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Abstract

Let A be an algebra and n0 ∈ {0, 1, . . . , }∪{∞}. A sequence (dj)n0
j=1

of linear mappings on A is called a (strongly) higher derivation of rank
n0 if (d0 is the identity on A and) for each 0 ≤ j ≤ n0,

dj(ab) =
j∑
`=0

d`(a)dj−`(b) (a, b ∈ A).

In this paper, we define the notion of an approximate higher derivation
in multi-Banach algebras and investigate the superstability of strongly
higher derivations.
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1. Introduction and preliminaries

One of essential questions in the theory of functional equations giving the no-
tion of stability is “When is it true that the solution of an equation differing
slightly from a given one, must be close to the solution of the given equa-
tion?” The equation is called superstable if each its approximate solution is
an exact solution (see [5] for another notion of superstability namely super-
stability modulo the bounded functions). In 1940, S.M. Ulam [28] posed the
first stability problem. In the next year, D.H. Hyers [12] gave an affirmative
answer to the question of Ulam. In 1950, T. Aoki [2] extended Hyers’ theorem
for additive mappings. In 1978, Th.M. Rassias [24] extended Hyers’ theorem
by obtaining a unique linear mapping under certain continuity assumption
when the Cauchy difference is allowed to be unbounded (see [21]). The paper
of Th.M. Rassias [24] has provided a lot of influence in the development of
what we now call Hyers–Ulam–Rassias stability of functional equations. Dur-
ing the last decades several stability problems for various functional equations
have been investigated by many mathematicians; we refer the reader to the
monographs [6, 13, 15, 25].

The notion of multi-normed space was introduced by H.G. Dales and M.E.
Polyakov in [9]. This concept is somewhat similar to operator sequence space
and has some connections with operator spaces and Banach latices. Motiva-
tions for the study of multi-normed spaces and many examples are given in
[9].

Let (E, ‖ · ‖) be a complex normed space, and let k ∈ N. We denote by
Ek the linear space E ⊕ · · · ⊕ E consisting of k-tuples (x1, . . . , xk), where
x1, . . . , xk ∈ E. The linear operations on Ek are defined coordinatewise. The
zero element of either E or Ek is denoted by 0. We denote by Nk the set
{1, 2, . . . , k} and by Sk the group of permutations on k symbols. Following
notation and terminology of [9],

Definition 1.1. A multi-norm on {Ek : k ∈ N} is a sequence

(‖ · ‖k) = (‖ · ‖k : k ∈ N)

such that ‖ · ‖k is a norm on Ek for each k ∈ N, ‖x‖1 = ‖x‖ for each x ∈ E,
and the following axioms are satisfied for each k ∈ N with k ≥ 2:

(MN1)∥∥(xσ(1), . . . , xσ(k))
∥∥
k

= ‖(x1, . . . , xk)‖k (σ ∈ Sk, x1, . . . , xk ∈ E) ;
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(MN2)

‖(α1x1, . . . , αnxk)‖k ≤ (max
i∈Nk

|αi|) ‖(x1, . . . , xk)‖k (α1, . . . , αk ∈ C, x1, . . . , xk ∈ E) ;

(MN3)

‖(x1, . . . , xk−1, 0)‖k = ‖(x1, . . . , xk−1)‖k−1 (x1, . . . , xk−1 ∈ E) ;

(MN4)

‖(x1, . . . , xk−1, xk−1)‖k = ‖(x1, . . . , xk−1)‖k−1 (x1, . . . , xk−1 ∈ E) .

In this case, we say that ((Ek, ‖ · ‖k) : k ∈ N) is a multi-normed space.

Suppose that ((Ek, ‖ · ‖k) : k ∈ N) is a multi-normed space, and take k ∈ N.
It is easy to see that (cf. [9])

(a) ‖(x, . . . , x)‖k = ‖x‖ (x ∈ E).

(b)maxi∈Nk
‖xi‖ ≤ ‖(x1, . . . , xk)‖k ≤

∑k
i=1 ‖xi‖ ≤ kmaxi∈Nk

‖xi‖
(x1, . . . , xk ∈ E).

It follows from (b) that, if (E, ‖ · ‖) is a Banach space, then (Ek, ‖ · ‖k) is a
Banach space for each k ∈ N; in this case ((Ek, ‖ · ‖k) : k ∈ N) is a multi-
Banach space.

