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Abstract

In this paper the generalized Hyers-Ulam stability is proved for the
following functional equation

4∑
i=0

4Ci(−1)4−if(ix + y) = 0

following the spirit of the approach that was introduced in the paper
of Th.M. Rassias, On, the stability of the linear mapping in Banach
spaces, Proc. Amer. Math. Soc, 72(1978), 297-300. Also, I investigate
the superstability of the functional equation.
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1. Introduction

Throughout this paper, let V be a vector space and Y a Banach space. Let
n be a positive integer. For a given mapping f : V → Y , define mappings
Cnf,Dnf : V × V → Y by

Enf(x, y) :=
n∑

i=0

nCi(−1)n−if(ix+ y),

Dnf(x, y) :=
n∑

i=0

nCi(−1)n−if(ix+ y)− n!f(x)

for all x, y ∈ X, where nCi = n!
i!(n−i)!

. A mapping f : X → Y is called a

generalized polynomial(monomial, respectively) function of degree n ∈ N if
f satisfies the functional equation En+1f(x, y) = 0(Dnf(x, y) = 0, respec-
tively). The functional equation En+1f(x, y) = 0(Dnf(x, y) = 0, respectively)
is called a generalized polynomial(monomial, respectively) functional equation
of degree n ∈ N. In particular, a mapping f : V → Y is called an additive
(quadratic, cubic, quartic, respectively) mapping if f satisfies the functional
equation D1f = 0 (D2f = 0, D3f = 0, D4f = 0, respectively). The func-
tional equation D1f = 0 (D2f = 0, D3f = 0, D4f = 0, respectively) is called
a Cauchy equation(quadratic functional equation, cubic functional equation,
quartic functional equation, respectively). The functions f : R → R defined
by f(x) = axn and f(x) =

∑n−1
i=0 aix

i satisfy the functional equation Dnf = 0
and Enf = 0 respectively, where a, ai are real constants and R is the set of
real numbers.

If we replace a given functional equation by a functional inequality, when
can one assert that the solutions of the inequality must be close to the solu-
tions of the given equation? If the answer is affirmative, we would say that a
given functional equation is stable.

In 1941, D.H.Hyers [8] proved the stability of Cauchy equation D1f = 0
and in 1978, Th.M.Rassias[19] gave a significant generalization of the Hyers’
result. Th.M.Rassias[20] during the 27th International Symposium on Func-
tional Equations, that took place in Bielsko-Biala, Poland, in 1990, asked the
question whether such a theorem can also be proved for a more general setting.
Z.Gadja[6] following Th.M.Rassias’s approach[19] gave an affirmative solution
to the question. Recently, P.Găvruta[7] obtained a further generalization of
Rassias’ theorem, the so-called generalized Hyers-Ulam-Rassias stability(See



On the Generalized Hyers-Ulam Stability... 431

also [4,5,9-11,16-18]).
A stability problem for the quadratic functional equation D2f = 0 was

proved by F.Skof[21] for a function f : X → Y , where X is a normed space.
P.W. Cholewa[2] noticed that the theorem of Skof is still true if the relevant
domain X is replaced by an Abelian group. S.Czerwik[3] proved the Hyers-
Ulam-Rassias stability of the quadratic functional equation.

J. C. Parnami, H. L. Vasudeva[14] and J.M. Rassias [15] investigated the
stability of the functional equation D3f = 0. Also, Jun and Kim [12] proved
the stability of the functional equation E4f = 0 under the approximately
cubic condition and Baker[1] proved the stability of the functional equation
Enf = 0.

In this paper, I solve the general solution of E4f = 0 and prove the general-
ized Hyers-Ulam stability of the functional equation E4f = 0 on the punctured
domain V \ {0} without the approximately cubic condition.

2. General Solution of E4f = 0

In this section I establish the general solution of E4f = 0. First I obtain the
general solution for the odd cases. Throughout this section, let V and W be
vector spaces.

Theorem 2.1 Suppose that the odd function f : V → W satisfies

E4f(x, y) = f(4x+ y)− 4f(3x+ y) + 6f(2x+ y)− 4f(x+ y) + f(y) = 0

(2.1) for all x, y ∈ V \ {0} and

f(2x) = 2f(x)

for all x ∈ V. Then f is an additive function.
Proof. Note that f(0) = 0 and f(x) + f(−x) = −E4f(x,−2x)

2
= 0 for all x ∈ V .

