-s\right) = \begin{cases} B_{2}\left(\frac{1}{2}-s\right) = s^{2} - \frac{1}{12}, & \text{if } 0 \le s \le \frac{1}{2} \\ B_{2}\left(\frac{3}{2}-s\right) = s^{2} - 2s + \frac{11}{12}, & \text{if } \frac{1}{2} < s \le 1 \end{cases}$$

and

$$B_{1}^{*}\left(\frac{3}{4}-s\right) = \begin{cases} B_{1}\left(\frac{3}{4}-s\right) = s^{2} - \frac{1}{2}s + \frac{1}{48}, & \text{if } 0 \leq s \leq \frac{3}{4} \\ B_{1}\left(\frac{7}{4}-s\right) = s^{2} - \frac{5}{2}s + \frac{71}{48}, & \text{if } \frac{3}{4} < s \leq 1, \end{cases}$$

we have

$$2B_{2}^{*}\left(\frac{1}{4}-s\right)-B_{2}^{*}\left(\frac{1}{2}-s\right)+2B_{2}^{*}\left(\frac{3}{4}-s\right)=\begin{cases} 3s^{2}, & if & 0 \leq s \leq \frac{1}{4} \\ 3s^{2}-4s+1, & if & \frac{1}{4} < s \leq \frac{1}{2} \\ 3s^{2}-2s, & if & \frac{1}{2} < s \leq \frac{3}{4} \\ 3s^{2}-6s+3, & if & \frac{3}{4} < s \leq 1. \end{cases}$$

Therefore

$$\int_{0}^{1} \left[2B_{1}^{*} \left(\frac{1}{4} - s \right) - B_{1}^{*} \left(\frac{1}{2} - s \right) + 2B_{1}^{*} \left(\frac{3}{4} - s \right) \right]^{+} ds$$

$$= \int_{0}^{\frac{1}{4}} 3s^{2} ds + \int_{\frac{1}{4}}^{\frac{1}{3}} \left(3s^{2} - 4s + 1 \right) ds + \int_{\frac{2}{3}}^{\frac{3}{4}} \left(3s^{2} - 2s \right) ds + \int_{\frac{3}{4}}^{1} \left(3s^{2} - 6s + 3 \right) ds$$

$$= \frac{5}{108}.$$

Since $S_2^{3P}(a,b) = 0$, we see that (3.17) follows from (3.15) for n = 2

Remark 7. Corollary 10 and Corollary 11 are improvements of Theorem 6 in [3] for n=1 and n=2 with the factors $\frac{\sqrt{2}}{12}$ and $\frac{\sqrt{130}}{480}$ replaced by $\frac{5}{48}$ and $\frac{5}{648}$, respectively.

4. Application for The Error Bound for Composite Quadrature Rule

Theorem 5. Let I_h be a partition $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$ of the interval [a,b]. Then

$$\left| \int_{a}^{b} f(t) - A_{T}(f, f', I_{h}) \right| \le \frac{M_{2} - m_{2}}{36\sqrt{3}} \sum_{i=0}^{m-1} h_{i}^{3}$$
(4.1)

where $h_i = x_{i+1} - x_i$ and $A_T(f, f', I_h)$ is perturbed trapezoid quadrature rule defined by

$$A_{T}(f, f', I_{h}) := \frac{1}{2} \sum_{i=1}^{n-1} [f(x_{i}) + f(x_{i+1})] \cdot h_{i} - \frac{1}{12} \sum_{i=0}^{n-1} h_{i}^{2} [f'(x_{i+1}) - f'(x_{i})]$$

Proof. From (3.4), with $[x_i, x_{i+1}]$ in place of [a,b], we get

$$\left| \int_{x_{i}}^{x_{i+1}} f(t)dt - \frac{x_{i+1} - x_{i+1}}{2} [f(x_{i+1}) + f(x_{i})] + \frac{(x_{i+1} - x_{i})^{2}}{12} [f'(x_{i+1}) - f'(x_{i})] \right| \le \frac{(x_{i+1} - x_{i})^{3}}{36\sqrt{3}} (M_{2} - m_{2})$$

Summing this over $i = 0,1,\dots, n-1$, we get the desired result.

Remark 8. The inequality in (4.1) is an improvement of the inequality (4.5) in [1].

5. Applications for Expectation

Theorem 6. Let X be a random variable having the p.d.f., $f:[a,b] \to R$ and the cumulative distribution function $F:[a,b] \to [0,1]$, i.e.,

$$F(x) = \int_a^x f(t)dt, \quad x \in [a,b].$$

If F is absolutely continuous on [a,b] and $m_2 \le f''(x) \le M_2$ for $x \in [a,b]$, then we have the inequality:

$$\left| E(X) - \frac{a+b}{2} - \frac{(b-a)^2}{12} [f(b) - f(a)] \right|$$

$$\leq \frac{(b-a)^3}{36\sqrt{3}} (M_2 - m_2)$$
(5.1)

Proof. Replaced f by F in (3.4), we have

$$\left| \int_{a}^{b} F(t)dt - \frac{F(a) + F(b)}{2} (b - a) + \frac{(b - a)^{2}}{12} [f(b) - f(a)] \right|$$

$$\leq \frac{(b - a)^{3}}{36\sqrt{3}} (M_{2} - m_{2}). \tag{5.2}$$

However, F(a) = 0, F(b) = 1 and

$$\int_{a}^{b} F(t)dt = b - E(X),$$

the desired inequality (5.1) follows from (5.2).

References

- [1] M. Matić, J. Pečarić and, N.Ujević, Improvement and generalization of some inequalities of Ostrowski-Grüss type, Computers Math. Applic., 39(3/4)(2000), 161-175.
- [2] C. E. M. Pearce, J. Pečarić, N. Ujević and, S. Varosanec, Generalizations of some inequalities of Ostrowski Grüss type, Math. Inequal. Appl. 3(1)(2000), 25-34.
- [3] Lj. Dedić, M. Matić and, J. Pečarić, Some inequalities of Euler-Grüss type, Computers Math. Applic., 41(2001), 843-856.
- [4] Xiao-Liang Cheng, Improvement of some Ostrowski Grüss Type inequalities, Computers Math. Applic., 42(1/2)(2001), 109-114.

- [5] Lj. Dedić, M. Matić and, J. Pečarić, On Euler trapezoid formuoae, *Applied Mathematics Computation*, **123**(2001), 37-62.
- [6] Lj. Dedić, M. Matić and, J. Pečarić, On dula Euler-Simpson formulae, *Bull. Belg. Math. Soc.* **8**(2001), 475-504.
- [7] Lj. Dedić, M. Matić and, J. Pečarić, On Euler-Simpson formulae, *Panamerican Math. J.*, **11(2)**(2001), 47-64.
- [8] M. Abramowitz and I. A. Stegun, Editors, *Handbook of Mathematical Functions with Formulae*, Graphs and Mathematical Tables, Applied Math. Series 55, 4th printing, National Bureau of Standards, Washington, (1965).
- [9] V. I. Krylov, *Approximate Calculation of Integrals*, Macmillan, New York, (1962).
- [10] Gou-Sheng Yang and Kuei-Lin Tseng, A new inequality of Grüss Type and its Applications, Submitted.