Example 1.2. Let E be an arbitrary normed space. The sequence (‖ · ‖k :
k ∈ N) on {Ek : k ∈ N} defined by

‖(x1, . . . , xk)‖k := max
i∈Nk

‖xi‖ (x1, . . . , xk ∈ E)

is a multi-norm called the minimum multi-norm. The terminology ‘minimum’
is justified by property (b). 2

Lemma 1.3. Suppose that k ∈ N and (x1, · · · , xk) ∈ Ek. For each j ∈
{1, · · · , k}, let (xjn)n=1,2,··· be a sequence in E such that limn→∞ x

j
n = xj. Then

for each (y1, · · · , yk) ∈ Ek we have

lim
n→∞

(x1
n − y1, · · · , xkn − yk) = (x1 − y1, · · · , xk − yk) .
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Definition 1.4. Let ((Ek, ‖ · ‖k) : k ∈ N) be a multi-normed space. A sequence
(xn) in E is a multi-null sequence if, for each ε > 0, there exists n0 ∈ N such
that

sup
k∈N
‖(xn, . . . , xn+k−1)‖k < ε (n ≥ n0).

Let x ∈ E. We say that the sequence (xn) is multi-convergent to x in E and
write

Lim
n→∞

xn = x

if (xn − x) is a multi-null sequence.

Definition 1.5. Let (A, ‖ · ‖) be a normed algebra such that ((Ak, ‖ · ‖k) : k ∈
N) is a multi-normed space. Then ((Ak, ‖ · ‖k) : k ∈ N) is a multi-normed
algebra if

‖(a1b1, . . . , akbk)‖k ≤ ‖(a1, . . . , ak)‖k ‖(b1, . . . , bk)‖k

for k ∈ N and a1, . . . , ak, b1, . . . , bk ∈ A. Further, the multi-normed algebra
((Ak, ‖ · ‖k) : k ∈ N) is a multi-Banach algebra if ((Ak, ‖ · ‖k) : k ∈ N) is a
multi-Banach space.

Example 1.6. Let p, q with 1 ≤ p ≤ q < ∞, and A = ` p. The algebra
A is a Banach sequence algebra with respect to coordinatewise multiplication
of sequences, see [7, Example 4.1.42]. Let (‖ · ‖k : k ∈ N) be the standard
(p, q)-multi-norm on {Ak : n ∈ N} (see [9]). Then ((Ak, ‖ · ‖k) : k ∈ N) is a
multi-Banach algebra.

Let A be an algebra and n0 ∈ {0, 1, . . . , } ∪ {∞}. A sequence (dj)
n0
j=1

of linear mappings on A is called a higher derivation of rank n0 if for each
0 ≤ j ≤ n0,

dj(ab) =

j∑
`=0

d`(a)dj−`(b) (a, b ∈ A).

It is obvious that d0 is a homomorphism and d1 is a d0-derivation in the sense
of [18]. If d0 is the identity operator idA on A, then (dj)

n0
j=0 is called a strongly

higher derivation. The notion of higher derivation was introduced by Hasse
and Schmidt [10]. This notion closely concerns the concept of homomorphisms
[7]. In [27] higher derivations are applied to study generic solving of higher
differential equations. A standard example of a strongly higher derivation is
(D

j

j!
)∞j=0, where D is a derivation on an algebra A. The interested reader is
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referred to [11, 14, 17, 26] and the references therein for more information
about higher derivations.

The stability of derivations was studied by C.-G. Park in [22, 23]. A discus-
sion of stability of the so-called generalized derivations is given in [1, 3, 19, 20].
In this paper, using some ideas from [4, 7, 20], we investigate the superstability
of higher derivations in multi-Banach algebras. We should noticed that our
main result is a generalization of [16, Corollary 2.5].

2. Superstability of Higher Derivations

We start our work by providing a proof for the following theorem by using
the direct method (see also [7, Corollary 3.4 ] in which we used a fixed point
approach).