From (2.1) and f(2x) = 2f(x), we have

D1f(x, y) =
1

132

(
− 28E4f(x, y − 2x)− 7E4f(y, 2x− 2y)− 16E4f(x, y − 3x)

+4E4f(y − x, 4x− 2y)− 28E4f(y, x− 2y)− 7E4f(x, 2y − 2x)

−16E4f(y, x− 3y) + 4E4f(x− y, 4y − 2x)
)

= 0
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for all x, y ∈ V with x 6= 0, y, 2y, 3y and y 6= 0, x, 2x, 3x. Since f(2x) = 2f(x)
and f(3x) = E4f(x,−x) + 3f(x) = 3f(x), f is an additive function.

Theorem 2.2 Suppose that the odd function f : V → W satisfies (2.1) for all
x, y ∈ V \ {0} and

f(2x) = 8f(x)

for all x ∈ V . Then f is a cubic function.
Proof. Note that f(0) = 0 and f(x) + f(−x) = −E4f(x,−2x)

2
= 0 for all x ∈ V .

From (2.1) and f(2x) = 8f(x), we easily get the equality

D3f(x, y) = E4f(x, y − x)− E4f(y + x,−2y)

4
= 0

for all x, y ∈ V \ {0} with x 6= y,−y. Since f(2x) = 8f(x) and f(3x) =
E4f(x,−x) + 27f(x) = 27f(x), f is a cubic function.

Theorem 2.3 Suppose that the odd function f : V → W satisfies (2.1) for all
x, y ∈ V \ {0}. Then there exist a cubic function C : V → W and an additive
function A : V → W such that

f(x) = C(x) + A(x)

for all x ∈ V , where

C(x) = −1
3

[f(x)− 1
2
f(2x)] = 4

3
[f(x)− 2f(1

2
x)]

A(x) = 4
3
[f(x)− 1

8
f(2x)] = −1

3
[f(x)− 8f(1

2
x)].

Proof. Since

f(4x)− 10f(2x) + 16f(x) =
1

4

(
11E4f(x,−x) +E4f(2x,−3x)−E4(x, x)

)
= 0

for all x ∈ V \ {0}, we have

f(x) = C(x) + A(x), C(2x) = 8C(x), A(2x) = 2A(x)

for all x ∈ V , where

C(x) :=
−1

3
[f(x)− 1

2
f(2x)] and A(x) :=

4

3
[f(x)− 1

8
f(2x)].
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By Theorem 2.2 and the equalities

E4C(x, y) =
−1

6

(
2E4f(x, y)− E4f(2x, 2y)

)
= 0,

E4A(x, y) =
1

6

(
8E4f(x, y)− E4f(2x, 2y)

)
= 0

for all x, y ∈ V \ {0}, C is a cubic function and A is an additive function.

In the following theorem we obtain the general solution for the even case.

Theorem 2.4
Suppose that the even function f : V → W satisfies (2.1) for all x, y ∈

V \ {0} and
f(2x) = 4f(x)

for all x ∈ V. Then f is a quadratic function.
Proof. Note that f(0) = 0. From (2.1) and f(2x) = 4f(x), we get the
equality

D2f(x, y) = − 1

12

(
4E4f(x, y − 2x) + E4f(y, 2x− 2y)

)
= f(x+ y) + f(x− y)− 2f(x)− 2f(y) = 0

for all x, y ∈ V \ {0} with y 6= x, 2x. Using 4f(x) = f(2x) and f(3x) + f(x) =
E4f(x,−x) + 10f(x) = 10f(x) for all x ∈ V , we get

D2f(x, y) = 0

for all x, y ∈ V .

Theorem 2.5 Suppose that the even function f : V → W satisfies (2.1)
for all x, y ∈ V \ {0}. Then f − f(0) is a quadratic function.
Proof. Let g = f − f(0). Then g satisfies (2.1) and g(0) = 0. Since

g(2x) = E4g(x,−2x)
2

+ 4g(x) = 4g(x) for all x ∈ V \ {0}, by Theorem 2.4, g
is a quadratic function.

Now I establish the general solution of E4f = 0.

Theorem 2.6 Suppose that the function f : V → W satisfies (2.1) for all
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x, y ∈ V \ {0}. Then there exist a cubic function C : V → W , a quadratic
function Q : V → W , and an additive function A : V → W such that

f(x) = C(x) +Q(x) + A(x) + f(0)

for all x ∈ V . The functions C,Q,A : V → W are given by

C(x) : =
−1

12

(
2f(x)− 2f(−x)− f(2x) + f(−2x)

)
Q(x) : =

f(x) + f(−x)

2
− f(0)

A(x) : =
1

12

(
8f(x)− 8f(−x)− f(2x) + f(−2x)

)
for all x ∈ V .
Proof. Since f(x) = f(x)−f(−x)

2
+ f(x)+f(−x)

2
, we can apply Theorem 2.3 and

2.4.

3. Stability of the Equation E4f = 0

The following lemma is seen in [13].

Lemma 3.1. Let a be a positive real number and Φ : X \ {0} → [0,∞) a
map. Suppose that the function f : X → Y satisfies the inequality

‖f(x)− f(2x)

a
‖ ≤ Φ(x)

a
and f(0) = 0.

1. If
∑∞

l=0
1

al+1 Φ(2lx) < ∞ for all x ∈ X \ {0}, then there exists a unique
function F : X → Y satisfying

‖f(x)− F (x)‖ ≤
∞∑
l=0

1

al+1
Φ(2lx)

for all x ∈ X\{0} and F is given by F (x) = limn→∞
f(2nx)

an for all x ∈ X.

2. If
∑∞

l=0 a
lΦ( x

2l+1 ) < ∞ for all x ∈ X \ {0} , then there exists a unique
function F : X → Y satisfying

‖f(x)− F (x)‖ ≤
∞∑
l=0

alΦ(
x

2l+1
) <∞
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for all x ∈ X \ {0} and F is given by F (x) = limn→∞ a
nf( x

2n ) for all
x ∈ X.

Theorem 3.2 Let ϕ : V \ {0}× V \ {0} → [0,∞) be a mapping satisfying the
condition

∞∑
i=0

ϕ(2ix, 2iy)

2i
<∞. (3.1)

If a function f : V → Y satisfies

‖E4f(x, y)‖ ≤ ϕ(x, y) (3.2)

for all x, y ∈ V \{0}, then there exists a unique generalized polynomial function
F : V → Y of degree 3 with f(0) = F (0) such that

‖f(x)− F (x)‖ ≤
∞∑

j=0

(ψ(2jx)

3 · 2j−2
+
ψ(2jx)

3 · 8j
+
ϕ(2jx,−2j+1x)

22j+3

)
(3.3)

for all x ∈ V \ {0}, where

ψ(x) =
1

128

(
11ϕ(x,−x)+ϕ(2x,−3x)+ϕ(x, x)+11ϕ(−x, x)+ϕ(−2x, 3x)+ϕ(−x,−x)

)
for all x ∈ V \ {0}. In particular, F is represented by

F (x) = lim
n→∞

( 1

3 · 2n−1
+

1

2 · 4n
− 1

6 · 8n
)f(2nx)

+(
−1

3 · 2n−1
+

1

2 · 4n
+

1

6 · 8n
)f(−2nx)

− 1

12
(

1

2n
− 1

8n
)f(2n+1x) +

1

12
(

1

2n
− 1

8n
)f(−2n+1x)

)
+ f(0)

for all x ∈ V .
Proof.Note that if ϕ : V \ {0}×V \ {0} → [0,∞) satisfies the condition (3.1)

then ϕ satisfies the condition
∑∞

i=0
ϕ(2ix,2iy)

4i < ∞ and
∑∞

i=0
ϕ(2ix,2iy)

8i < ∞.
From (3.2), we get the inequalities

‖f(x)− f(−x)

2
− f(2x)− f(−2x)

4
− 1

8

(f(2x)− f(−2x)

2
− f(4x)− f(−4x)

4

)
‖

=
1

128
‖11E4f(x,−x) + E4f(2x,−3x)− E4f(x, x)

−11E4f(−x, x)− E4f(−2x, 3x) + E4f(−x,−x)‖
≤ ψ(x),
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‖f(x)− f(−x)

2
− f(2x)− f(−2x)

16
− 1

2

(f(2x)− f(−2x)

2
− f(4x)− f(−4x)