Lemma 2.1. Let (E, ‖ · ‖) be a normed space, and let ((F k, ‖ · ‖k) : k ∈ N) be
a multi-Banach space. Let k ∈ N, α ≥ 0, and let f : E → F be a mapping
satisfying f(0) = 0 and∥∥(f(µx1 + y1)− µf(x1)− f(y1), . . . , f(µxk + yk)− µf(xk)− f(yk)

)∥∥
k
≤ α(2.1)

for all µ ∈ T = {z ∈ C : |z| = 1}, and x1, . . . , xk, y1, . . . , yk ∈ E. Then there
exists a unique linear mapping T : E → F such that∥∥(f(x1)− T (x1), . . . , f(xk)− T (xk)

)∥∥
k
≤ α

for all x1, . . . , xk ∈ E.

Proof. Let x1, . . . , xk ∈ E. Replacing y1, · · · , yk by x1, · · · , xk in (2.1) we
obtain

sup
k∈N

∥∥(f(2x1)− 2f(x1), . . . , f(2xk)− 2f(xk)
)∥∥

k
≤ α . (2.2)

Replacing x1, . . . , xk by 2nx1, . . . , 2
nxk and dividing by 2n+1 from relation (2.2)

one gets

sup
k∈N

∥∥∥∥(f(2n+1x1)

2n+1
− f(2nx1)

2n
, . . . ,

f(2n+1xk)

2n+1
− f(2nxk)

2n

)∥∥∥∥
k

≤ α

2n+1
. (2.3)
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It follows from (2.3)that

sup
k∈N

∥∥∥∥(f(2n+mx1)

2n+m
− f(2nx1)

2n
, . . . ,

f(2n+mxk)

2n+m
− f(2nxk)

2n

)∥∥∥∥
k

≤ α
( 1

2n+1
+ · · ·+ 1

2n+m

)
(2.4)

for n,m ∈ N, m ≥ 1 . This implies that
(
f(2nx)

2n

)
is Cauchy for each fixed x.

Hence this sequence is convergent in the complete multi-norm F . Set

T (x) := Lim
n→∞

f(2nx)

2n
.

Hence for each ε > 0 there is n0 such that

sup
k∈N

∥∥∥∥(f(2nx)

2n
− T (x), . . . ,

f(2n+k−1x)

2n+k−1
− T (x)

)∥∥∥∥
k

< ε

for all n ≥ n0. In particular, by property (b) of multi-norm, we have

lim
n→∞

∥∥∥∥f(2nx)

2n
− T (x)

∥∥∥∥ = 0 (x ∈ E). (2.5)

Next put n = 0 in (2.4) to get

sup
k∈N

∥∥∥∥(f(2mx1)

2m
− f(x1), . . . ,

f(2mxk)

2m
− f(xk)

)∥∥∥∥
k

≤ α .

Letting m tend to infinity and using Lemma 1.3 and (2.5) we obtain

sup
k∈N
‖(T (x1)− f(x1), . . . , T (xk)− f(xk))‖k ≤ α .

Let x, y ∈ E. Put x1 = · · · = xk = 2nx, y1 = · · · = yk = 2ny in (2.1) and
divide both sides by 2n to obtain

‖(2−nf(2n(x+ y))− 2−nf(2nx)− 2−nf(2ny)‖ ≤ 2−nα

taking the limit as n→∞ we get T (x+y) = T (x)+T (y). Hence T is additive.
If T ′ is another required mapping, then

‖T ′(x)− T (x)‖ ≤ 1

2n
‖T ′(2nx)− T (2nx)‖

≤ 1

2n
‖T ′(2nx)− f(2nx)‖+

1

2n
‖f(2nx)− T (2nx)‖

≤ 1

2n
(
α

2− s
+

α

2− s
) (by property (a) of multi-norm)
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Hence T ′ = T . This proves the uniqueness assertion. The homogenous prop-
erty of T can be proved in a standard fashion. 2

Definition 2.2. Let α > 0 and ϕ : A×A → [0,∞) be a control function such
that

ϕ(2na, 2mb) ≤ βn+mϕ(a, b) (2.6)

for some 0 < β < 2, all nonnegative numbers m,n and all a, b ∈ A. Let
((Ak, ‖ · ‖k) : k ∈ N) be a multi-Banach algebra. An (α, ϕ)-approximate
strongly higher derivation of rank n0 is a sequence (fj)

n0
j=0 of mappings fj :

A → A with fj(0) = 0 and such that f0 = idA,

sup
k∈N
‖(fj(µx1 + y1)− µfj(x1)− fj(y1), . . . , fj(µxk + yk)− µfj(xk)− fj(yk))‖k ≤ α

for all 0 ≤ j ≤ n0, all µ ∈ T and all x1, . . . , xk, y1, . . . , yk ∈ E, and

‖fj(ab)−
j∑
`=0

f`(a)fj−`(b)‖ ≤ ϕ(a, b) (2.7)

for all 0 ≤ j ≤ n0 and all a, b ∈ A.