16

)
‖

≤ ψ(x),

‖f(x) + f(−x)

2
− f(0)− 1

4

(f(2x) + f(−2x)

2
− f(0)

)
‖

= ‖E4f(x,−2x)

8
‖ ≤ ϕ(x,−2x)

8

for all x ∈ V \ {0}. By Lemma 3.1, there exist functions C0, A0, Q : V → Y
defined by

C0(x) := lim
n→∞

2f(2nx)− 2f(−2nx)− f(2n+1x) + f(−2n+1x)

23n+2
,

A0(x) := lim
n→∞

8f(2nx)− 8f(−2nx)− f(2n+1x) + f(−2n+1x)

2n+4
,

Q(x) =
1

2
lim

n→∞

f(2nx) + f(−2nx)

4n

for all x ∈ V and the functions C0, A0, Q satisfy the inequalities

‖f(x)− f(−x)

2
− f(2x)− f(−2x)

4
− C0(x)‖ ≤

∞∑
j=0

ψ(2jx)

8j
, (3.4)

‖f(x)− f(−x)

2
− f(2x)− f(−2x)

16
− A0(x)‖ ≤

∞∑
j=0

ψ(2jx)

2j
, (3.5)

‖f(x) + f(−x)

2
− f(0)−Q(x)‖ ≤

∞∑
j=0

ϕ(2jx,−2j+1x)

22j+3
(3.6)

for all x ∈ V \ {0}. From (3.1) and (3.2), we obtain

E4C0(x, y) = lim
n→∞

(2E4f(2nx, 2ny)− 2E4f(−2nx,−2ny)

23n+2

−E4f(2n+1x, 2n+1y)− E4f(−2n+1x,−2n+1y)

23n+2

)
= 0,

E4A0(x, y) = lim
n→∞

(8E4f(2nx, 2ny)− 8E4f(−2nx,−2ny)

2n+4

−E4f(2n+1x, 2n+1y)− E4f(−2n+1x,−2n+1y)

2n+4

)
= 0,

E4Q(x, y) = lim
n→∞

E4f(2nx, 2ny) + E4f(−2nx,−2ny)

22n+1
= 0
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for all x, y ∈ V \ {0}. Since C0(2x) = 8C0(x)( A0(2x) = 2A0(x) and Q(2x) =
4Q(x), respectively), C0 is a cubic function(A0 is an additive function and Q is
a quadratic function, respectively) by Theorem 2.2(Theorem 2.1 and Theorem
2.4, respectively). From (3.4), (3.5), (3.6) and the inequality

‖f(x)− F (x)‖ ≤ 1

3
‖f(x)− f(−x)

2
− f(2x)− f(−2x)

4
− C0(x)‖

+
4

3
‖f(x)− f(−x)

2
− f(2x)− f(−2x)

16
− A0(x)‖

+‖f(x) + f(−x)

2
− f(0)−Q(x)‖ (3.7)

for all x ∈ V \ {0}, we get the inequality (3.3), where F = −C0(x)
3

+ Q(x) +
4A0(x)

3
+f(0). Now, let F ′ be another generalized polynomial function of degree

3 satisfying (3.3) with F ′(0) = f(0). Then there are cubic functions C,C ′ :
V → Y , quadratic functions Q,Q′ : V → Y and additive functions A,A′ :
V → Y such that F (x) = C(x) + Q(x) + A(x) + f(0) and F ′(x) = C ′(x) +
Q′(x) + A′(x) + f(0). Since C,C ′ : V → Y are cubic functions, we get

‖C(x)− C ′(x)‖ =
1

8n
‖C(2nx)− C ′(2nx)‖

≤ 1

8n
‖f(2nx)− C(2nx)−Q(2nx)− A(2nx)− f(0)‖

+
1

8n
‖f(2nx)− C ′(2nx)−Q′(2nx)− A′(2nx)− f(0)‖

+
1

8n
‖Q(2nx)−Q′(2nx)‖+

1

8n
‖A(2nx)− A′(2nx)‖

≤ 2

8n

∞∑
j=0

(4

3

ψ(2j+nx)

2j
+

1

3

ψ(2j+nx)

8j
+
ϕ(2j+nx,−2j+n+1x)

22j+3

)
+

1

2n
‖Q(x)−Q′(x)‖+

1

4n
‖A(x)− A′(x)‖



438 Yang-Hi Lee

for all x ∈ V \{0} and n ∈ N. As n→∞, we may conclude that C(x) = C ′(x)
for all x, y ∈ V . Hence

‖Q(x)−Q′(x)‖ =
1

4n
‖Q(2nx)−Q′(2nx)‖

≤ 1

4n
‖f(2nx)− C(2nx)−Q(2nx)− A(2nx)− f(0)‖

+
1

4n
‖f(2nx)− C(2nx)−Q′(2nx)− A′(2nx)− f(0)‖

+
1

4n
‖A(2nx)− A′(2nx)‖

≤ 2

4n

∞∑
j=0

(4

3

ψ(2j+nx)

2j
+

1

3

ψ(2j+nx)

8j
+
ϕ(2j+nx,−2j+n+1x)

22j+3

)
+

1

2n
‖A(x)− A′(x)‖

for all x ∈ V \{0} and n ∈ N. As n→∞, we may conclude that Q(x) = Q′(x)
for all x, y ∈ V . Similarly, we get A(x) = A′(x) for all x, y ∈ V as we desired.

By the similar method in the proof of Theorem 3.2, I can prove the follow-
ing theorem.

Theorem 3.3 Let ϕ : V \ {0}× V \ {0} → [0,∞) be a mapping satisfying the
condition

∞∑
i=0

8iϕ(
x

2i
,
y

2i
) <∞ (3.8)

for all x, y ∈ V \ {0}. If a function f : V → Y satisfies (3.2) for all x, y ∈
V \{0}, then there exists a unique generalized polynomial function F : V → Y
of degree 3 with f(0) = F (0) such that

‖f(x)− F (x)‖ ≤
∞∑

j=1

(8j + 2j+2

3
ψ(

x

2j
) + 22j−3ϕ(

x

2j
,− x

2j−1
)
)

(3.9)

for all x ∈ V \ {0}, where

ψ(x) =
1

128

(
11ϕ(x,−x) + ϕ(2x,−3x) + ϕ(x, x) + 11ϕ(−x, x)

+ϕ(−2x, 3x) + ϕ(−x,−x)
)
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for all x ∈ V \ {0}. In particular, F is represented by

F (x) = lim
n→∞

(8n − 2n

4 · 3
)f(

x

2n−1
) + (

−8n + 2n

4 · 3
)f(
−x
2n−1

)

+(
2n+2 − 8n

2 · 3
+ 22n−1)f(

x

2n
) + (

8n − 2n+2

2 · 3
+ 22n−1)f(

−x
2n

) + (1− 4n)f(0)
)

for all x ∈ V .
Proof.Note that if ϕ : V \ {0}×V \ {0} → [0,∞) satisfies the condition (3.8)
then ϕ satisfies the condition

∑∞
i=0 4iϕ( x

2i ,
y
2i ) <∞ and

∑∞
i=0 2iϕ( x

2i ,
y
2i ) <∞.

From (3.2), we get the inequalities

‖f(x)− f(−x)

2
− f(2x)− f(−2x))

4
− 8
(f(x

2
)− f(−x

2
)

2
− f(x)− f(−x)

4
)
)
‖

≤ 8ψ(
x

2
),

‖f(x)− f(−x)

2
− f(2x)− f(−2x))

16
− 2
(f(x

2
)− f(−x

2
)

2
− f(x)− f(−x)

16
)
)
‖

≤ 2ψ(
x

2
),

‖f(x) + f(−x)

2
− f(0)− 4

(f(x
2
) + f(−x

2
)

2
− f(0))

)
‖ ≤

ϕ(x
2
,−x)

2

for all x ∈ V \ {0}. By Lemma 3.1, there exist functions C0, A0, Q : V → Y
defined by

C0(x) : = lim
n→∞

8n(
f( x

2n )− f(− x
2n )

2
−
f( x

2n−1 ) + f(− x
2n−1 )

4
),

A0(x) : = lim
n→∞

2n−1(f(
x

2n
)− f(− x

2n
)−

f( x
2n−1 ) + f(− x

2n−1 )

8
),

Q(x) = lim
n→∞

22n−1(f(
x

2n
) + f(− x

2n
)− 2f(0))

for all x ∈ V and the functions C0, A0, Q satisfy the inequalities

‖f(x)− f(−x)