Theorem 2.3. Every (α, ϕ)-approximate strongly higher derivation in a multi-
Banach algebra is a higher derivation.

Proof. Let ((Ak, ‖ · ‖k) : k ∈ N) be a multi-Banach algebra and let (fj)
n0
j=0 be

an (α, ϕ)-approximate higher derivation. By Lemma 2.1, for each 0 ≤ j ≤ n0,

there is a linear mapping Dj defined by Dj(a) := limn→∞
fj(2

na)

2n such that

‖Dj(a)− fj(a)‖ ≤ α

for all a ∈ A. It follows from (2.6) and (2.7) that∥∥∥∥∥fj(4nab)4n
−

j∑
`=0

f`(2
na)

2n
fj−`(2

nb)

2n

∥∥∥∥∥ ≤ ϕ(2na, 2nb)

4n
≤
(
β

2

)2n

ϕ(a, b)
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from which we infer that (Dj) is a higher derivation. Further,

‖2n(f1(2
ma)− 2mf1(a))‖

≤ ‖2n1f1(2
ma)− f1(2

n1)2ma− f1((2
n1)(2ma))‖

+‖f1((2
n1)(2ma))− f1(2

n1)2ma− 2n+m1f1(a)‖
≤ βn+mϕ(1, a) + ‖f1((2

n1)(2ma))− f1(2
n1)2ma− 2n+m1f1(a)‖

≤ βn+mϕ(1, a) + ‖f1((2
n1)(2ma))−D1((2

n1)(2ma))‖
+‖D1((2

n1)(2ma))− 2n+m1f1(a)− f1(2
n1)2ma‖

≤ βn+mϕ(1, a) + α

+‖D1((2
n1)(2ma))− 2n+m1f1(a)− f1(2

n1)2ma‖
≤ βn+mϕ(1, a) + α + 2m‖D1(2

n1a)− f1(2
n1a)‖

+2m‖f1(2
n1a)− 2n1f1(a)− f1(2

n1)a‖
≤ βn+mϕ(1, a) + α + 2mα + 2mϕ(2n1, a)

≤ (βn+m + 2mβn)ϕ(1, a) + (1 + 2m)α,

for all nonnegative integers m,n and all a ∈ A. Fix m and let n tend to ∞ in
the following inequality

‖f1(2
ma)− 2mf1(a)‖ ≤ (βn+m + 2mβn)ϕ(1, a) + (1 + 2m)α

2n
.

Then f1(2
ma) = 2mf1(a) for all m and all a ∈ A. Therefore D1(a) =

limm→∞
f1(2ma)

2m = f1(a) for all a ∈ A.
By utilizing induction on j and applying

‖fj(ab)− afj(b)−
j−1∑
`=1

f`(a)fj−`(b)− fj(a)b‖ ≤ ϕ(a, b)

we conclude that Dj = fj for all 0 ≤ j ≤ n0. 2

Remark 2.4. A typical example of the control function ϕ is ϕ(a, b) = βε(‖x‖p+
‖y‖q) + δ‖x‖p ‖y‖q, where ε, δ ≥ 0 and p, q ∈ [0, 1). A general example is the
function ϕ(a, b) = ψ(‖a‖) + ψ(‖b‖), where ψ : [0,∞) → [0,∞) is a function
with ψ(2) < 2.

Corollary 2.5. Every (α, ϕ)-approximate strongly higher derivation in a Ba-
nach algebra is a higher derivation.
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Corollary 2.6. Every (α, ϕ)-approximate derivation (regarded as a approx-
imate strongly higher derivation of rank 2) in a multi-Banach algebra is a
higher derivation.
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