2
− f(2x)− f(−2x))

4
− C0(x)‖ ≤

∞∑
j=1

8jψ(
x

2j
), (3.10)

‖f(x)− f(−x)

2
− f(2x)− f(−2x))

16
− A0(x)‖ ≤

∞∑
j=1

2jψ(
x

2j
), (3.11)
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‖f(x) + f(−x)

2
− f(0)−Q(x)‖ ≤

∞∑
j=1

22j−3ϕ(
x

2j
,− x

2j−1
) (3.12)

for all x ∈ V \{0}. From (3.2) and (3.8), we obtain E4C0(x, y) = 0, E4A0(x, y) =
0, E4Q(x, y) = 0 for all x, y ∈ V \ {0}. Since C0(2x) = 8C0(x)( A0(2x) =
2A0(x) and Q(2x) = 4Q(x), respectively), C0 is a cubic function(A0 is an addi-
tive function and Q is a quadratic function, respectively) by Theorem 2.2(The-
orem 2.1 and Theorem 2.4, respectively). From (3.8), (3.10), (3.11) and (3.12),

we get the inequality (3.9), where F = −C0(x)
3

+ Q(x) + 4A0(x)
3

+ f(0). Now,
let F ′ be another generalized polynomial function of degree 3 satisfying (3.9)
with F ′(0) = f(0). Then there are cubic functions C,C ′ : V → Y , quadratic
functions Q,Q′ : V → Y and additive functions A,A′ : V → Y such that
F (x) = C(x) +Q(x) +A(x) + f(0) and F ′(x) = C ′(x) +Q′(x) +A′(x) + f(0).
Since A,A′ : V → Y are additive functions, we get

‖A(x)− A′(x)‖ = 2n‖A(
x

2n
)− A′( x

2n
)‖

≤ 2n‖f(
x

2n
)− C(

x

2n
)−Q(

x

2n
)− A(

x

2n
)− f(0)‖

+2n‖f(
x

2n
)− C ′( x

2n
)−Q′( x

2n
)− A′( x

2n
)− f(0)‖

+2n‖C(
x

2n
)− C ′( x

2n
)‖+ 2n‖Q(

x

2n
)−Q′( x

2n
)‖

≤ 2n+1

∞∑
j=1

(8j + 2j+1)

3
ψ(

x

2j+n+1
) + 22j−3ϕ(

x

2j+n
,− x

2j+n−1
)
)

+
1

4n
‖C(x)− C ′(x)‖+

1

2n
‖Q(x)−Q′(x)‖

for all x ∈ V \{0} and n ∈ N. As n→∞, we may conclude that A(x) = A′(x)
for all x, y ∈ V . Similarly, we get Q(x) = Q′(x) and C(x) = C ′(x) for all
x, y ∈ V as we desired.

Theorem 3.4 Let ϕ : V \ {0}× V \ {0} → [0,∞) be a mapping satisfying the

conditions
∑∞

i=0
ϕ(2ix,2iy)

8i+1 and
∑∞

i=0 4iϕ( x
2i+1 ,

y
2i+1 ) < ∞ for all x, y ∈ V \ {0}.

If a function f : V → Y satisfies (3.2) for all x, y ∈ V \ {0}, then there exists
a generalized polynomial function F : V → Y of degree 3 with f(0) = F (0)
such that

‖f(x)− F (x)‖ ≤
∞∑

j=0

ψ(2jx)

3 · 8j
+
∞∑

j=1

(2j+2

3
ψ(

x

2j
) + 22j−3ϕ(

x

2j
,− x

2j−1
)
)

(3.13)
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for all x ∈ V \ {0}. In particular, F is represented by

F (x) = lim
n→∞

(2n−2

3
(f(
−x
2n−1

)− f(
x

2n−1
)) +

f(2n+1x)− f(−2n+1x)

12 · 8n

+(
2n+1

3
+ 22n−1)f(

x

2n
) + (

−2n+1

3
+ 22n−1)f(

−x
2n

) + (1− 4n)f(0)

+
f(−2nx)− f(2nx)

6 · 8n

)
for all x ∈ V .
Proof.Let the function C0 be as in the proof of Theorem 3.2 and let Q,A0

as in the proof of Theorem 3.3. We easily get C0, Q,A0 and the inequalities
(3.4), (3.11) and (3.12) for all x ∈ V \ {0}. From (3.4), (3.11) and (3.12),
we obtain (3.13), where F = −1

3
C0 + 4

3
A0 + Q + f(0). Theorem 3.5 Let ϕ :

V \{0}×V \{0} → [0,∞) be a mapping satisfying the conditions
∑∞

i=0
ϕ(2ix,2iy)

4i+1

and
∑∞

i=0 2iϕ( x
2i+1 ,

y
2i+1 ) < ∞ for all x, y ∈ V \ {0}. If a function f : V → Y

satisfies (3.2) for all x, y ∈ V \ {0}, then there exists a generalized polynomial
function F : V → Y of degree 3 with f(0) = F (0) such that

‖f(x)− F (x)‖ ≤
∞∑

j=0

(ψ(2jx)

3 · 8j
+
ϕ(2jx,−2j+1x)

22j+3

)
+
∞∑

j=1

2j+2

3
ψ(

x

2j
)

for all x ∈ V \ {0}. In particular, F is represented by

F (x) = lim
n→∞

(2n−2

3
(f(
−x
2n−1

)− f(
x

2n−1
)) +

f(2n+1x)− f(−2n+1x)

12 · 8n

+
2n+1

3
(f(

x

2n
)− f(

−x
2n

)) + (
1

2 · 4n
+

1

6 · 8n
)f(−2nx)

+(
1

2 · 4n
− 1

6 · 8n
)f(2nx)

)
+ f(0)

for all x ∈ V .
Corollary 3.6 Let p 6= 1, 2, 3 and ε > 0. Suppose that the function f : V → Y
satisfies

‖E4f(x, y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ V \ {0}. Then there exists a generalized polynomial function
F : V → Y of degree 3 with f(0) = F (0) such that

‖f(x)− F (x)‖ ≤
(24 + 2p + 3p

24
(

1

|2− 2p|
+

1

|8− 2p|
) +

1 + 2p

2|4− 2p|
)
ε‖x‖p
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for all x ∈ V \ {0}.
Proof.Applying Theorem 3.2, 3.3, 3.4 and 3.5, the following corollary can be
proved easily.

Corollary 3.7 Let ε > 0. Suppose that the function f : V → Y satisfies

‖E4f(x, y)‖ ≤ ε

for all x, y ∈ V \ {0}. Then there exists a unique generalized polynomial func-
tion F : V → Y of degree 3 with f(0) = F (0) such that

‖f(x)− F (x)‖ ≤ 11

14
ε

for all x ∈ V \ {0}.

4. Superstability of the Equation E4f = 0

Theorem 4.1 Let ϕ : V \ {0}× V \ {0} → [0,∞) be a mapping satisfying the
condition

lim
(x,y)→∞

ϕ(x, y) = 0 (4.1)

for all x, y ∈ V \ {0}. If a function f : V → Y satisfies

‖E4f(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ V \ {0}, then f is a generalized polynomial function of degree 3.
Proof. Note that if ϕ : V \ {0} × V \ {0} → [0,∞) satisfies the condition
(4.1) then ϕ satisfies the condition (4.1). By Theorem 3.1, there exist a unique
generalized polynomial function F : V → Y of degree 3 with f(0) = F (0) such
that the inequality (3.3) holds for all x ∈ V \ {0}. Hence the inequality

4‖f(x)− F (x)‖ ≤ ‖E4f((k + 1)x,−kx)− E4F ((k + 1)x,−kx)‖
+‖(f − F )((3k + 4)x)‖+ 4‖(f − F )((2k + 3)x)‖
+6‖(f − F )((k + 2)x)‖+ ‖(f − F )(−kx)‖

≤ ϕ((k + 1)x,−kx) + Φ((3k + 4)x) + 4Φ((2k + 3)x)

+6Φ((k + 2)x) + Φ(−kx))
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for all x ∈ V \ {0} and k ∈ N, where Φ is defined by

Φ(x) :=
∞∑

j=0

(ψ(2jx)

3 · 2j−2
+
ψ(2jx)

3 · 8j
+
ϕ(2jx,−2j+1x)

22j+3

)
.

Taking as k →∞, we conclude f(x) = F (x) for all x ∈ V \ {0}.
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